A Comparative Analysis of Anomaly Detection Techniques for Battery Telemetry Data in Low Earth Orbit Remote Sensing Satellites
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
The article presents a comprehensive assessment of telemetry data of batteries used in low-earth orbit satellites. The study further performs an analysis of the performance of using different anomaly detection techniques, including Statistical (Z-Score), Machine Learning (One class support vector machine OCSVM, Isolation Forest), Deep Learning (Autoencoder), and Hybrid Approaches (Autoencoder and neural network and Autoencoder and Z-score). This study introduces and evaluates a hybrid anomaly detection framework combining deep learning-based feature compression (Autoencoder) with various downstream classifiers. The models are validated on real satellite telemetry data and benchmarked using medical electrocardiogram ECG datasets for generalizability. In addition, the study continues to analyze the system by detecting the faulty sensor that was responsible for the detected anomalies, which can help the operators to get a more accurate analysis of the system.
##plugins.themes.bootstrap3.article.details##
Satellite Battery Telemetry, Anomaly Detection, Z-score, OCSVM, Isolation forest, Autoencoder, Hybrid approaches, Fault Detection
Ahmed, M., Mahmood, A. N., & Islam, M. R. (2016). A survey of anomaly detection techniques in financial domain. Future Generation Computer Systems, 55, 278–288.
Ali, P. J. M. (2022). Investigating the impact of min-max data normalization on the regression performance of k-nearest neighbor with different similarity measurements. ARO-The Scientific Journal of Koya University, 10(1), 85–91.
Al Miaari, A., & Ali, H. M. (2023). Batteries temperature prediction and thermal management using machine learning: An overview. Energy Reports, 10, 2277–2305.
Audibert, J., Michiardi, P., Guyard, F., Marti, S., & Zuluaga, M. A. (2020). Usad: Unsupervised anomaly detection on multivariate time series. In Proceedings of the 26th acm sigkdd international conference on knowledge discovery & data mining (pp. 3395–3404).
Balan, A. K., & M¨uller, K. (2015). Operational experience with nickel-hydrogen and lithium-ion batteries. In Space2015-aiaa space and astronautics forum and exposition.
Ball, J. E., Anderson, D. T., & Chan, C. S. (2017). Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community. Journal of applied remote sensing, 11(4), 042609–042609.
Bernal-Mencia, P., Doerksen, K., & Yap, C. (2021). Machine learning for early satellite anomaly detection. In Proceedings of the 35th annual small satellite conference.
Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 1–58.
Chen, X., Deng, L., Huang, F., Zhang, C., Zhang, Z., Zhao, Y., & Zheng, K. (2021). Daemon: Unsupervised anomaly detection and interpretation for multivariate time series. In 2021 ieee 37th international conference on data engineering (icde) (pp. 2225–2230).
Chien, S., & Morris, R. (2014). Space applications of artificial intelligence. Ai Magazine, 35(4), 3–6.
Chikodili, N. B., Abdulmalik, M. D., Abisoye, O. A., & Bashir, S. A. (2020). Outlier detection in multivariate time series data using a fusion of k-medoid, standardized euclidean distance and z-score. In International conference on information and communication technology and applications (pp. 259–271).
Chliah, H., Battou, A., Laoufi, A., et al. (2023). Hybrid machine learning-based approach for anomaly detection using apache spark. International Journal of Advanced Computer Science and Applications, 14(4).
Dhamodharan, B. (2022). Beyond traditional methods: A novel approach to anomaly detection and classification using ai techniques. Transactions on Latest Trends in Artificial Intelligence, 3(3).
Dobos, D., Nguyen, T. T., Dang, T., Wilson, A., Corbett, H., McCall, J., & Stockton, P. (2023). A comparative study of anomaly detection methods for gross error detection problems. Computers & Chemical Engineering, 175, 108263.
Elattar, H. M., Elminir, H. K., & Riad, A. M. (2016). Prognostics: a literature review. Complex & Intelligent Systems, 2(2), 125–154.
Erfani, S. M., Rajasegarar, S., Karunasekera, S., & Leckie, C. (2016). High-dimensional and large-scale anomaly detection using a linear one-class svm with deep learning. Pattern Recognition, 58, 121–134.
Fang, H., Shi, H., Dong, Y., Fan, H., & Ren, S. (2017). Spacecraft power system fault diagnosis based on dnn. In 2017 prognostics and system health management conference (phm-harbin) (pp. 1–5).
Gao, T., & Lu,W. (2021). Machine learning toward advanced energy storage devices and systems. Iscience, 24(1).
Gonzalez-Jimenez, D., del Olmo, J., Poza, J., Garramiola, F., & Sarasola, I. (2021). Machine learning-based fault detection and diagnosis of faulty power connections of induction machines. Energies, 14(16), 4886.
Grabaskas, N., & Si, D. (2017). Anomaly detection from kepler satellite time-series data. In Machine learning and data mining in pattern recognition: 13th international conference, mldm 2017, new york, ny, usa, july 15-20, 2017, proceedings 13 (pp. 220–232).
He, J., Cheng, Z., & Guo, B. (2022). Anomaly detection in satellite telemetry data using a sparse feature-based method. Sensors, 22(17), 6358.
Huc, A., Salej, J., & Trebar, M. (2021). Analysis of machine learning algorithms for anomaly detection on edge devices. Sensors, 21(14), 4946.
Iqbal, R., Maniak, T., Doctor, F., & Karyotis, C. (2019). Fault detection and isolation in industrial processes using deep learning approaches. IEEE Transactions on Industrial Informatics, 15, 3077–3084.
Irsoy, O., & Alpaydın, E. (2017). Unsupervised feature extraction with autoencoder trees. Neurocomputing, 258, 63–73.
Jan, S. U., Lee, Y. D., & Koo, I. S. (2021). A distributed sensor-fault detection and diagnosis framework using machine learning. Information Sciences, 547, 777–796.
Jeong, S.-K., Ji, D.-H., Oh, M., Park, H., Baeg, S., & Lee, J. (2023). A study on anomaly detection of unmanned marine systems using machine learning. Measurement and Control, 56(3-4), 470–480.
Jung, S., Kim, M., Kim, E., Kim, B., Kim, J., Cho, K.-H., . . . Kim, S. (2024). The early detection of faults for lithium-ion batteries in energy storage systems using independent component analysis with mahalanobis distance. Energies, 17(2), 535.
Kalinichenko, L., Shanin, I., & Taraban, I. (2014). Methods for anomaly detection: A survey. In Ceur workshop proceedings (Vol. 1297, p. 2025).
Kang, H., & Kang, P. (2024). Transformer-based multivariate time series anomaly detection using inter-variable attention mechanism. Knowledge-Based Systems, 290, 111507.
Kea, K., Han, Y., & Kim, T.-K. (2023). Enhancing anomaly detection in distributed power systems using autoencoder-based federated learning. Plos one, 18(8), e0290337.
Kim, G. G., Lee,W., Bhang, B. G., Choi, J. H., & Ahn, H.-K. (2020). Fault detection for photovoltaic systems using multivariate analysis with electrical and environmental variables. IEEE Journal of photovoltaics, 11(1), 202–212.
Kunang, Y. N., Nurmaini, S., Stiawan, D., Zarkasi, A., et al. (2018). Automatic features extraction using autoencoder in intrusion detection system. In 2018 international conference on electrical engineering and computer science (icecos) (pp. 219–224).
Lee, B., & Wang, X. (2010). Fault detection and reconstruction for micro-satellite power subsystem based on pca. In 2010 3rd international symposium on systems and control in aeronautics and astronautics (pp. 1169–1173).
Lee, J., & Su, H. (2025). Rethinking industrial artificial intelligence: a unified foundation framework. arXiv preprint arXiv:2504.01797.
Lewin, A. (1999). A maintenance-free battery charge control approach for nickel-hydrogen batteries. In Proceedings of the 13th aiaa/usu conference on small satellites.
Li, D., Chen, D., Jin, B., Shi, L., Goh, J., & Ng, S.-K. (2019). Mad-gan: Multivariate anomaly detection for time series data with generative adversarial networks. In International conference on artificial neural networks (pp. 703–716).
Liu, D., Zhen, H., Kong, D., Chen, X., Zhang, L., Yuan, M., & Wang, H. (2021). Sensors anomaly detection of industrial internet of things based on isolated forest algorithm and data compression. Scientific Programming, 2021(1), 6699313.
Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation forest. In 2008 eighth ieee international conference on data mining (pp. 413–422).
Lo, N. G., Flaus, J.-M., & Adrot, O. (2019). Review of machine learning approaches in fault diagnosis applied to iot systems. In 2019 international conference on control, automation and diagnosis (iccad) (pp. 1–6).
Lou, Y. (2021). Hybrid approaches of battery performance modeling and prognosis (Unpublished doctoral dissertation). University of Michigan.
Ma, K. Y., Montoro, M., Shaw, H., Mihir, P., Woods, L., Williams, T., . . . others (2019). Utilization of unsupervised anomalies detector as a tool for managing the tdrs constellation at gsfc. In International astronautical congress (iac).
Maggipinto, M., Masiero, C., Beghi, A., & Susto, G. A. (2018). A convolutional autoencoder approach for feature extraction in virtual metrology. Procedia Manufacturing, 17, 126–133.
Maleki Sadr, M. A., Zhu, Y., & Hu, P. (2022). An anomaly detection method for satellites using monte carlo dropout. arXiv e-prints, arXiv–2211.
Mane, D. T., Sangve, S., Upadhye, G., Kandhare, S., Mohole, S., Sonar, S., & Tupare, S. (2022). Detection of anomaly using machine learning: a comprehensive survey. Int. J. Emerg. Technol. Adv. Eng., 12(11), 134–152.
Marathe, A. P. (2020). Lrz convolution: an algorithm for automatic anomaly detection in time-series data. In Proceedings of the 32nd international conference on scientific and statistical database management (pp. 1–12).
Meng, Q., Catchpoole, D., Skillicom, D., & Kennedy, P. J. (2017). Relational autoencoder for feature extraction. In 2017 international joint conference on neural networks (ijcnn) (pp. 364–371).
Mnyanghwalo, D., Kundaeli, H., Kalinga, E., & Hamisi, N. (2020). Deep learning approaches for fault detection and classifications in the electrical secondary distribution network: Methods comparison and recurrent neural network accuracy comparison. Cogent Engineering, 7(1), 1857500.
Mokhtar, A., Ibrahim, M., Hanafy, M. E., ElTohamy, F. H. A., Murtada, W. A., & Elhalwagy, Y. Z. (2024). A reliable spacecraft power supply subsystem based on discrete water cycle multi-objective optimization. Franklin Open, 7, 100092.
Mosin, V., Staron, M., Tarakanov, Y., & Durisic, D. (2022). Comparing autoencoder-based approaches for anomaly detection in highway driving scenario images. SN Applied Sciences, 4(12), 334.
Mostacciuolo, E., Vasca, F., Baccari, S., Iannelli, L., Sagnelli, S., Luisi, R., & Stanzione, V. (2019). Fault analysis to improve reliability of a leo satellite eps. IFACPapersOnLine, 52(12), 200–205.
Mutholib, A., Rahim, N. A., Gunawan, T. S., & Ahmarofi, A. A. (2024). Performance comparison of data preprocessing methods for trade-space exploration with ai model: Case study of satellite anomalies detection. In 2024 ieee 10th international conference on smart instrumentation, measurement and applications (icsima) (pp. 271–275).
Neloy, A. A., & Turgeon, M. (2024). A comprehensive study of auto-encoders for anomaly detection: Efficiency and trade-offs. Machine Learning with Applications, 100572.
Osmani, K., Haddad, A., Lemenand, T., Castanier, B., & Ramadan, M. (2020). Material-based fault detection methods for pv systems. In Key engineering materials (Vol. 865, pp. 111–115).
Peng, J., Fan, L., Xiao,W., & Tang, J. (2014). Anomaly monitoring method for key components of satellite. The Scientific World Journal, 2014(1), 104052.
Prakash, S., Venkatasubbu, S., & Konidena, B. K. (2023). From burden to advantage: Leveraging ai/ml for regulatory reporting in us banking. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 1(1), 167–176.
Purushothaman, K., Binu, B., Philip, J., Pillai, S., & Ilangovan, S. (2011). Acoustic emission monitoring and evaluation of nickel hydrogen battery cell cases. In Proceedings of the national seminar & exhibition on non-destructive evaluation (nde).
Putina, A., & Rossi, D. (2020). Online anomaly detection leveraging stream-based clustering and real-time telemetry. IEEE Transactions on Network and Service Management, 18(1), 839–854.
Raj, A., & Sharma, S. (2024). A comprehensive study on anomaly detection methods using traditional and machine learning approaches. International Journal of High School Research, 6(11).
Sakurada, M., & Yairi, T. (2014). Anomaly detection using autoencoders with nonlinear dimensionality reduction. In Proceedings of the mlsda 2014 2nd workshop on machine learning for sensory data analysis (pp. 4–11).
Sardar, B. K., Pavithra, S., Sanjay, H., & Gogoi, P. (2022). Determining stock market anomalies by using optimized z-score technique on clusters obtained from kmeans. In Recent advances in artificial intelligence and data engineering: Select proceedings of aide 2020 (pp. 401–414).
Shen, L., Li, Z., & Kwok, J. (2020). Timeseries anomaly detection using temporal hierarchical one-class network. Advances in neural information processing systems, 33, 13016–13026.
Shimillas, C., Malialis, K., Fokianos, K., & Polycarpou, M. M. (2025). Transformer-based multivariate time series anomaly localization. In 2025 ieee symposium on computational intelligence on engineering/cyber physical systems (cies) (pp. 1–8).
Singh, A., Singh, S. P., Alam, M. N., & Singh, G. (2024). Deep learning for anomaly detection in iot systems: Techniques applications and future directions. International Journal For Multidisciplinary Research.
Su, H., & Lee, J. (2023). Machine learning approaches for diagnostics and prognostics of industrial systems using open source data from phm data challenges: a review. arXiv preprint arXiv:2312.16810.
Taha, A., & Hadi, A. S. (2019). Anomaly detection methods for categorical data: A review. ACM Computing Surveys (CSUR), 52(2), 1–35.
Tanriverdiyev, E. (2024). Analysis of computer network statistics for identifying stability-disrupting information flows in military local networks. Studia Bezpieczénstwa Narodowego, 34(4), 77–89.
Tennberg, M., & Ekeroot, L. (2021). Anomaly detection on satellite time-series.
Thaller, L. H., & Zimmerman, A. H. (2003). Overview of the design, development, and application of nickel-hydrogen batteries (Technical Report). National Aeronautics and Space Administration (NASA).
Torabi, H., Mirtaheri, S. L., & Greco, S. (2023). Practical autoencoder based anomaly detection by using vector reconstruction error. Cybersecurity, 6(1), 1.
Ulmer, M., Zgraggen, J., & Huber, L. G. (2023). A generic machine learning framework for fully-unsupervised anomaly detection with contaminated data. arXiv preprint arXiv:2308.13352.
Wang, Y., Gong, J., Zhang, J., & Han, X. (2022). A deep learning anomaly detection framework for satellite telemetry with fake anomalies. International Journal of Aerospace Engineering, 2022(1), 1676933.
Wulsin, D., Blanco, J., Mani, R., & Litt, B. (2010). Semisupervised anomaly detection for eeg waveforms using deep belief nets. In 2010 ninth international conference on machine learning and applications (pp. 436–441).
Yang, S., Hu, S., Zhao, J., Cui, H., Wang, Y., Zhao, S., . . . Dong, Z. (2022). Prediction on discharging properties of nickel–manganese materials for high-performance sodium-ion batteries via machine learning methods. Energy Technology, 10(11), 2200733.
Zhang, W., Wu, Q. J., Zhao, W. W., Deng, H., & Yang, Y. (2022). Hierarchical one-class model with subnetwork for representation learning and outlier detection. IEEE Transactions on Cybernetics, 53(10), 6303–6316.
Zhang, Y.,&Yan, J. (2023). Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In The eleventh international conference on learning representations.