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ABSTRACT

The article presents a comprehensive assessment of teleme-
try data of batteries used in low-earth orbit satellites. The
study further performs an analysis of the performance of us-
ing different anomaly detection techniques, including Statis-
tical (Z-Score), Machine Learning (One class support vector
machine OCSVM, Isolation Forest), Deep Learning (Autoen-
coder), and Hybrid Approaches (Autoencoder and neural net-
work and Autoencoder and Z-score). This study introduces
and evaluates a hybrid anomaly detection framework combin-
ing deep learning-based feature compression (Autoencoder)
with various downstream classifiers. The models are vali-
dated on real satellite telemetry data and benchmarked using
medical electrocardiogram ECG datasets for generalizability.
In addition, the study continues to analyze the system by de-
tecting the faulty sensor that was responsible for the detected
anomalies, which can help the operators to get a more accu-
rate analysis of the system.

Ahmed Adam Ibrahim et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

1. INTRODUCTION

Any satellite mission needs a continuous power source
throughout its lifetime under all conditions and modes of op-
eration with different mission types. Satellites that have solar
panels as their primary power source need batteries to supply
them during eclipse periods. The power supply system (PSS)
is considered the soul of the spacecraft(Peng, Fan, Xiao, &
Tang, 2014; Tennberg & Ekeroot, 2021). The demand for re-
liable and efficient power sources in low-earth orbit (LEO)
satellites is an essential objective (Mokhtar et al., 2024;
Mostacciuolo et al., 2019; B. Lee & Wang, 2010), focusing
on nickel-hydrogen batteries that have been used for decades
in space due to their qualified performance. However, it
suffers from size, weight, lower energy density, and oper-
ational complexity (Thaller & Zimmerman, 2003; Lewin,
1999; Balan & Müller, 2015; Purushothaman, Binu, Philip,
Pillai, & Ilangovan, 2011; Lou, 2021). Also, in this mission
case study, it suffers from sensor anomalies, notably pressure
differences (!P ), which impact the battery’s performance.
Thus, it will have a great consequence on the mission’s life-
time. The battery has some important sensors that influence
the assessment of its performance; the most notable are cur-
rent (C), capacity (Cap.), voltage (V), temperature (T), and
four pressure sensors (P1, P2, P3, and P4) put on the con-
trolled cells.
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The readings of these cells control the algorithms of charg-
ing and discharging (because the average of pressure sensors
is the main factor of activation or deactivation of the algo-
rithm). The main problem faced in this case was the increas-
ing difference in pressure readings (!P ) Eq.(1) for pressure
sensors that made failure messages and had a direct effect on
the behavior of the mentioned algorithms.

!P j = (max value - min value) of pressure sensors (1)

Where j is the number of the observation.

Figure 1. Battery layout

This case study involves a remote sensing satellite in low
Earth orbit, equipped with two nickel-hydrogen battery mod-
ules, each containing 17 active cells. The schematic repre-
sentation of the nickel-hydrogen battery module used in the
satellite system, showing the placement of pressure sensors
(P1–P4) and active cells, is shown in Figure 1. These batter-
ies supply power during eclipse periods or misalignment dur-
ing imaging and maneuvers. There are several sensors read-
ing; as mentioned previously, these readings are collected by
the analog/digital conversion unit (ADCU) and sent through
the power control unit (PCU) to the ground station as teleme-
try every communication session. The main objective is to
detect the anomaly of the battery’s telemetry received.

Anomaly detection is the process of identifying unusual be-
havior, data points, occurrences, or observations that raise
concerns because they deviate from the rest of the data points
or observations (Wang, Gong, Zhang, & Han, 2022; Mane et
al., 2022; Taha & Hadi, 2019; Chandola, Banerjee, & Ku-
mar, 2009; Kalinichenko, Shanin, & Taraban, 2014; Neloy &
Turgeon, 2024; Raj & Sharma, 2024; Ahmed, Mahmood, &
Islam, 2016). In space applications, this issue increases its
importance due to its complexity and the need for a reliable
system. Also, anomaly detection of the telemetry of satellites
is the main key that helps in health monitoring to avoid any
possible malfunction in spacecraft (Maleki Sadr, Zhu, & Hu,
2022; Bernal-Mencia, Doerksen, & Yap, 2021; He, Cheng, &
Guo, 2022; Mutholib, Rahim, Gunawan, & Ahmarofi, 2024).

There are several anomaly detection techniques used depend-
ing on the type of problem, the nature of the anomalies, the
number of samples available or volume of dataset to be used,
the complexity of the model accepted, and finally, the accu-
racy needed based on the significance of the case (Osmani,
Haddad, Lemenand, Castanier, & Ramadan, 2020; Chandola
et al., 2009; Kalinichenko et al., 2014; Singh, Singh, Alam,
& Singh, 2024; Ahmed et al., 2016). The research focuses
on anomaly detection of telemetry sensor readings of nickel-
hydrogen batteries used in satellites by learning the differ-
ent models that were created in the training stage to detect
anomalies that have a deviation from the normal one (Torabi,
Mirtaheri, & Greco, 2023; Bernal-Mencia et al., 2021).

Rule-based classification, or threshold-based classification, is
reducing the optimal use of the correlation among the differ-
ent features or sensors. These rules are often simplistic and
fail to generalize well to new, unseen data, especially if the
data has complicated relationships. It would be impractical to
manually create rules for all edge situations and complicated
circumstances. It becomes tough to manage all of the differ-
ent combinations and circumstances with if statements. The
complexity of rule writing grows considerably as the number
of variables rises. Capturing all possible combinations man-
ually is not feasible in complex scenarios.

The usage of AI systems expands with the increasing com-
plexity of the system. It demonstrated high performance
in anomaly detection across various applications (Bernal-
Mencia et al., 2021; Lo, Flaus, & Adrot, 2019; Al Miaari
& Ali, 2023; Prakash, Venkatasubbu, & Konidena, 2023; Ma
et al., 2019; Chien & Morris, 2014; Fang, Shi, Dong, Fan,
& Ren, 2017). They can learn the relations among different
sensors; they are better able to interpolate between complex
patterns in the data and capable of detecting the abnormal
behavior of the whole system. Despite the sensors working
in neither fault range individually, the system might be con-
sidered faulty. This is particularly evident in the setting of
high-dimensional features.
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The main contribution of this paper:

• The use of real-life satellite mission data in fault detec-
tion.

• Achieving higher performance of anomaly detection by
using an autoencoder as a feature engineering method
that has a great influence on the enhancement of the re-
sults.

• Proving that the implementation of a hybrid model, by
merging two conceptual anomaly detection methodolo-
gies, one deep learning and one statistical (autoencoder-
Z-Score), fulfills better results when dealing with high-
dimensional datasets that can overcome the main prob-
lem of traditional methods.

• The use of AI-based methodologies can achieve more ac-
curate fault detection over rule-based classification.

• The use of AI-based methodologies eased the detection
of the actual sensors that can be the main cause of the
anomalies.

2. RELATED WORK

There are several articles and research studies that have
shown the importance of and made comparisons between dif-
ferent methods of anomaly detection (Chliah, Battou, Laoufi,
et al., 2023; Mane et al., 2022; Jung et al., 2024; Gao &
Lu, 2021; Dobos et al., 2023; Chandola et al., 2009; Raj &
Sharma, 2024; Elattar, Elminir, & Riad, 2016; D. Liu et al.,
2021; B. Lee & Wang, 2010).

This section focuses on some common methods that can be
used for anomaly detection in this research, due to their prop-
erties, performance, and compatibility with the objective of
the task:

2.1. Statistical Approaches

The Z-score (or standard score) is a widely used statistical ap-
proach for detecting outliers. It is simple and has great privi-
lege in computational times, but it has some drawbacks, such
as the assumption of normal distribution, being sensitive to
outliers, fixed thresholding, and not being ideal for multivari-
ate data (Chikodili, Abdulmalik, Abisoye, & Bashir, 2020;
Sardar, Pavithra, Sanjay, & Gogoi, 2022; Jung et al., 2024;
Chandola et al., 2009; Marathe, 2020; Grabaskas & Si, 2017;
Tanriverdiyev, 2024; Singh et al., 2024).

2.2. Machine Learning Approaches

Machine learning (ML) algorithms have high performance in
detection and classification (Jan, Lee, & Koo, 2021; Mane et
al., 2022; Gonzalez-Jimenez, del Olmo, Poza, Garramiola, &
Sarasola, 2021; Ulmer, Zgraggen, & Huber, 2023; Prakash et
al., 2023; Huč, Šalej, & Trebar, 2021).

The OCSVM is among the most popular methods because it
learns from a class of data and identifies deviations as anoma-
lies. It can handle datasets with many input features. Its
performance is heavily dependent on the selection of ker-
nel function and parameters (nu) (contamination) and (ω)
(gamma) (Tennberg & Ekeroot, 2021; Taha & Hadi, 2019;
Dobos et al., 2023; Erfani, Rajasegarar, Karunasekera, &
Leckie, 2016).

Isolation Forest is also a good choice for anomaly detection
due to its efficiency, scalability to large datasets, hhigh di-
mensionality,fast computational times, and robustness. To
achieve the best results, the system needs proper tuning and
assessment. Especially parameters like the number of trees
(n. estimators) and the vital contamination factor (Kea, Han,
& Kim, 2023; F. T. Liu, Ting, & Zhou, 2008; He et al., 2022;
Dobos et al., 2023; D. Liu et al., 2021).

2.3. Deep Learning Approaches

Deep learning is a subset of machine learning that has been
widely used for satellite anomaly detection problems. The
main advantages of applying deep learning algorithms are
the ability to analyze vast amounts of data generated by sen-
sors and control inputs to find out the abnormality of the sys-
tem. (Abed, Gitaffa, & Issa, 2021; Iqbal, Maniak, Doctor, &
Karyotis, 2019; Wang et al., 2022; Mnyanghwalo, Kundaeli,
Kalinga, & Hamisi, 2020; Mane et al., 2022; Huč et al., 2021;
Singh et al., 2024; Fang et al., 2017).

One of the most ideal deep learning models is the autoen-
coder. It is an artificial neural network that gets two functions.
An encoding function transforms input data, and a decoding
function recreates input data from the encoded representation.
The autoencoder finds an easy-to-use representation (encod-
ing) for a set of information or data (Jeong et al., 2023; Kea et
al., 2023; Tennberg & Ekeroot, 2021; Gao & Lu, 2021; Do-
bos et al., 2023; Ball, Anderson, & Chan, 2017; Neloy & Tur-
geon, 2024; Mosin, Staron, Tarakanov, & Durisic, 2022; Ir-
soy & Alpaydın, 2017; Maggipinto, Masiero, Beghi, & Susto,
2018; Sakurada & Yairi, 2014).

When constructing an autoencoder model, one should keep
some things in mind. The most important hyperparameter to
tune the autoencoder is the code or bottleneck size. It deter-
mines how much data needs to be compressed. When tuning
autoencoders, it is important to consider the number of lay-
ers. The model has more complexity with a higher depth, but
a lower depth is faster (Torabi et al., 2023; Irsoy & Alpaydın,
2017).

In recent years, several advanced deep learning architectures
have been proposed for multivariate time-series anomaly de-
tection, such as unsupervised anomaly detection USAD on
multivariate time series (Audibert, Michiardi, Guyard, Marti,
& Zuluaga, 2020; Chen et al., 2021), the hierarchical one-
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class model (Shen, Li, & Kwok, 2020; W. Zhang, Wu, Zhao,
Deng, & Yang, 2022), multivariate anomaly detection for
time series data with GAN (Li et al., 2019),Transformer-
based multivariate time series (Shimillas, Malialis, Fokianos,
& Polycarpou, 2025; Kang & Kang, 2024), and the
cross-former anomaly detection model (Y. Zhang & Yan,
2023).These models demonstrate effective performance on
benchmark datasets; they can detect anomalies accurately in
lab-tested or open-source environments. They need a lot of
processing power to operate effectively. This issue can arise
in satellite systems, particularly at ground stations that require
fast processing of large volumes of telemetry data or in on-
board spacecraft computers, which are designed with limited
hardware resources. It is hard to interpret why a decision was
made. This lack of transparency and high complexity makes
it difficult to be trusted in critical systems such as space ap-
plications.

Beyond technical models, several works have explored
broader frameworks for industrial AI and system health man-
agement. Recent research emphasizes the significance of ma-
chine learning in diagnostics and prognostics utilizing pub-
licly available challenge datasets, such as those reviewed by
(Su & Lee, 2023). Their research demonstrates the potential
of standardized anomaly detection benchmarks to improve
the cross-sectoral applicability and industrial system depend-
ability. Similar to this, the unified framework put forward in
(J. Lee & Su, 2025) highlights modular architecture, inter-
pretability, and system integration while outlining fundamen-
tal ideas for AI implementation in complex situations. By in-
tegrating hybrid AI models with actual mission telemetry, this
study complies with these frameworks and shows how these
ideas might be applied to the field of space systems monitor-
ing.

3. METHODOLOGIES

The sequence of work was as follows: first, to represent and
understand the system operation, preprocess the dataset, ex-
plore the data distribution of each feature, and find the re-
lations between different features. Then select the applica-
ble model that will achieve the best accuracy that can be
obtained by evaluating the confusion matrix of each model
created (Bernal-Mencia et al., 2021; Gonzalez-Jimenez et
al., 2021; Dobos et al., 2023; Dhamodharan, 2022; Tan-
riverdiyev, 2024; Elattar et al., 2016). This overall sequence
can be summarized in Figure 2. To verify the model, another
dataset from another field was introduced to these models to
check their effectiveness. Finally, fault detection for each
anomaly observation to detect which sensor was the main
cause of this anomaly; this workflow is represented in Fig-
ure . 3

Figure 2. Overall Sequence

Figure 3. Anomaly Detection Workflow

4



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

3.1. Dataset

Figure 4. Data Representation

Figure 5. !P Signal with Annotated Anomalies

Before creating an anomaly detection model, the data should
be represented and analyzed for more understanding and in-
terpretation of the data (Mnyanghwalo et al., 2020; Chliah
et al., 2023; Mane et al., 2022; He et al., 2022; Gao & Lu,
2021).

The representation shown in the Figure. 4 has the readings of
the 4 pressure sensors, !P of these sensors, voltage reading,
temperature, and capacity, respectively.

Figure 6. Anomaly points counter

According to domain knowledge, the anomalies can be repre-
sented on the (!P ) graph as shown in Figure 5, and for more
clarification, the graph can be zoomed in on a specific sec-
tion to show more details along the whole period. Also, the
number of anomalies in the dataset can be stated as just 1.8%
of the total number of observations. i.e., there were 3559
anomaly points and 190159 normal ones. So, the minority
class in the dataset was represented as rare. Here, there are
193,718 observation data points for satellite battery during
one year of operation in space, including all modes of opera-
tion (shooting, downloading images, downloading telemetry,
orbit correction, and recovery test). Table 1 summarizes the
dataset representation and analysis.

Table 1. Dataset Summary

Dataset No. of Points
Total no. of observations 193,718
Total Normal points 190,159
Total Anomaly points 3,559
Training points 135,602
Testing points 58,116
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3.2. Data Preparation

To complete the data preprocessing, explore the data to un-
derstand its distributions along the number of observation pe-
riods as shown in Figure 7.

Figure 7. Data Distribution, where Cap = Capacity, T = Tem-
perature,D= !P V= Voltage, and P1:P4 = 4 pressure sensors

Figure 8. Feature Correlation Matrix

Use correlation matrices to determine relations between fea-
tures, revealing multicollinearity or variable independence
(Yang et al., 2022; Peng et al., 2014; Kim, Lee, Bhang, Choi,
& Ahn, 2020). Pearson correlation heatmap among telemetry
features, revealing multicollinearity and inter-sensor depen-
dencies shown in Figure 8, there was a remarkable correla-
tion between capacity and pressure readings and a noticeable
correlation between P1-P4 and P2-P3 together that could be
understood because the locations of these sensors are beside
each other, as shown in Figure 1 and due to adhesion to the
ADCU, which emits heat to the cell containing pressure sen-
sors (P2, P3). That is reflected in the difference between P1-
P4 and P2-P3.

It’s necessary to change or adjust the data before using it in
the model and correct any data quality concerns, such as miss-
ing numbers, duplication, inconsistencies, or noise. Cleaning
ensures that the data is appropriate for analysis, removing the
outliers, which could be due to missing telemetry during com-
munication sessions or corrupted data (Bernal-Mencia et al.,
2021; Kea et al., 2023; Mutholib et al., 2024).

Then, identify the most important model features. Feature en-
gineering improves model behavior and computation time. In
this case, voltage, temperature, four pressure sensors,and !P
were selected to be inserted into the models after making the
assessment of the data and the problem (Gonzalez-Jimenez et
al., 2021; Erfani et al., 2016; Ball et al., 2017; Ahmed et al.,
2016; Maggipinto et al., 2018).

Capacity readings were excluded because they were deter-
mined by the calculation of pressure sensors that were noticed
in the great relation and impact obtained from the correlation
shown above. i.e., using readings from sensors directly will
be more reliable and accurate than readings that are calcu-
lated. Also, the current of the battery, because its value is
mainly affected by the condition of the presence of the satel-
lite in sunlight or shadow, may have a bad influence on the
behavior of the model due to different values of current be-
tween negative or positive readings due to charge or discharge
status.

There were 7 selected features, as mentioned above, that
should be normalized/standardized, bringing them into a
comparable range. Min-Max Scaling Eq.(2) would be a good
choice because the scale and units of telemetry readings like
temperature, voltage, and pressure vary. Also, it is very ap-
propriate to different anomaly detection techniques. Mak-
ing them standard ensures that no single sensor changes the
model too much. (Kea et al., 2023; Tennberg & Ekeroot,
2021; Mutholib et al., 2024; Ali, 2022).

Xscaled =
X →Xmin

Xmax →Xmin
(2)

The dataset had been split to be training data of 70%, and test-
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ing data of 30% to avoid overfitting and assess how well your
model works with new data (Al Miaari & Ali, 2023; Tennberg
& Ekeroot, 2021; Gonzalez-Jimenez et al., 2021; Huč et al.,
2021; Mutholib et al., 2024).The presence of anomaly sam-
ples in training data could influence the performance of the
models, such as in real-world cases, where the anomaly may
be in the training data samples (Ulmer et al., 2023; Erfani
et al., 2016; Putina & Rossi, 2020). A 70/30 train-test split
was applied consistently across all models to ensure a con-
trolled and fair comparison. Although stratified or time-aware
validation could provide more accuracy, the primary objec-
tive of this study was to benchmark various anomaly detec-
tion techniques under uniform conditions. The dataset in-
cludes telemetry spanning diverse operational phases, which
helps decrease the risk of overfitting due to temporal leak-
age. Moreover, the class imbalance (1.8% anomalies) was
preserved in the split to reflect realistic conditions, aligning
with actual anomaly prevalence in mission telemetry.

3.3. Model Implementation

As aforementioned in Section 2, the different anomaly de-
tection methods and their pros and cons. Next, the sequence
of work will be to create a model by each of the following
techniques and then compare the results and evaluate its per-
formance.

3.3.1. Statistical Approaches

Z-Score It is one of the statistical methods that depends on
getting the mean and standard deviation under the condition
of normally distributed datasets. The Z-score is defined as
in Eq.(3) (Wang et al., 2022; Gonzalez-Jimenez et al., 2021;
Chandola et al., 2009; Raj & Sharma, 2024; Tanriverdiyev,
2024):

Z =
X → µ

ε
(3)

where X is the data point, µ is the mean of the dataset, and ε
is the standard deviation of the dataset.

It should be used with a fixed threshold that cannot be appro-
priate with all datasets. Also, it cannot deal with multivariate
data. So, in this case, the model was selected !P as the
main feature. Pick the threshold of values (0.5, 1, 1.5, and
2) according to the real anomalies due to domain knowledge
obtained from analyzing the dataset (Putina & Rossi, 2020).

3.3.2. Machine Learning Approaches

OCSVM model The selection of hyperparameters of the
model, such as the contamination factor, was selected using
random search; the value of 0.001 was found as the best value.
RFB as the kernel function in mapping the inputs is most
commonly used due to its robustness and flexibility when

dealing with nonlinear data. Also, use gamma with scale
because it is more adaptive to feature distributions and their
variance and works in most cases. The main hyperparameter
of the model can be summarized in Table 2.

Table 2. OCSVM Hyperparameters

Parameter Value

Kernel Function Radial Basis Function (RBF)

Contamination Parameter 0.001

Gamma Scale

Isolation Forest model In this model, grid search had been
used to tune its main parameters of number of estimators and
contamination factor, that gave values of 50 and 0.001, re-
spectively, as shown in Table 3.

Table 3. Isolation Forest Hyperparameters

Parameter Value

Contamination Factor 0.001
Number of Estimators 50
Max Sample Auto

3.3.3. Deep Learning Approaches

Deep learning models, especially autoencoders, need a large
number of trainable normal data samples, and some factors
should be kept in mind when creating the model; it has very
critical hyperparameters to tune, and the depth and number of
layers will affect the complexity and the time of the model.

Autoencoder model The model used consisted of three lay-
ers for each of the encoding and decoding of (128, 64, 32)
neurons. The activation function was the Rectified Linear
Unit (ReLU), which is most commonly used due to avoid-
ing vanishing gradients. It adds non-linearity to the model
so that neural networks learn complex patterns. The learning
rate was 0.001 with the Adam optimizer (Al Miaari & Ali,
2023; Ball et al., 2017). It is a hyperparameter that deter-
mines how much the model’s weights are altered with each
iteration of training. It directly affects the convergence of
the model, which eventually affects the quality and speed of
learning and controls the step size for weight updates during
training. Table 4 summarizes the autoencoder parameters.

Then, a new strategy of work had been performed to improve
the results by using a hybrid model.
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Table 4. Autoencoder Hyperparameters

Parameter Value

Batch Size 16
Epochs 50
Activation Function Rectified Linear Unit (ReLU)
Number of Neurons (128, 64, 32)
Learning Rate 0.001
Optimizer Adam
Loss Function Mean Square Error (MSE)

3.3.4. Hybrid Approaches

Here, the autoencoder was used for feature engineering to
help in dimensionality reduction that will compress the infor-
mation into fewer features, which allows the model to focus
on the most essential features and efficient data representa-
tion. It is better than principal component analysis (PCA)
due to dealing with nonlinear data more efficiently and not
distorting the core of the data (Jung et al., 2024; Sakurada
& Yairi, 2014). By learning lower-dimensional features, the
model can work more efficiently with reduced data, both in
terms of computation and storage. Also, it can capture nonlin-
ear relationships in the data and can be combined with other
techniques (Tennberg & Ekeroot, 2021; Ball et al., 2017;
Meng, Catchpoole, Skillicom, & Kennedy, 2017; Kunang,
Nurmaini, Stiawan, Zarkasi, et al., 2018; Maggipinto et al.,
2018). The workflow can be explained in Figure 9.

Figure 9. Hybrid Approach Pipeline

The output of the autoencoder stage was the input to:

• OCSVM

• Isolation Forest

• Neural Network

• Z-Score

3.4. Fault Detection

The final stage is to detect which feature or sensor was re-
sponsible for that anomaly; this proves that AI methodologies
have a great strength of point of view because, at first glance,
the primary statistical analysis considered that only !P was
the main reason for the anomalies. Results showed that there
were other sensors that had more deviation !P and had more
influence for causing the anomalies. Creating an autoencoder
means the model learns to compress and reconstruct the pat-
terns from normal data. A large deviation in reconstruction
error for a given feature suggests that the behavior of that
feature is unexpected and does not match what was learned
during training (Abed et al., 2021). The reconstruction error
was used to detect which feature had the highest deviation
after the anomaly detected in each observation (Jeong et al.,
2023).Feature-wise reconstruction error across anomaly sam-
ples from the Autoencoder + Neural Network model, used for
sensor fault attribution. This error is the difference between
the actual value (using Xtest) and the predicted/reconstructed
value (Xtest pred) shown in Figure. 10.

Reconstruction errors by feature further help in narrowing
down which element of the data is driving the anomaly. This
is especially useful when working with multivariate datasets
where anomalies might not be global but localized to specific
features.

Figure 10. Per-Feature Reconstruction Error in Anomalous
Observations

8
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4. RESULTS

4.1. Comparison of performance

Create different models to achieve the best results according
to evaluating each model by the confusion matrix to extract
precision, recall, and F1-score. Also, AUC-ROC, which mea-
sures the model’s ability to distinguish between normal and
anomalous instances (Maleki Sadr et al., 2022; Abed et al.,
2021; Torabi et al., 2023; Wang et al., 2022; Jan et al., 2021;
Chliah et al., 2023; Kea et al., 2023; Tennberg & Ekeroot,
2021; He et al., 2022; Dobos et al., 2023; Huč et al., 2021).As
shown in Figure. 11:

Precision is the percentage of true positives out of false pos-
itives. Measures how well the model predicts the positive
class, as in Eq.(4):

Precision =
TP

TP + FP
(4)

Recall is the percentage of true positives out of all actual pos-
itives. Determines the model’s ability to obtain the positive
class, as in Eq.(5):

Recall =
TP

TP + FN
(5)

F1 Score is the harmonic mean of precision and recall. It
balances the two metrics, as in Eq.(6):

F1 Score =
2↑ (Precision ↑ Recall)

Precision + Recall
(6)

FAR is defined as the proportion of normal samples incor-
rectly classified as anomalies.

FAR =
FP

FP + TN
(7)

A receiver operating characteristic (ROC) is a graphical plot
that helps assess the performance of a binary classifier.

Another crucial parameter is Time-to-Detect (TTD), which
calls for an online or sequential detection system that was
beyond the scope of this batch-based comparative study.
TTD determination is less significant or consistent among ap-
proaches. In current approaches detection was performed on
a per-sample basis without temporal accumulation or event-
triggered windows; that makes TTD determination less sig-
nificant or consistent among approaches.

Overall, the choice of metric depends on the specific goals
and the consequences of the anomaly detection task. Practi-
cally, it is often beneficial to check multiple metrics to achieve
a comprehensive understanding of the performance of the
model.

Figure 11. Confusion Matrix

4.1.1. Z-score results

The results showed a mean value (µ) of 6.6441 and a standard
deviation (ε) of 1.1175. Figure 12 and Figure 13 showed that
the selection of the threshold as mentioned above (0.5, 1, 1.5,
2) had a great influence on the results and the percentage of
anomalies to be detected. It can be more clarified in Table 5

Table 5. Performance Metrics of Z-score with Different
Thresholds

Threshold No. of Anomalies Precision Recall F1-score ROC AUC

0.5 144,804 1.00 0.443 0.614 0.721
1.0 72,781 1.00 0.534 0.696 0.767
1.5 26,020 1.00 0.596 0.746 0.798
2.0 446 1.00 0.594 0.745 0.797

Figure 12. !P with Anomalies highlighted of Z-score model
with different threshold

9
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Figure 13. Results of Z-score model with different threshold

Also, the accuracy of that model was not persuasive for each
threshold used. So, the Z-score is not compatible with the
data distribution and not robust for multiple features.

4.1.2. OCSVM results

Figure 14. OCSVM Results

The results of using one-class SVM were as shown in Figure
14; the ROC is very low at 0.51, and the detection of anoma-
lies is very poor detection = 27 from 1049 anomaly samples.
But it can detect the normal with significant results. This is
due to dealing with rare anomalies during training that can
make the model struggle to distinguish the anomalies.

4.1.3. Isolation Forest results

Figure 15. Isolation Forest Results

As shown in Figure 15, the ROC is very low = 0.5, and the
detection of anomalies is very bad detection = 3 from 1049
anomaly samples. But it can detect the normal with notable
results. Also, this is because it needs to work with datasets of
well-separated anomalies.

4.1.4. Autoencoder results

Figure 16. Autoencoder Results
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The autoencoder model has noticed improvement in the re-
sults shown in Figure 16 compared to the previous models;
with a high recall of 0.9857 and ROC AUC of 0.9815 but
low precision of 0.4456 and a moderate F1 score of 0.613,
it detected 1034 anomalies. So, this model can give hopeful
results.

4.1.5. Autoencoder + OCSVM model

Figure 17. Autoencoder + OCSVM Results

The results in this model shown in Figure 17 were enhanced
more using OCSVM only; it could predict 1022 correctly and
could not detect only 27 anomalies from 1049, which gave
an improvement in recall of 0.974, ROC AUC of 0.982, and
F1-score of 0.776, but still insufficient precision of 0.644.

4.1.6. Autoencoder + Isolation Forest model

Figure 18. Autoencoder + Isolation Forest Results

The results in this model in Figure 18 have noticed more im-
provement using Isolation Forest only; it could predict 1030
correctly and could not detect only 19 anomalies from 1049,
which gave an improvement in recall of 0.9818, ROC AUC of
0.989, and F1-score of 0.9312, and also for precision of 0.88.

4.1.7. Autoencoder + Neural Network model

Figure 19. Autoencoder + Neural Network Results

The final anomaly decision in the Autoencoder + Neural Net-
work model was determined by selecting a threshold of 0.5
for the sigmoid output of the final neural network layer. This
threshold was selected based on widespread application in bi-
nary classification and due to achieving high precision and re-
call in this case. The results of this proposed model shown in
Figure 19 were better than all previous models used. It could
predict 1040 correctly and could not detect only 9 anoma-
lies from 1049, with perfect accuracy in recall of 0.991, ROC
AUC of 0.995, F1-score of 0.995, and very high precision of
0.999.

4.1.8. Autoencoder + Z-Score model

In this proposed model, there was a merge between two con-
ceptual anomaly detection methodologies: one deep learning
(autoencoder) and one statistical (Z-score). Autoencoder had
been used as feature engineering to solve the problem of Z-
score to deal with multidimensional features. The results of
this model shown in Figure 20 could predict 1021 correctly
and could not detect only 28 anomalies from 1049, with a
recall of 0.973 and an ROC AUC of 0.9866, an F1 score of
0.983, and a precision of 0.994.
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Figure 20. Autoencoder + Z-Score Results

Figure 21. Comparative Performance Metrics of All Models

These results of different models are represented in Figure 21
and have been summarized in Table 6. Traditional accuracy
is insufficient in this case due to an imbalanced dataset with
(1.8% anomalies) that will reflect the prediction of all sam-
ples as normal, which gives an accuracy over 98%. Therefore,
the accuracy was de-emphasized in the evaluation, instead fo-
cusing on more meaningful metrics such as F1-score, preci-
sion, recall, ROC AUC, and the False Alarm Rate (FAR). As
shown in Table 6, traditional methods like OCSVM and Isola-
tion Forest exhibited high FARs (0.63 and 0.94, respectively),
limiting their practical use. In contrast, the proposed AE +
Neural Network hybrid model achieved an FAR of 0.00096,
indicating exceptional reliability in avoiding false anomaly
flags during normal satellite operation.

According to these results, it was found that the proposed hy-
brid models, Autoencoder + NN and Autoencoder + Z-Score,

have achieved the best results that could be obtained.

4.2. Cross-Dataset Evaluation on ECG Data

To check the effectiveness of these models, it is proposed to
try them with other datasets (Taha & Hadi, 2019; Mokhtar et
al., 2024). Next, these models were checked with different
datasets in different fields of the medical section of the elec-
trocardiogram (ECG). The electrocardiogram (ECG) dataset
of 4998 patients was done with each patient having 140 data
points, around 700,000 data points (Wulsin, Blanco, Mani, &
Litt, 2010). As the same concept was performed previously,
the dataset had also been split as training of 70 % and testing
of 30 %. The ECG dataset was randomly split into 70% train-
ing and 30 % testing sets using Scikit-learn’s train test split
with a fixed random seed for reproducibility. Stratification
was not used since the training set was later balanced via
SMOTE oversampling to achieve class distribution parity be-
fore training the models. This can be summarized in Table
7.

Table 7. Summary of ECG Dataset

ECG Dataset Value
Total number of observations (patients) 4,998
Data points per patient 140
Total number of data points 70,000
Training points 3,498
Testing points 1,500

The following results had been obtained:

4.2.1. Autoencoder + NN model

Figure 22. Autoencoder + NN Results for ECG dataset

Here the model also had excellent performance, as shown in
Figure 22; it could predict 862 correctly and could not detect
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Table 6. Performance Comparison of Different Models

Approach Model Precision Recall F1-score ROC AUC FAR

ML OCSVM 0.3698 0.0257 0.0481 0.51 0.63
Isolation Forest 0.0555 0.0028 0.0054 0.5 0.94

DL Autoencoder 0.4456 0.9857 0.613 0.9815 0.554

Hybrid

Autoencoder + OCSVM 0.644 0.974 0.776 0.982 0.355
Autoencoder + Isolation Forest 0.88 0.9818 0.9312 0.989 0.114
Autoencoder + Neural Network 0.999 0.991 0.995 0.995 0.00096
Autoencoder + Z-score 0.994 0.973 0.983 0.986 0.0058

only 16 anomalies from 878, which gave a recall of 0.9817
and an ROC AUC of 0.949, an F1-score of 0.962, and preci-
sion of 0.943.

4.2.2. Autoencoder + Z-score:

Figure 23. Autoencoder + Z-score Results for ECG dataset

The model also had high-quality results shown in Figure 23;
it could predict 805 correctly and could not detect only 73
anomalies from 878, but here with a slight decrease in total
accuracy that was reflected in a recall of 0.9168 and ROC
AUC of 0.949, an F1-score of 0.892, and a precision of 0.87.

To conclude these results, it was found that the hybrid mod-
els had superior performance; it was noticed that there were
impressive outcomes in the F1 score, which had provided a
more balanced view of the model’s performance by consider-
ing both precision and recall, which is useful when needing to
strike a balance between detecting anomalies and minimizing
false alarms (Dobos et al., 2023). It can be summarized in
Table 8

Table 8. Performance of Different Models and Datasets

Model Dataset Precision Recall F1-score FAR

Autoencoder + NN
Satellite 0.9990 0.9910 0.9950 0.00096
ECG 0.9431 0.9817 0.9620 0.056

Autoencoder + Z-score
Satellite 0.9941 0.9733 0.9836 0.0058
ECG 0.8702 0.9168 0.8929 0.129

4.3. Model Sensitivity and Analysis

Although the primary focus of this study was to compare
different anomaly detection techniques using satellite battery
telemetry, it is also important to consider several implemen-
tation aspects that influence real-world deployment:

First, the hyperparameter sensitivity: the effectiveness of the
models was influenced by their internal configurations.

• For the Autoencoder, reducing the bottleneck size below
16 led to loss of meaningful representations, while in-
creasing model depth beyond three layers showed mini-
mal gains and increased training complexity.

• In the Neural Network, more than three hidden layers or
too many neurons caused overfitting, especially without
dropout. The model was sensitive to learning rate; val-
ues above 0.01 led to unstable training, while those lower
than 0.0005 resulted in slow convergence.The number of
epochs was controlled using early stopping; going signif-
icantly beyond 50 epochs often did not yield better gen-
eralization.

• For OCSVM, the contamination rate (set to 0.001) was a
key factor; increasing it beyond 0.005 degraded precision
considerably.

• In Isolation Forest, the number of estimators (trees) and
contamination were critical. Fewer than 50 trees pro-
duced unstable results, while increasing contamination
above 0.001 led to high false alarm rates. The model was
also sensitive to data scaling, and performance degraded
if features were not normalized.
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For noise robustness in anomaly detection models refers to
the ability to maintain accurate performance despite sensor
noise, telemetry artifacts, or minor fluctuations in input sig-
nals. Models that are sensitive to noise may produce false
positives or miss subtle anomalies in noisy environments.
Uncertainty Quantification helps the models to be sure of
the results of predictions, which is very critical and impor-
tant for applications including autonomous onboard decision-
making.

In this case, the work was mainly interested in offline mode,
in that there is a preprocessing stage that cleans the noise and
the corrupted telemetry, and also uncertainty can be checked
by monitoring and analysis on the ground. However, to
further assess resilience under degraded conditions and ad-
vanced future workflow to operate as an onboard autonomous
anomaly detection model. The work will be extended by in-
jecting synthetic noise, evaluating model stability under con-
trolled perturbations, and integrating uncertainty-aware ap-
proaches, such as Monte Carlo dropout or confidence bounds
on reconstruction errors, to quantify prediction certainty.

4.4. Feature Attribution and Fault Localization

The trained Autoencoder was used to look at the feature-wise
reconstruction error for each anomalous test sample to fig-
ure out which sensors were responsible for the anomalies.
For each data point predicted as anomalous by the AE + NN
model, we computed the absolute reconstruction error per
feature:

ei,j = |xi,j → x̂i,j | (8)

where xi,j is the original input feature value and x̂i,j is the
reconstructed feature value for feature j in sample i. The
feature (sensor) with the maximum reconstruction error in
each sample was considered the most likely contributor to
that anomaly. Table 9 shows the feature-wise fault attribu-
tion summary, which is based on the total number of these
events across all identified anomalies.

Table 9. Feature-wise attribution of anomalies based on maxi-
mum per-feature reconstruction error among anomalous sam-
ples

Feature Name Number of Faults
D 985
P2 25
P4 16
V 11
T 4

The results of the model of fault detection were in Figure 24,
which shows the count of anomalies attributed to each teleme-
try feature based on reconstruction error analysis. Thus, this
model can detect the main feature or sensor that was the main

cause or reason for the fault, not as the rule-based model had
detected. This will help the operators to detect the real cause
of the anomaly that will have a direct impact on getting an
accurate analysis for the system.

Figure 24. Fault Attribution Histogram by Feature

5. CONCLUSION

The results showed that the statistical approach (Z-Score)
provided insufficient results due to dealing with high-
dimensional data and has the main problem of picking the
adequate threshold. The ML standalone models also per-
formed with inappropriate accuracy. For the autoencoder,
there was a noticeable enhancement in the results. Using
hybrid approaches, the results were improved more than the
standalone models due to the benefit realization from using
the autoencoder as a feature engineering. Merging two con-
ceptual anomaly detection methodologies, one deep learning
and one statistical (autoencoder-Z-Score), carries out better
results. The best output was obtained from (Autoencoder-
NN). The verification of the models was fulfilled by using
them with another dataset.

The proposed methodology contributes to the broader indus-
trial AI vision by illustrating the alignment of hybrid anomaly
detection frameworks, based on autoencoder representation
and domain-specific context, with the foundational diagnos-
tic principles outlined in recent literature.

AI systems achieve much better results, make the best use
of the correlation between different features, and capture all
possible combinations between different relations, which can
be the main cause of the unexpected behavior of the system,
by interpolating the complex pattern in the data. In contrast
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to threshold-based classification, which is very complex to
manage the combination of all conditions and complicated
circumstances. The complexity of rule-writing increases with
increasing the number of variables. Finally, proof of concept:
the expanding usage of AI methodologies in fault detection
and analysis of satellite battery telemetry.
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