Predicting Fall Risk Through Automatic Wearable Monitoring A Systematic Review



Published Aug 24, 2021
Markey Olson Thurmon Lockhart


Falls represent a major burden on elderly individuals and society as a whole. Technologies that are able to detect individuals at risk of fall before occurrence could help reduce this burden by targeting those individuals for rehabilitation to reduce risk of falls. Wearable technologies especially, which can continuously monitor aspects of gait, balance, vital signs, and other aspects of health known to be related to falls, may be useful and are in need of study. A systematic review was conducted in accordance with the Preferred Reporting Items for Systematics Reviews and Meta-Analysis (PRISMA) 2009 guidelines to identify articles related to the use of wearable sensors to predict fall risk. Fifty four studies were analyzed. The majority of studies (98.0%) utilized inertial measurement units (IMUs) located at the lower back (58.0%), sternum (28.0%), and shins (28.0%). Most assessments were conducted in a structured setting (67.3%) instead of with free-living data. Fall risk was calculated based on retrospective falls history (48.9%), prospective falls reporting (36.2%), or clinical scales (19.1%). Measures of the duration spent walking and standing during free-living monitoring, linear measures such as gait speed and step length, and nonlinear measures such as entropy correlate with fall risk, and machine learning methods can distinguish between falls. However, because many studies generating machine learning models did not list the exact factors being considered, it is difficult to compare these models directly. Few studies to date have utilized results to give feedback about fall risk to the patient or to supply treatment or lifestyle suggestions to prevent fall, though these are considered important by end users. Wearable technology demonstrates considerable promise in detecting subtle changes in biomarkers of gait and balance related to an increase in fall risk. However, more large-scale studies measuring increasing fall risk before first fall are needed, and exact biomarkers and machine learning methods used need to be shared to compare results and pursue the most promising fall risk measurements. There is a great need for devices measuring fall risk also to supply patients with information about their fall risk and strategies and treatments for prevention.

Abstract 898 | PDF Downloads 737



Fall risk, Wearable monitoring

National Council on Aging. (2018, June 4). Falls Prevention Facts. Retrieved from
World Health Organization, WHO Global Report on Falls Prevention in Older Age, WHO Press, 2007 (Department of Aging and Life Course).
Aziz, O., Musngi, M., Park, E. J., Mori, G., & Robinovitch, S. N. (2016). A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Medical & Biological Engineering & Computing, 55(1), 45–55. doi: 10.1007/s11517-016-1504-y
Chaudhuri, S., Thompson, H., & Demiris, G. (2014). Fall Detection Devices and Their Use With Older Adults. Journal of Geriatric Physical Therapy, 37(4), 178–196. doi: 10.1519/jpt.0b013e3182abe779
Santos, G., Endo, P., Monteiro, K., Rocha, E., Silva, I., & Lynn, T. (2019). Accelerometer-Based Human Fall Detection Using Convolutional Neural Networks. Sensors, 19(7), 1644. doi: 10.3390/s19071644
Bourke, A. K., Klenk, J., Schwickert, L., Aminian, K., Ihlen, E. A. F., Mellone, S., … Becker, C. (2016). Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: A machine learning approach. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi: 10.1109/embc.2016.7591534
Sucerquia, A., López, J., & Vargas-Bonilla, J. (2018). Real-Life/Real-Time Elderly Fall Detection with a Triaxial Accelerometer. Sensors, 18(4), 1101. doi: 10.3390/s18041101
Cheffena, M. (2016). Fall Detection Using Smartphone Audio Features. IEEE Journal of Biomedical and Health Informatics, 20(4), 1073–1080. doi: 10.1109/jbhi.2015.2425932
Ejupi, A., Galang, C., Aziz, O., Park, E. J., & Robinovitch, S. (2017). Accuracy of a wavelet-based fall detection approach using an accelerometer and a barometric pressure sensor. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi: 10.1109/embc.2017.8037280
Özdemir, A. (2016). An Analysis on Sensor Locations of the Human Body for Wearable Fall Detection Devices: Principles and Practice. Sensors, 16(8), 1161. doi: 10.3390/s16081161
Hsieh, C.-Y., Liu, K.-C., Huang, C.-N., Chu, W.-C., & Chan, C.-T. (2017). Novel Hierarchical Fall Detection Algorithm Using a Multiphase Fall Model. Sensors, 17(2), 307. doi: 10.3390/s17020307
Yu, S., Chen, H., & Brown, R. A. (2018). Hidden Markov Model-Based Fall Detection With Motion Sensor Orientation Calibration: A Case for Real-Life Home Monitoring. IEEE Journal of Biomedical and Health Informatics, 22(6), 1847–1853. doi: 10.1109/jbhi.2017.2782079
Dubois, A., & Charpillet, F. (2014). A gait analysis method based on a depth camera for fall prevention. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi: 10.1109/embc.2014.6944627
RAND, Falls prevention intervention in the medicare population, Evidence Report and Evidence-Based Recommendations, (2003).
L.D. Gillespie, et al., Interventions for preventing falls in older people living in the community
Khanuja, K., Joki, J., Bachmann, G., & Cuccurullo, S. (2018). Gait and balance in the aging population: Fall prevention using innovation and technology. Maturitas, 110, 51–56. doi: 10.1016/j.maturitas.2018.01.021
(2011) Summary of the Updated American Geriatrics Society/British Geriatrics Society clinical practice guideline for prevention of falls in older persons. Journal of the American Geriatric Society, 59 (1), 148-157.
Phillips, L. J., Deroche, C. B., Rantz, M., Alexander, G. L., Skubic, M., Despins, L., … Koopman, R. J. (2016). Using Embedded Sensors in Independent Living to Predict Gait Changes and Falls. Western Journal of Nursing Research, 39(1), 78–94. doi: 10.1177/0193945916662027
Rantz, M. J., Skubic, M., Abbott, C., Galambos, C., Pak, Y., Ho, D. K., … Miller, S. J. (2013). In-Home Fall Risk Assessment and Detection Sensor System. Journal of Gerontological Nursing, 39(7), 18–22. doi: 10.3928/00989134-20130503-01
Alwan, M. (2009). Passive in-home health and wellness monitoring: Overview, value and examples. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi: 10.1109/iembs.2009.5333799
Manton, J. D., Hughes, J. A. E., Bonner, O., Amjad, O. A., Mair, P., Miele, I., … Kaminski, C. F. (2016). Development of an open technology sensor suite for assisted living: a student-led research project. Interface Focus, 6(4), 20160018. doi: 10.1098/rsfs.2016.0018
Rantz, M. J., Skubic, M., Popescu, M., Galambos, C., Koopman, R. J., Alexander, G. L., … Miller, S. J. (2014). A New Paradigm of Technology-Enabled �Vital Signs for Early Detection of Health Change for Older Adults. Gerontology, 61(3), 281–290. doi: 10.1159/000366518
Villacorta, J. J., Jiménez, M. I., Val, L. D., & Izquierdo, A. (2011). A Configurable Sensor Network Applied to Ambient Assisted Living. Sensors, 11(11), 10724–10737. doi: 10.3390/s111110724
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Bmj, 339(jul21 1). doi: 10.1136/bmj.b2535
Aicha, A. N., Englebienne, G., Schooten, K. V., Pijnappels, M., & Kröse, B. (2018). Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk Accelerometry. Sensors, 18(5), 1654. doi: 10.3390/s18051654
Antos, S. A., Danilovich, M. K., Eisenstein, A. R., Gordon, K. E., & Kording, K. P. (2019). Smartwatches Can Detect Walker and Cane Use in Older Adults. Innovation in Aging, 3(1). doi: 10.1093/geroni/igz008
Barrois, R. P.-M., Ricard, D., Oudre, L., Tlili, L., Provost, C., Vienne, A., … Yelnik, A. P. (2017). Observational Study of 180° Turning Strategies Using Inertial Measurement Units and Fall Risk in Poststroke Hemiparetic Patients. Frontiers in Neurology, 8. doi: 10.3389/fneur.2017.00194
Bergamini, E., Iosa, M., Belluscio, V., Morone, G., Tramontano, M., & Vannozzi, G. (2017). Multi-sensor assessment of dynamic balance during gait in patients with subacute stroke. Journal of Biomechanics, 61, 208–215. doi: 10.1016/j.jbiomech.2017.07.034
Brodie, M. A., Lord, S. R., Coppens, M. J., Annegarn, J., & Delbaere, K. (2015). Eight-Week Remote Monitoring Using a Freely Worn Device Reveals Unstable Gait Patterns in Older Fallers. IEEE Transactions on Biomedical Engineering, 62(11), 2588–2594. doi: 10.1109/tbme.2015.2433935
Brodie, M. A., Wang, K., Delbaere, K., Persiani, M., Lovell, N. H., Redmond, S. J., … Lord, S. R. (2015b). New Methods to Monitor Stair Ascents Using a Wearable Pendant Device Reveal How Behavior, Fear, and Frailty Influence Falls in Octogenarians. IEEE Transactions on Biomedical Engineering, 62(11), 2595–2601. doi: 10.1109/tbme.2015.2464689
Brodie, M. A., Coppens, M. J., Ejupi, A., Gschwind, Y. J., Annegarn, J., Schoene, D., … Delbaere, K. (2017). Comparison between clinical gait and daily-life gait assessments of fall risk in older people. Geriatrics & Gerontology International, 17(11), 2274–2282. doi: 10.1111/ggi.12979
Caby, B., Kieffer, S., Hubert, M. D. S., Cremer, G., & Macq, B. (2011). Feature extraction and selection for objective gait analysis and fall risk assessment by accelerometry. BioMedical Engineering OnLine, 10(1), 1. doi: 10.1186/1475-925x-10-1
Cui, X., Peng, C.-K., Costa, M. D., Weiss, A., Goldberger, A. L., & Hausdorff, J. M. (2014). Development of a new approach to quantifying stepping stability using ensemble empirical mode decomposition. Gait & Posture, 39(1), 495–500. doi: 10.1016/j.gaitpost.2013.08.036
Di Rosa, M., Hausdorff, J. M., Stara, V. undefined, Rossi, L. undefined, Glynn, L. undefined, Casey, M. undefined, … Cherubini, A. undefined. (2017). Concurrent validation of an index to estimate fall risk in community dwelling seniors through a wireless sensor insole system: A pilot study. Gait & Posture, 55, 6–11. doi: 10.1016/j.gaitpost.2017.03.037
Doheny, E. P., Walsh, C., Foran, T., Greene, B. R., Fan, C. W., Cunningham, C., & Kenny, R. A. (2013). Falls classification using tri-axial accelerometers during the five-times-sit-to-stand test. Gait & Posture, 38(4), 1021–1025. doi: 10.1016/j.gaitpost.2013.05.013
Doi, T., Hirata, S., Ono, R., Tsutsumimoto, K., Misu, S., & Ando, H. (2013). The harmonic ratio of trunk acceleration predicts falling among older people: results of a 1-year prospective study. Journal of NeuroEngineering and Rehabilitation, 10(1), 7. doi: 10.1186/1743-0003-10-7
Drover, D., Howcroft, J., Kofman, J., & Lemaire, E. (2017). Faller Classification in Older Adults Using Wearable Sensors Based on Turn and Straight-Walking Accelerometer-Based Features. Sensors, 17(6), 1321. doi: 10.3390/s17061321
Ejupi, A., Brodie, M., Lord, S. R., Annegarn, J., Redmond, S. J., & Delbaere, K. (2017). Wavelet-Based Sit-To-Stand Detection and Assessment of Fall Risk in Older People Using a Wearable Pendant Device. IEEE Transactions on Biomedical Engineering, 64(7), 1602–1607. doi: 10.1109/tbme.2016.2614230
Ganea, R., Paraschiv-Ionescu, A., Büla, C., Rochat, S., & Aminian, K. (2011). Multi-parametric evaluation of sit-to-stand and stand-to-sit transitions in elderly people. Medical Engineering & Physics, 33(9), 1086–1093. doi: 10.1016/j.medengphy.2011.04.015
Gietzelt, M., Nemitz, G., Wolf, K.-H., Schwabedissen, H. M. Z., Haux, R., & Marschollek, M. (2009). A clinical study to assess fall risk using a single waist accelerometer. Informatics for Health and Social Care, 34(4), 181–188. doi: 10.3109/17538150903356275
Govercin, M., Költzsch, Y., Meis, M., Wegel, S., Gietzelt, M., Spehr, J., … Steinhagen-Thiessen, E. (2010). Defining the user requirements for wearable and optical fall prediction and fall detection devices for home use. Informatics for Health and Social Care, 35(3-4), 177–187. doi: 10.3109/17538157.2010.528648
Greene, B. R., Donovan, A. O., Romero-Ortuno, R., Cogan, L., Scanaill, C. N., & Kenny, R. A. (2010). Quantitative Falls Risk Assessment Using the Timed Up and Go Test. IEEE Transactions on Biomedical Engineering, 57(12), 2918–2926. doi: 10.1109/tbme.2010.2083659
Greene, B. R., Doheny, E. P., Walsh, C., Cunningham, C., Crosby, L., & Kenny, R. A. (2012). Evaluation of Falls Risk in Community-Dwelling Older Adults Using Body-Worn Sensors. Gerontology, 58(5), 472–480. doi: 10.1159/000337259
Greene, B. R., Doheny, E. P., Ohalloran, A., & Kenny, R. A. (2013). Frailty status can be accurately assessed using inertial sensors and the TUG test. Age and Ageing, 43(3), 406–411. doi: 10.1093/ageing/aft176
Greene, B. R., Doheny, E. P., Kenny, R. A., & Caulfield, B. (2014). Classification of frailty and falls history using a combination of sensor-based mobility assessments. Physiological Measurement, 35(10), 2053–2066. doi: 10.1088/0967-3334/35/10/2053
Greene, B. R., Redmond, S. J., & Caulfield, B. (2017). Fall Risk Assessment Through Automatic Combination of Clinical Fall Risk Factors and Body-Worn Sensor Data. IEEE Journal of Biomedical and Health Informatics, 21(3), 725–731. doi: 10.1109/jbhi.2016.2539098
Greene, B. R., Caulfield, B., Lamichhane, D., Bond, W., Svendsen, J., Zurski, C., & Pratt, D. (2018). Longitudinal assessment of falls in patients with Parkinson’s disease using inertial sensors and the Timed Up and Go test. Journal of Rehabilitation and Assistive Technologies Engineering, 5. doi: 10.1177/2055668317750811
Howcroft, J., Lemaire, E. D., & Kofman, J. (2016). Wearable-Sensor-Based Classification Models of Faller Status in Older Adults. Plos One, 11(4). doi: 10.1371/journal.pone.0153240
Howcroft, J., Kofman, J., & Lemaire, E. D. (2017). Feature selection for elderly faller classification based on wearable sensors. Journal of NeuroEngineering and Rehabilitation, 14(1). doi: 10.1186/s12984-017-0255-9
Howcroft, J. D., Kofman, J. D., & Lemaire, E. D. (2017b). Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(10), 1812–1820. doi: 10.1109/tnsre.2017.2687100
Hsieh, K. L., Roach, K. L., Wajda, D. A., & Sosnoff, J. J. (2019). Smartphone technology can measure postural stability and discriminate fall risk in older adults. Gait & Posture, 67, 160–165. doi: 10.1016/j.gaitpost.2018.10.005
Hua, A., Quicksall, Z., Di, C., Motl, R., Lacroix, A. Z., Schatz, B., & Buchner, D. M. (2018). Accelerometer-based predictive models of fall risk in older women: a pilot study. Npj Digital Medicine, 1(1). doi: 10.1038/s41746-018-0033-5
Ihlen, E. A., Weiss, A., Bourke, A., Helbostad, J. L., & Hausdorff, J. M. (2016). The complexity of daily life walking in older adult community-dwelling fallers and non-fallers. Journal of Biomechanics, 49(9), 1420–1428. doi: 10.1016/j.jbiomech.2016.02.055
Ihlen, E. A. F., Schooten, K. S. V., Bruijn, S. M., Dieën, J. H. V., Vereijken, B., Helbostad, J. L., & Pijnappels, M. (2018). Improved Prediction of Falls in Community-Dwelling Older Adults Through Phase-Dependent Entropy of Daily-Life Walking. Frontiers in Aging Neuroscience, 10. doi: 10.3389/fnagi.2018.00044
Iluz, T., Gazit, E., Herman, T., Sprecher, E., Brozgol, M., Giladi, N., … Hausdorff, J. M. (2014). Automated detection of missteps during community ambulation in patients with Parkinson’s disease: a new approach for quantifying fall risk in the community setting. Journal of NeuroEngineering and Rehabilitation, 11(1), 48. doi: 10.1186/1743-0003-11-48
Iluz, T., Weiss, A., Gazit, E., Tankus, A., Brozgol, M., Dorfman, M., … Hausdorff, J. M. (2015). Can a Body-Fixed Sensor Reduce Heisenberg’s Uncertainty When It Comes to the Evaluation of Mobility? Effects of Aging and Fall Risk on Transitions in Daily Living. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 71(11), 1459–1465. doi: 10.1093/gerona/glv049
Latt, M. D., Menz, H. B., Fung, V. S., & Lord, S. R. (2009). Acceleration Patterns of the Head and Pelvis During Gait in Older People With Parkinsons Disease: A Comparison of Fallers and Nonfallers. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 64A(6), 700–706. doi: 10.1093/gerona/glp009
Marschollek, M., Rehwald, A., Wolf, K.-H., Gietzelt, M., Nemitz, G., Schwabedissen, H. M. Z., & Schulze, M. (2011). Sensors vs. experts - A performance comparison of sensor-based fall risk assessment vs. conventional assessment in a sample of geriatric patients. BMC Medical Informatics and Decision Making, 11(1). doi: 10.1186/1472-6947-11-48
Marschollek, M., Rehwald, A., Wolf, K. H., Gietzelt, M., Nemitz, G., Schwabedissen, H., & Haux, R. (2011b). Sensor-based Fall Risk Assessment – an Expert ‘to go.’ Methods of Information in Medicine, 50(05), 420–426. doi: 10.3414/me10-01-0040
Martínez-Ramírez, A., Lecumberri, P., Gómez, M., Rodriguez-Mañas, L., García, F., & Izquierdo, M. (2011). Frailty assessment based on wavelet analysis during quiet standing balance test. Journal of Biomechanics, 44(12), 2213–2220. doi: 10.1016/j.jbiomech.2011.06.007
Mikos, V., Heng, C.-H., Tay, A., Yen, S.-C., Chia, N. S. Y., Koh, K. M. L., … Au, W. L. (2019). A Wearable, Patient-Adaptive Freezing of Gait Detection System for Biofeedback Cueing in Parkinsons Disease. IEEE Transactions on Biomedical Circuits and Systems, 13(3), 503–515. doi: 10.1109/tbcas.2019.2914253
Mohler, M. J., Wendel, C. S., Taylor-Piliae, R. E., Toosizadeh, N., & Najafi, B. (2016). Motor Performance and Physical Activity as Predictors of Prospective Falls in Community-Dwelling Older Adults by Frailty Level: Application of Wearable Technology. Gerontology, 62(6), 654–664. doi: 10.1159/000445889
Najafi, B., Armstrong, D. G., & Mohler, J. (2013). Novel Wearable Technology for Assessing Spontaneous Daily Physical Activity and Risk of Falling in Older Adults with Diabetes. Journal of Diabetes Science and Technology, 7(5), 1147–1160. doi: 10.1177/193229681300700507
Pozaic, T., Lindemann, U., Grebe, A.-K., & Stork, W. (2016). Sit-to-Stand Transition Reveals Acute Fall Risk in Activities of Daily Living. IEEE Journal of Translational Engineering in Health and Medicine, 4, 1–11. doi: 10.1109/jtehm.2016.2620177
Rasche, P., Mertens, A., Bröhl, C., Theis, S., Seinsch, T., Wille, M., … Knobe, M. (2017). The “Aachen fall prevention App” – a Smartphone application app for the self-assessment of elderly patients at risk for ground level falls. Patient Safety in Surgery, 11(1). doi: 10.1186/s13037-017-0130-4
Rasche, P., Mertens, A., Brandl, C., Liu, S., Buecking, B., Bliemel, C., … Knobe, M. (2018). Satisfying Product Features of a Fall Prevention Smartphone App and Potential Users’ Willingness to Pay: Web-Based Survey Among Older Adults. JMIR MHealth and UHealth, 6(3). doi: 10.2196/mhealth.9467
Razjouyan, J., Grewal, G. S., Rishel, C., Parthasarathy, S., Mohler, J., & Najafi, B. (2017). Activity Monitoring and Heart Rate Variability as Indicators of Fall Risk: Proof-of-Concept for Application of Wearable Sensors in the Acute Care Setting. Journal of Gerontological Nursing, 43(07), 53–62. doi: 10.3928/00989134-20170223-01
Rezvanian, S., & Lockhart, T. (2016). Towards Real-Time Detection of Freezing of Gait Using Wavelet Transform on Wireless Accelerometer Data. Sensors, 16(4), 475. doi: 10.3390/s16040475
Rispens, S. M., Schooten, K. S. V., Pijnappels, M., Daffertshofer, A., Beek, P. J., & Dieën, J. H. V. (2014). Identification of Fall Risk Predictors in Daily Life Measurements. Neurorehabilitation and Neural Repair, 29(1), 54–61. doi: 10.1177/1545968314532031
Riva, F., Toebes, M., Pijnappels, M., Stagni, R., & Dieën, J. V. (2013). Estimating fall risk with inertial sensors using gait stability measures that do not require step detection. Gait & Posture, 38(2), 170–174. doi: 10.1016/j.gaitpost.2013.05.002
Schwenk, M., Hauer, K., Zieschang, T., Englert, S., Mohler, J., & Najafi, B. (2014). Sensor-Derived Physical Activity Parameters Can Predict Future Falls in People with Dementia. Gerontology, 60(6), 483–492. doi: 10.1159/000363136
Similä, H., Immonen, M., & Ermes, M. (2017). Accelerometry-based assessment and detection of early signs of balance deficits. Computers in Biology and Medicine, 85, 25–32. doi: 10.1016/j.compbiomed.2017.04.009
Soangra, R., & Lockhart, T. (2018). Inertial Sensor-Based Variables Are Indicators of Frailty and Adverse Post-Operative Outcomes in Cardiovascular Disease Patients. Sensors, 18(6), 1792. doi: 10.3390/s18061792
Stack, E., Agarwal, V., King, R., Burnett, M., Tahavori, F., Janko, B., … Kunkel, D. (2018). Identifying balance impairments in people with Parkinson’s disease using video and wearable sensors. Gait & Posture, 62, 321–326. doi: 10.1016/j.gaitpost.2018.03.047
Van Schooten, K. S., Pijnappels, M., Rispens, S. M., Elders, P. J. M., Lips, P., & Dieën, J. H. V. (2015). Ambulatory Fall-Risk Assessment: Amount and Quality of Daily-Life Gait Predict Falls in Older Adults. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 70(5), 608–615. doi: 10.1093/gerona/glu225
Van Schooten, K. S., Pijnappels, M., Rispens, S. M., Elders, P. J. M., Lips, P., Daffertshofer, A., … Dieën, J. H. V. (2016). Daily-Life Gait Quality as Predictor of Falls in Older People: A 1-Year Prospective Cohort Study. Plos One, 11(7). doi: 10.1371/journal.pone.0158623
Weiss, A., Brozgol, M., Dorfman, M., Herman, T., Shema, S., Giladi, N., & Hausdorff, J. M. (2013). Does the Evaluation of Gait Quality During Daily Life Provide Insight Into Fall Risk? A Novel Approach Using 3-Day Accelerometer Recordings. Neurorehabilitation and Neural Repair, 27(8), 742–752. doi: 10.1177/1545968313491004
Weiss, A., Herman, T., Giladi, N., & Hausdorff, J. M. (2014). Objective Assessment of Fall Risk in Parkinsons Disease Using a Body-Fixed Sensor Worn for 3 Days. PLoS ONE, 9(5). doi: 10.1371/journal.pone.0096675
Shany, T., Liu, Y., Redmond, S. J., Wang, K., & Lovell, N. H. (2015). Review: Are we stumbling in our quest to find the best predictor? Over-optimism in sensor-based models for predicting falls in older adults. Healthcare Technology Letters, 2(4), 79–88. doi: 10.1049/htl.2015.0019
Rispens, S. M., Dieën, J. H. V., Schooten, K. S. V., Lizama, L. E. C., Daffertshofer, A., Beek, P. J., & Pijnappels, M. (2016). Fall-related gait characteristics on the treadmill and in daily life. Journal of NeuroEngineering and Rehabilitation, 13(1). doi: 10.1186/s12984-016-0118-9
Van Schooten, K. S.., Rispens, S. M., Elders, P. J., Dieën, J. H. V., & Pijnappels, M. (2014). Toward ambulatory balance assessment: Estimating variability and stability from short bouts of gait. Gait & Posture, 39(2), 695–699. doi: 10.1016/j.gaitpost.2013.09.020
Hondori, H. M., & Khademi, M. (2014). A Review on Technical and Clinical Impact of Microsoft Kinect on Physical Therapy and Rehabilitation. Journal of Medical Engineering, 2014, 1–16. doi: 10.1155/2014/846514
Su, C.-J., Chiang, C.-Y., & Huang, J.-Y. (2014). Kinect-enabled home-based rehabilitation system using Dynamic Time Warping and fuzzy logic. Applied Soft Computing, 22, 652–666. doi: 10.1016/j.asoc.2014.04.020
Dobkin, B. H., & Dorsch, A. (2011). The Promise of mHealth. Neurorehabilitation and Neural Repair, 25(9), 788–798. doi: 10.1177/1545968311425908
Yurtman, A., & Barshan, B. (2013). Detection and Evaluation of Physical Therapy Exercises by Dynamic Time Warping Using Wearable Motion Sensor Units. Information Sciences and Systems 2013 Lecture Notes in Electrical Engineering, 305–314. doi: 10.1007/978-3-319-01604-7_30
Technical Papers