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ABSTRACT 

Falls represent a major burden on elderly individuals and 

society as a whole. Technologies that are able to detect 

individuals at risk of fall before occurrence could help reduce 

this burden by targeting those individuals for rehabilitation to 

reduce risk of falls. Wearable technologies especially, which 

can continuously monitor aspects of gait, balance, vital signs, 

and other aspects of health known to be related to falls, may 

be useful and are in need of study. A systematic review was 

conducted in accordance with the Preferred Reporting Items 

for Systematics Reviews and Meta-Analysis (PRISMA) 2009 

guidelines to identify articles related to the use of wearable 

sensors to predict fall risk. Fifty four studies were analyzed. 

The majority of studies (98.0%) utilized inertial measurement 

units (IMUs) located at the lower back (58.0%), sternum 

(28.0%), and shins (28.0%). Most assessments were 

conducted in a structured setting (67.3%) instead of with free-

living data. Fall risk was calculated based on retrospective 

falls history (48.9%), prospective falls reporting (36.2%), or 

clinical scales (19.1%). Measures of the duration spent 

walking and standing during free-living monitoring, linear 

measures such as gait speed and step length, and nonlinear 

measures such as entropy correlate with fall risk, and 

machine learning methods can distinguish between falls. 

However, because many studies generating machine learning 

models did not list the exact factors being considered, it is 

difficult to compare these models directly. Few studies to 

date have utilized results to give feedback about fall risk to 

the patient or to supply treatment or lifestyle suggestions to 

prevent fall, though these are considered important by end 

users. Wearable technology demonstrates considerable 

promise in detecting subtle changes in biomarkers of gait and 

balance related to an increase in fall risk. However, more 

large-scale studies measuring increasing fall risk before first 

fall are needed, and exact biomarkers and machine learning 

methods used need to be shared to compare results and pursue 

the most promising fall risk measurements. There is a great 

need for devices measuring fall risk also to supply patients 

with information about their fall risk and strategies and 

treatments for prevention.  

1. INTRODUCTION 

Fall incidents and the resultant injuries, fear of falling, and 

decreased activity levels present a large issue for the rapidly 

growing population of older adults. Falls are the leading 

cause of injuries and death among older Americans, with 1 in 

4 seniors falling each year. The total cost of fall injuries in 

the US was estimated to be $50 billion in 2015 and is 

expected to rise to $67.7 billion by 2020 (National Council 

on Aging, 2018). Globally, the cost of falls is expected to 

exceed $240 billion a year by 2040 (World Health 

Organization, 2007). 

Given the staggering effect of falls on individuals and 

society, it is not surprising that a number of technologies have 

been developed in recent years to detect and respond to falls 

(Aziz, Musngi, Park, Mori & Robinovitch, 2016, Chaudhuri, 

Thompson & Demiris, 2014, Santo el al, 2019, Bourke et al, 

2016, Secerquia, Lopez & Vargas-Bonilla, 2018, Cheffena, 

2016, Ejupi, Galang, Aziz, Park, & Robinovitch, 2017, 

Ozdemir, 2016, Hsieh, Liu, Huang, Chu & Chan, 2017, Yu, 

Chen & Brown, 2018, and Dubois & Charpillet, 2014). Many 

of these devices have been designed to be wearable, so that 

falls can be detected and assistance summoned no matter 

where the individual is at the time. Home- or location-based 

technologies such as cameras, motion sensors, and 

impact/noise detectors have also been utilized. These sensors 

may help to reduce rates of severe injury and death from falls 

by ensuring fast response and tracking the circumstances 

surrounding the fall to allow for lifestyle changes and 

rehabilitation to circumvent further future falls.  
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While falls detection is valuable, it still requires that a fall 

may occur before it can provide aid, meaning injuries are still 

likely. A better alternative would be to stop falls before they 

ever occur by monitoring features that often lead to falls and 

suggesting further action such as rehabilitation, assistive 

technology, or temporary reduction or change in activities to 

alleviate this fall risk. It has been shown that assessing and 

responding to clinical gait and balance metrics associated 

with falls can lower fall risk (RAND, 2003, Gillespie et al., 

and Khanuja, Joki, Bachmann & Cuccurullo, 2018), and it is 

recommended by the American and British Geriatrics 

Societies that all adults over 65 be assessed for fall risk at 

clinical visits (Khanuja et al., 2018, American Geriatrics 

Society, 2011). Assessments at clinical visits are helpful, but 

the length of time between regular visits and inter-rater 

differences and inability to document small changes using the 

clinician-rated tests employed may allow some individuals at 

fall risk to be missed. More frequent assessment in real-world 

environments is more likely to detect small changes in gait, 

balance, activity, and other parameters that indicate 

degradation in health that might lead to falls.  

One method that has been used to monitor and assist elderly 

individuals both in terms of measuring fall risk and many 

other features of daily life (Philips et al., 2016, Rantz et al., 

2013, Alwan, 2009, Manton et al., 2016, Rantz et al., 2014, 

Villacorta, Jimenez, Val, & Izquierdo, 2011) is the “smart 

home” concept. A number of ambient sensors such as 

cameras, motion/depth detectors, pressure mats, 

microphones, and latch sensors keep track of daily activity, 

gait parameters, medication, food, and water intake, and the 

like to ensure that individuals remain healthy and active. 

Such a strategy shows promise in allowing elderly 

individuals to “age-in-place” for longer outside of a care 

home setting and reduce the rates of falls and other incidents 

leading to injury.  

However, smart home sensors can only provide information 

about events and warning signs that occur in the home or 

community care setting. The installation of equipment 

throughout the house may be costly and time-intensive, may 

not be approved in certain setting such as rental properties or 

care homes, may have difficulty identifying and tracking 

multiple people within the home, and may not be accepted by 

older individuals unused to technology or those worried 

about surveillance. Because of these considerations, smart 

home technology may not be readily available for all 

individuals or in all situations where they may be needed.  

Wearable sensors, on the other hand, can be kept with an at-

risk individual at all times, providing constant real-time 

information. Even within a home or community care setting, 

wearables may increase the value of smart home features by 

allowing for improved discrimination of which individuals 

are being monitored and where they are located. This review 

aims to present previous work in wearables designed to 

measure fall risk, evaluate the current state-of-the-art, and 

discuss the research needed to allow this work to be 

transferred from the clinical and community-care settings 

where it has been most-often implemented thus far to allow 

for easy use by elderly individuals in their daily life both in 

their home and out in the community. 

2. METHODS 

This systematic review was conducted in accordance with the 

Preferred Reporting Items for Systematics Reviews and 

Meta-Analysis (PRISMA) 2009 guidelines (Moher, Liberati, 

Tetzlaff, & Altman, 2009). Keyword search was performed 

in PubMed in August 2019. The search algorithm utilized 

was (fall* AND ("predict*" OR "prevent*" OR "risk") AND 

("app*" OR "wear*" OR "phone" OR “sensor”)). Title and 

abstract review were performed on all search results.  

Those articles meeting the following criteria were included in 

the review: 1) peer-reviewed journal articles with full-text 

available in English (conference proceedings were not 

included) and published within the last decade to reflect 

recent advances in technological capabilities (2009-2019); 2) 

prospective studies examining the use of a wearable 

technology to measure fall risk, directly or indirectly through 

known and stated correlate; 3) the use of a fully portable 

system (papers with tethered components such as pressure 

mats, cameras, and radio antennas were only reviewed if 

wearable components were able to be used separately and 

data was given separately); 4) paper investigated assessment 

of fall risk before the fall occurred, not just fall detection; 5) 

assessments could be conducted without a physician, 

therapist, or other expert to allow monitoring outside of 

clinical settings (or could be modified to do so).  

Additional articles were located through a citation search of 

the articles located in the initial search and through 

suggestion by peers. Review articles found during the initial 

search and meeting all eligibility requirements but 2) were 

also included in the review process and utilized to locate any 

additional relevant articles not appearing in the PubMed 

search, but were screened out before the writing of this 

systematic review to avoid overlapping data.  

Articles making it through the review process were screened 

according to the types of information included: 1) consumer 

preferences, 2) fall risk standard used for comparison 

(retrospective history, falls diary, etc.), 3) tasks utilized to 

determine fall risk, 4) whether assessment was triggered for 

a set period or using continuous or free-living data, 5) 

biomarkers analyzed, 6) software algorithm used to 

determine fall risk, 7) hardware/sensor type, 8) location of 

sensors on the body, 9) type of feedback given about fall risk, 

and 10) whether patients were given any advice or treatment 

to reduce fall risk.  
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3. RESULTS 

3.1. Study Selection 

A total of 1529 results resulted from the initial search terms, 

of which 112 made it through title/abstract review. Most 

papers were removed because they did not describe wearable 

methods of ascertaining fall risk, instead using ambient 

sensors and/or measuring only fall detection. A further 17 

articles that met the other search criteria were removed 

because they were conference proceedings, not peer-

reviewed journal articles. 22 of the papers selected were 

reviews, not controlled studies, and were thus removed from 

the systematic review, but were still reviewed in the literature 

search to identify further articles. The literature search 

revealed 14 additional articles for a total of 104 articles which 

underwent full-text review. A further 50 articles were 

excluded because, while fall risk or related measurement was 

stated as the main aim, it was not classified in the study (most 

of these studies focused on proof-of-concept showing that 

free-living or gait activity could be accurately determined by 

wearable methods), resulting in 54 articles in the systematic 

review (Aicha, Englebienne, Schooten, Pijnappels & Krose, 

2018, Antos, Danilovich, Eisenstein, Gordon & Kording, 

2019, Barrois et al., 2017, Bergamini et al., 2017, Brodie, 

Lord, Coppens, Annegarn & Delbaere, 2015, Brodie et al., 

2015b, Brodie et al., 2017, Caby, Kieffer, Hubert, Cremer & 

Macq, 2011, Cui et al., 2014, Di Rosa et al., 2017, Doheny et 

al., 2013, Doi et al., 2013, Drover, Howcraft, Kofman &  

Lemaire, 2017, Ejupi et al., 2017, Ganea, Paraschiv-Ionescu, 

Bula, Rochat & Aminian, 2011, Gietzalt et al., 2009, 

Govercin et al., 2010, Greene et al., 2010, Greene et al., 2012, 

Greene, Doheny, Ohalloran & Kenny, 2013, Greene Doheny, 

Kenny & Caulfield, 2014, Greene, Redmond & Caulfield, 

2017, Greene et al., 2018, Howcroft, Lemaire & Kofman, 

2016, Howcroft, Kofman & Lemaire, 2017, Howccroft, 

Kofman & Lemaire, 2017b, Hsieh, Roach, Wajda & Sosnoff, 

2019, Hua et al., 2018, Ihlen, Weiss, Bourke, Helbostad & 

Hausdorff, 2016, Ihlen et al., 2018, Iluz et al., 2014, Iluz et 

al., 2015, Latt, Menz, Fung & Lord, 2009, Marschollek et al., 

2011, Marschollek, 2011b, Martinez-Ramirez et al., 2011, 

Mikos et al., 2019, Mohler, Wendel, Taylor-Piliae, 

Toosizadeh & Najafi, 2016, Najafi, Armstrong & Mohler, 

2013, Pazaic, Lindemann, Grebe & Stork, 2016, Rasche et 

al., 2017, Rasche et al., 2018, Razjouyan et al., 2017, 

Rezvanian & Lockhart, 2016, Rispens et al., 2014, Riva, 

Toebes, Rijnappels, Stagni & Dieen, 2013, Schwenk et al., 

2014, Simila, Immonen & Ermes, 2017, Soangra & Lockhart, 

2018, Stack et al., 2018, Van Schooten et al., 2015, Van 

Schooten et al., 2016, Weiss et al., 2013, Weiss, Herman, 

Giladi & Hausdorff, 2014). Figure 1 details the systematic 

review process. 

  

Figure 1: Systematic review process, documenting records 

perused, excluded, and included at each step. 

3.2. Consumer Preferences 

Only two studies considered the consumer preferences of 

fallers and older individuals at risk of future falls. Govercin, 

et al. (2010) asked focus groups of older adults (at fall risk 

and not based on clinical scores) and the caregivers of fall-

prone individuals to identify features that they would prefer 

in a fall preventions device. Participants stated that fall 

prediction was as important as falls detection and that they 

preferred wearable devices to those that were optical or 

home-based because they could be used be more widely used. 

A non-stigmatizing sensor on the wrist, such as a smartwatch-

based app, with an emergency button in case of undetected 

fall was generally preferred.  

Rasche, et al. (2018) found that the features most asked for in 

a fall prevention smartphone app by the 96 older adults in the 

study were (1) a checklist of typical tripping hazards, (2) an 

emergency guideline in case of a fall, (3) description of 

exercises and integrated workout plans that decrease the risk 

of falling, (4) inclusion of a continuous workout program, and 

(5) cost coverage by health insurer.  

Based on these studies, it is apparent that individuals want a 

portable device that is not easily noticed as medical 

equipment and, in addition to detecting and alerting in the 

case of a fall incident, can give feedback about fall risk on a 

regular basis and use this information to prescribe potential 

risk-alleviating measures such as home modifications or 

exercises. 

3.3. Population Characteristics 

With the exception of the two consumer preference studies 

listed above, all of the studied reviewed here implemented a 

wearable sensor to measure variables that might be correlated 

with fall incidence or risk, or with a condition known to be 

linked to falls such as frailty or freezing of gait in Parkinson’s 

disease (PD). The size and characteristics of the populations 

studied varied widely, as shown in Tables 1 and 2. 
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Population 

Size 

 Studies (%) 

5-24 15.4% [26, 29, 32, 47, 63, 68, 73, 74] 

25-49  19.2% [27, 28, 34, 35, 51, 55, 58, 59, 67, 72] 

50-99  32.7% [30, 31, 33, 36, 37, 39, 50, 52, 53, 56, 57, 

60, 61, 62, 65, 71, 77] 

100-149  13.5% [38, 45, 48, 49, 69, 70, 78] 

150-199    3.8% [64, 75] 

200-299    9.6% [25, 40, 43, 46, 76] 

300+     5.8% [42, 44, 54] 

Table 1: Number of Individuals Included Categorized by 

Study. Bracketed numbers indicate reference number for 

each paper. 

 

While studies varied greatly by size, the vast majority studied 

less than 200 individuals. Given the size of data sets generally 

utilized to train predictive algorithms, the small effect size 

expected, and the high rate of non-compliance or study 

withdrawal during home-based recording and fall diary 

follow-up (Shany, Liu, Redmond, Wang & Lovell, 2015), it 

is expected that much larger trials are needed including up to 

several thousand volunteers.  

 

Population/Control 

Group 

Studies (%) 

Older Adult Fallers/Non-

fallers 

71.2% [25, 29-43, 45, 46, 48-54, 

56, 58-59, 62, 64-67, 69, 70, 74-77] 

Older Adult Balance 

Decline/None 

  1.9% [72] 

Older Adults Frail/Non-

frail  

  3.8% [44, 60] 

Older Adults 

Assisted/Unassisted 

  1.9% [26] 

PD Fallers/Non-fallers   9.6% [47, 55, 57, 74, 78] 

PD with FOG/without 

FOG 

  3.8% [61, 68] 

Demented Fallers/Non-

fallers 

  1.9% [71] 

Stroke Fallers/Non-fallers   1.9% [27, 28] 

Diabetes Fallers/Non-

fallers 

  1.9% [63] 

Cardiac patients 

Frail/Non-frail 

  1.9% [73] 

Table 2: Breakdown of the experimental population and the 

control group for each paper. 

 

The majority of studies (71.2%) analyzed potential 

differences between older adults without other impairment 

based on whether they were prone to falling. A further 17.3% 

of studies analyzed fall risk similarly in populations with 

neurological or other impairment leading to an increased rate 

of falls. The remaining studies measured the correlation of 

other variables known to be related to falls such as frailty, PD 

freezing of gait (FOG), and the use of a prescribed assistive 

device while walking to determine how they affected 

measures of gait that could be detected by wearables.  

In 20 of 52 (38%) of studies, subjects were excluded if unable 

to ambulate without an assistive device during testing 

(Barrois et al., 2017, Bergamini et al., 2017, Brodie et al., 

2015, Caby et al., 2011, Di Rosa et al., 2017, Doi et al., 2013, 

Drover et al., 2017, Ganea et al., 2011, Greene et al., 2014, 

Greene et al., 2017, Greene et al., 2018, Howcroft et al., 2016, 

Howcroft et al., 2017, Howcroft et al., 2017b, Hua et al., 

2018, Iluz et al., 2014, Rezvanian & Lockhart, 2016, Riva et 

al., 2013, Stack et al., 2018). This exclusion is often utilized 

in studies of gait, as the use of a device changes movement 

patterns. However, the use of assistive devices is common at 

home in fall-prone individuals and fall risk measurement 

tools that can account for aids will be important in the future 

to allow wide-spread use.  

3.4. Gold Standard Used to Determine Fall Risk 

While most studies analyzed compared wearable features 

directly to fall incidence/risk, they did not all distinguish 

fallers from non-fallers in the same way. There were three 

main ways that fall status was determined: retrospective fall 

history, prospective fall diary, and clinical measures of fall 

risk. However, the time period for which falls were monitored 

(both retrospectively and prospectively) and the clinical 

measures used varied widely (see Table 3). 

48.9% of studies utilized retrospective falls (asking falls 

history for anywhere from 6 months to 5 years), 36.2% used 

prospective falls (with follow-up recording of one month to 

two years), and 19.1% used clinical scales (most commonly 

the Tinetti scale, with many studies using a combination of 

several scales). 4.3% of studies analyzed both retrospective 

and prospective falls and 4.3% analyzed falls and clinical 

scales. One study intending to measure the beginning of 

balance decline, which increases fall risk, measured the 

change in Berg Balance scale scores over one year following 

wearable assessment (Simila et al., 2017). It is important to 

note that, though wearables have been tested for use in 

objective fall detection, no studies were found that have 

combined measurement of falls and of fall risk. Fall history 

and diaries were all based on self-report measures. 

Studies intending to measure frailty used the Fried Frailty 

Index (Greene et al., 2013, Martinez-Ramirez et al., 2011) or 

the STS Frailty Criteria (Razjouyan et al., 2017). PD FOG 

was measured using video assessment of gait by trained 

interpreters, with periods with and without FOG used to build 

classification models for use in wearables (Mikos et al., 2019, 

Rezvanian & Lockhart, 2016). The use of an assistive device 

was consistent between users, with each user completing the 

same number of trials with and without an assistive device 

(Antos et al., 2019). 
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Gold Standard Studies (%) 

Retrospective falls history 48.9% 

   Previous 6 months   8.5% [48, 49, 55, 75] 

   Previous year 38.3% [25, 29, 30-33, 35, 38, 45, 

52, 53, 56, 57, 65, 66, 69, 70, 78] 

   Previous 5 years   4.3% [42, 46] 

Prospective falls occurrence 36.2%  

   Following month   2.1% [64] 

   Following 3 months   4.3% [47, 71] 

   Following 6 months 17.0% [27, 37, 50, 54, 62, 75-77] 

   Following year 12.8% [30, 36, 58, 59, 76, 78] 

   Following 2 years   2.1% [43] 

Clinical Assessment 19.1% 

Aachen Falls Prevention 

Scale 

  2.1% [66] 

   Berg Balance Scale   2.1% [28] 

   Barthel Index   4.3% [28, 41] 

   Dynamic Gait Index   2.1% [34] 

   Functional Ambulation 

Categories 

  2.1% [28] 

   Heinrich II   2.1% [67] 

   Physiological Profile 

Assessment 

  2.1% [51] 

Short Physical         

Performance Battery 

  2.1% [52] 

Tinetti Falls Efficacy Scale 10.6% [28, 34, 39, 63, 66] 

   Timed Up and Go   4.3% [34, 41] 

STRATIFY Falls Risk 

Assessment 

  2.1% [40] 

Table 3: Methods Used to Determine Fall Risk for 

Comparison with Biomarkers 

 

There are strengths and weaknesses associated with any 

measure of fall risk. The most accurate measure of future fall 

risk, especially if we hope to catch biomarker preceding first 

fall, is prospective falls occurrence. However, it also requires 

a follow-up period to the study, which increases study cost 

and patient withdrawal from data collection. Retrospective 

fall history also gives an accurate, though less sensitive, 

measure of fall status and does not require follow-up. Clinical 

scales provide a correlate measure of fall risk (scales may 

have been initially compared to either prospective or 

retrospective falls) and may be collected at the same time as 

biomarkers, negating the need for follow-up period. 

However, they do not give a fully accurate picture of whether 

the individual is or will be a faller. Many of these tests are 

also subjective and may not be sensitive to early, invisible 

changes in gait indicative of change in fall risk.  

3.5. Wearable Sensors 

The majority of studies utilized an accelerometer or inertial 

measurement unit (IMU) containing an accelerometer in 

addition to other instruments such as a gyroscope, 

magnetometer, or barometer. Other sensors used included 

pressure insoles and electrocardiogram (ECG) and 

respiratory monitors, as displayed in Table 4. Only one study 

(Di Rosa et al., 2017) did not utilize an accelerometer, instead 

relying on pressure insoles alone. 

Sensor Used Studies (%) 

IMU 98.0% 

   Accelerometer 98.0% [25-33, 35-40, 42-64, 67-78]  

   Gyroscope 33.3% [27, 28, 39, 42-47, 55, 60-62, 

64, 71, 73, 74] 

   Magnetometer   5.9% [27, 60, 64] 

   Barometer   5.9% [29-31, 38] 

Pressure Insoles   5.9% [34, 48-50] 

ECG   2.0% [67] 

Respiratory 

Monitor 

  2.0% [67] 

Table 4: Types of Sensors Used to Measure Fall Risk 

 

In three studies, no wearable sensor was described. Two 

studies (Govercin et al., 2010, Rasche et al., 2018) measured 

only consumer preferences for a potential sensor. Rasche, et 

al. (2017) used questionnaires and a test of compensatory 

movement during standing balance, but it was not stated 

whether the balance test utilized a sensor such as the phone’s 

accelerometer or was measured by self-assessment.  

Most studies (58.8%) used a single IMU or other sensor. The 

remaining used 2 (21.6%), 3 (5.9%), 5 (7.8%), 6 (5.9%), or 

10 (2.0%) sensors. This data is broken down by study in 

Table 5. In most cases, all sensors were of the same type. 

However, three studies by Howcroft et al. (2016, 2017, 

2017b), or 7.8%, utilized four accelerometers in addition to 

pressure insoles in both shoes.  

 

Number of 

Sensors 

Studies (%) 

1 58.8% [25, 29-31, 33, 38-40, 51-56, 58-61, 63, 

64, 67, 69-73, 75-78]  

2 21.6% [26, 34-36, 42-44, 46, 47, 57] 

3   5.9% [27, 37, 68] 

5   7.8% [28, 45, 62, 74]  

6   5.9% [48-50] 

10   2.0% [32] 

Table 5: Number of Sensors Used on Each Individual 

During Testing by Study 

 

The position of sensors varied, but the most common location 

was the lower back (58.0%), followed by the sternum and 

shins (26% of studies each). Other positions included the 

upper back, the thigh, the feet, the wrist, the head, and the 

elbows (see Table 6). One study (Hua et al., 2018) using a 

single accelerometer did not state where the sensor was 

located during testing.  
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Sensor Location  

Lower Back 58.0% [25, 27, 28, 33, 36, 37, 40, 45, 

48-50, 53-60, 62, 68-70, 72, 74-78] 

Belt Clip/Pocket    4.0% [26, 73] 

Upper Back   4.0% [32, 36] 

Sternum 26.0% [28-31, 35, 38, 39, 45, 51, 62, 

63, 67, 71] 

Thigh(s)/Knees(s) 10.0% [32, 35, 45, 62, 68] 

Shin(s) 26.0% [28, 37, 42-50, 62, 68] 

Feet/Ankle(s) 14.0% [32. 34, 48-50, 61, 74] 

Elbow(s)   2.0% [32] 

Wrist(s)   8.0% [26, 32, 64, 74] 

Head   8.0% [48-50, 57] 

Table 6: Positioning of Sensors on the Body by Study 

3.6. Biomarkers of Fall Risk 

In order to ensure timely updates to fall risk information and 

remove the burden or remembering and making time to check 

their status, it would be most helpful for a fall risk device to 

continuously monitor biomarkers of fall risk and be able to 

update risk scores without the need for specific guided 

movements. However, as of this writing, few of the articles 

identifying biomarkers of fall risk have done so based on 

continuous, unstructured data (32.7%). All other studies 

involved structured or semi-structured movements and were 

generally conducted in a lab-based setting, which is known to 

affect fall risk results (Rispens et al., 2016, Van Schooten, 

Rispens, Elders, Dieen & Pijnappels, 2014). Even among the 

17 studies that examined continuous locomotor data, the 

duration over which training data was collected varied 

widely, which may drastically affect results and accuracy of 

the resultant models, as shown in Table 7.  

 

Data 

Duration 

Studies (%) 

1 day 11.8% [67, 71] 

3 days 29.4% [53, 55, 56, 77, 78] 

1 week 35.3% [25, 31, 54, 64, 75, 76] 

2 weeks 17.6% [34, 62, 69] 

8 weeks   5.9% [29] 

Table 7: Duration of Monitoring for Studies Using 

Continuous Measurement 

 

The continuous studies primarily looked at biomarkers 

obtained during periods of locomotion (82.4%), though two 

studies (11.8%) focused on transitions from sitting to 

standing or walking and vice versa (Cui et al., 2014, Govercin 

et al., 2010), and one study focused on classifying activity 

and heart rate variability (Greene et al., 2013).  

All but one (94.1%) of the studies examining biomarkers of 

fall risk from continuous data analyzed individual biomarkers 

related to fall risk separately, allowing for direct comparison 

of those factors that independently influenced fall risk. Table 

8 shows the parameters of gait/activity that demonstrated 

significant differences between fallers and non-fallers in at 

least one study analyzing continuous data. Those parameters 

that were also found not to be significantly affected by 

classification in other studies were noted; however, those 

factors found to be insignificant in all studies were not 

included for the sake of brevity.  

Walking duration, entropy, amplitude of the dominant 

frequency (DF) in the vertical direction, and the harmonic 

ratio in the vertical and anterior-posterior directions were 

most commonly found to be significant determinants of fall 

risk. It is important to note that, though nonlinear measures 

were more often found to show significant differences 

between fallers and non-fallers, these measures vary 

considerably based on the number of steps utilized in 

processing, so a standard processing method breaking walks 

into smaller segments is needed. Currently, this process 

differs between groups, making results difficult to compare.  

One study analyzing wearable data based both on 

retrospective and prospective falls (Weiss et al., 2014) found 

that retrospective fallers demonstrated decreased VT 

amplitude and increased width of the dominant frequency (all 

directions), decreased regularity, and decreased harmonic 

ratio (all components), while prospective falls were 

correlated with only increased AP dynamic frequency  width. 

Another (Van Schooten et al., 2015) found retrospective falls 

to be influenced by steps per day, walk duration, and 

dominant frequency power and prospective falls to be 

influenced by gait speed, frequency, step length, variability, 

harmonic ratio, index of harmonicity, and logarithmic 

divergence, illustrating the need for more studies based on 

prospective falls to elucidate early signs of increased fall risk. 

Only two studies focused on predictive biomarkers in sit-to-

stand transitions, making consensus difficult to measure to 

date. Parameters analyzed in these papers are shown in Table 

9. The single study analyzing continuous heart rate variability 

data (Razjouyan et al., 2017) found that fallers had lower 

average R-R intervals (time between R waves of the ECG), 

lower variability in R-R duration, and increased power in the 

low frequency component of the heart wave during 

continuous monitoring.  

Studies conducted in-lab were generally much more 

structured and focused than those involving continuous 

assessment. The Timed Up and Go (TUG) test was the most 

commonly performed task (45.9%), but measured walks of 

various lengths/durations, postural stability tests, sit-to-stand, 

and activities of daily living (ADLs) were also common (see 

Table 10). 
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Gait Parameters Significant Not 

Significant 

Steps per day [29, 75] [31, 62] 

Walks per day [29] [31, 62] 

Average steps per walk [29, 31, 77] [62] 

Variability walk duration [71]  

Longest walk [71] [29, 31] 

Walking Duration [62,67,71,75]  

Standing Duration [71]  

Sitting Duration [62]  

Lying Duration [62]  

Side Lying [67]  

Gait speed [75,76]  

Cadence [75,76] [29,31, 62] 

Step length [75,76]  

RMS VT [76] [29, 31] 

RMS AP [76]  

Step duration [77]  

Stride duration [77]  

Step time variability [29,31]  

Single support time [34]  

Double support time [34]  

Heel contact force slope [34]  

Average Acceleration 

ML 

[34]  

Index of Harmonicity VT [69]  

Entropy [53, 54,76]  

LF% [69]  

Range AP [76,77]  

Range ML [77] [76] 

Local Dynamic Stability 

VT 

[69]  

LDS per stride VT [69]  

Amplitude DF VT [69,75-78]  

Amplitude DF ML [76,77] [69] 

Slope DF VT [69,77]  

Slope DF ML [77] [69] 

Width DF VT [78]  

Width DF AP [76,78]  

Width DF ML [78]  

Harmonic ratio VT [75,76,78]  

Harmonic ratio AP [75,76,78]  

Harmonic ratio ML [75,78]  

Index of harmonicity [75,76]  

Logarithmic divergence [75,76]  

Missteps (calculation not 

given) 

[55]  

Table 8: Parameters Measured During Continuous. The first 

column lists parameters measured, the second documents 

studies finding significant differences between groups, and 

the third indicates studies in which the parameter was 

measured but not significant. AP=Anterior-Posterior, 

ML=Medio-Lateral, VT=Vertical, RMS=Root Mean Square  

Sit-to-stand Parameters Significant Not 

Significant 

Amplitude arm swing [64]  

Smoothness VT [56]  

Smoothness AP [56]  

Jerk [64] [56] 

Oscillation ML [64]  

Entropy VT [64]  

Energy VT [64]  

Energy ML [64]  

Index of Harmonicity VT [64]  

Table 9: Parameters Demonstrating Significant Differences 

Between Fallers and Non-fallers During Continuous 

Analysis of Sit-to-Stand Transitions 

Only seventeen studies (45.9%) of structured movement 

assessments of fall risk provided information about specific 

biomarkers that were significantly different between fallers 

and non-fallers. The biomarkers analyzed are shown in Table 

11 and 12. The remaining studies utilized machine learning 

and other algorithms to predict fall risk but did not detail 

which results were collected and subsequently found to be 

predictive, by themselves or in conjunction with other 

factors.  

Gait speed was most often found to be significantly different 

between fallers and non-fallers in structured walking tasks. 

Step duration, RMS, total time needed to complete the TUG 

test, and harmonic ratio were also commonly utilized. All of 

these measures were also found to be useful during 

continuous testing, suggesting that some of the work that has 

been used to develop predictive models during structured 

testing may be usable for continuous testing if an algorithm 

is able to correctly screen for similar actions during 

spontaneous activity. For stair climbing, it was found that 

stability was reduced in prospective fallers, but number of 

steps and duration to climb stairs were not altered (Brodie et 

al., 2015b).  

Studies of biomarkers of fall risk during postural stability 

tasks demonstrated conflicting results. Two of the four 

studies examining postural stability found that there were 

differences between fallers and non-fallers during normal 

standing with eyes open or closed in terms of COP radius, 

area, path length and velocity eyes open (Soangra & 

Lockhart, 2018) and in total sway (Mohler et al., 2016). 

However, another study found that path length was not 

changed in either normal or tandem stance with eyes open or 

closed and that sway area increased only with eyes closed 

(Martinez-Ramirez et al., 2011). A final study found that 

RMS was only significantly predictive in harder conditions 

(tandem stance and dual-task) and maximum acceleration 

was not predictive (Hsieh et al., 2019). Further studies are 

needed to determine what measures are significantly different 

in normal stance (and may be able to be collected from 

unstructured data during standing periods) or in stances that 
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can be easily explained and completed safely in a home 

environment if structured assessment is needed. 

Task  

TUG 45.9% [25, 26, 27, 32, 40, 42-

47, 58, 59, 61, 63, 72, 74] 

Locomotion 59.5% 

   3-meter walk   2.7% [74] 

   4-meter walk   2.7% [72] 

   15-foot (4.57-meter) walk 16.2% [35, 38, 39, 45,73, 74] 

   5-meter walk   2.7% [73] 

25-foot (7.62-meter) walk   8.1% [48-50] 

   10-meter walk 10.8% [26, 28, 36, 38] 

   20-meter walk   8.1%[57-59] 

   25-meter walk   2.7% [32] 

   400-meter walk   2.7% [52] 

   1-minute walk   2.7% [77] 

   3-minute walk   2.7% [70] 

   6-minute walk 10.8% [26, 27, 48, 50] 

   Random Walk   8.1% [33, 61, 68] 

   Tandem Walk   2.7% [74] 

Sit-to-Stand 16.2% [35, 38, 39, 45, 73, 74] 

Postural Stability 18.9% 

   Eyes Open 18.9% [32, 45, 51, 60, 62, 65, 

73] 

   Eyes Closed   8.1% [51, 60, 62] 

Dual-Task Eyes Open   2.7% [51] 

Dual-Task Eyes Closed   2.7% [51] 

   Tandem Stance   5.4% [51, 60] 

   One-Legged Stance   5.4% [32, 51] 

ADLs 13.5% 

   Stair Climbing   2.7% [30] 

   Turning   2.7% [74] 

   Reaching   2.7% [74] 

Walking with Obstacles   2.7% [33] 

Not Otherwise Specified   5.4% [38, 68] 

Clinical Assessments 5.4% 

   Berg Balance Scale   2.7% [72] 

   Falls Questionnaire   2.7% [65] 

Table 10: Activities Used for Structured Assessment 

As in continuous testing, measures of turning ability were 

only focused on by a few studies, and consensus on useful 

parameters was not reached. Interestingly, the parameters 

found to be significant by structured studies differed for the 

most part from the results in the continuous studies. It is 

difficult to tell whether this is due to inherent differences 

between the way people turn in a naturalized setting, 

difference in the calculation of parameters between studies, 

or due to small effect size and population creating conflicting 

results given the relatively small number of studies using 

these parameters to date. Further research is needed to isolate 

the most beneficial parameters to measure sit-to-stand 

transitions, both in structured and daily life environments.  

Gait Parameter Significant Not 

Significant 

Gait speed [28,36, 

38,57,73,77] 

[62] 

Stride length [28] [62] 

Step duration [40,77]  

Gait variability [57] [40,62] 

RMS [28,40]  

Attenuation 

coefficients 

[28]  

Symmetry  [28]  

TUG time [27,63]  

Steps to turn 180 [27]  

Step Stability Index [33]  

Harmonic ratio [36,57]  

Energy expenditure [40]  

Pelvis sway [40]  

Entropy [73]  

Table 11: Parameters Demonstrating Significant Differences 

Between Fallers and Non-fallers During Structured Gait 

Analysis 

 

Sit-to-stand Parameter Significant Not 

Significant 

Duration [35,63] [39] 

Variability  [35] 

RMS ML [35]  

Spectral Edge Frequency 

AP 

[35]  

Maximum acceleration [38]  

Maximum velocity [38]  

Peak power [38]  

Fractal dimension [39]  

Table 12: Parameters Demonstrating Significant Differences 

Between Fallers and Non-fallers During Structured Analysis 

of Sit-to-Stand Transitions 

3.7. Software/Algorithms 

Thirty-seven (71.2%) articles utilized machine learning or 

regression to classify fallers vs non-fallers. Most of these 

studies listed the types of classification algorithms that best 

fit their data but did not list the features that were fed into 

these algorithms, making even similar algorithms by different 

groups difficult to compare. Many of these studies (24.3%) 

also failed to list accuracy values, merely stating that 

algorithms using measures obtained from wearables were as 

accurate or more accurate that those obtained by clinical 

means or were more accurate than other classification 

methods tried.  Machine learning algorithms used to classify 

fallers vs non-fallers, along with the average accuracy of each 

of these methods and the accuracy noted in each study, are 

shown in Table 13. 
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Method Used Average 

Accuracy 

Accuracy by Study 

Linear 

Regression 

76.7%  53.9% [35], 81.0% [36], 

75.0% [42], 89.7% [56], 

70.0% [58], 88.2% [62], 

72.5% [70], 77.1% [71], 

78.0% [72], 82.0% [75], 

NL [26] 

Wavelet 82.1% 82.1% [68], 93.1% 

missteps [55], NL 

[30,31,38,60,63] 

Support vector 

machine 

72.9% 67.6% [37], 80.6% [45], 

84% [48], 78% [49], 

54.5% [50], NL [32] 

Neural Network 66.2% 74% [25], 84.0% [48], 

75.3% [49], 57.0% [50], 

92.9% [61] 

Naïve Bayesian 66.2% 80% [48], 68.3% [49], 

50.2% [50], NL [32] 

Random Forest 75.6% 77.5% [37], 73.7% [52] 

K-Nearest 

Neighbor 

71.8% 71.8% [37], NL [32] 

Classification 

Regression Tree 

80% 80% [59] 

Partial Least 

Squares 

83% 83% [54] 

Long Short-Term 

Memory 

91% 91% [25] 

Principal 

Component 

Analysis 

NA NL [60,76] 

Empirical mode 

decomposition 

NA NL [33] 

Radial basis 

function network 

NA NL [32] 

Multiple 

Together 

NA 90% [25], 99.2% use of 

assisted device [26] 

Machine 

Learning/Feature 

Selection NOS 

NA 69% [34], 90.5% [40], 

79.6% [43], 73.6% [46], 

73.3% [47] 

Table 13: Machine Learning Classification Accuracies. The 

first column documents different methods used, the second 

lists the average accuracy given by all studies using that 

method, accounting for all studies that gave accuracy 

information. NA was used when no study utilizing that 

method gave accuracy information and for the bottom two 

columns, in which studies used multiple algorithms together 

or failed to specify the type of machine learning used to 

allow for comparison to similar techniques.  The third 

column lists individual accuracies for each study. NL = no 

accuracy information given, NOS = Not Otherwise 

Specified. 

Several studies gave more in-depth information comparing 

linear regression models using clinical and wearable 

biomarkers of fall risk. In general, these studies found that 

wearable features were more accurate at determining fall risk 

than clinical metrics, but that models combining both sets of 

features were the most accurate. Iluz, et al. (2015) found that 

data collected by a monitor worn for three days of 

unstructured activity was 88% accurate at classification, 

clinical data was 71% accurate, and 89.7% accuracy was 

achieved when information was combined. Marshollek, et al. 

(2011) found STRATIFY to have an accuracy of 48%, TUG 

50%, clinical assessment 55%, an algorithm taking all three 

conventional measures into account 72%, and sensor data 

70% and in another study (2011b) that clinical regression 

trees were 80% accurate using accelerometer data alone and 

78% combining accelerometer data with clinical, but linear 

regression was 65% accurate using accelerometer data and 

70% combined. Van Schooten, et al. (2015) obtained 68% 

accuracy using clinical data, 71% using wearable data, and 

82% with both.  

To allow for clearer comparison and analysis of potentially 

promising fall risk algorithms in the future, it is urgent that 

more information be provided about specific parameters 

supplied to described models and the resultant accuracy. 

Without knowledge of specific parameters and descriptions 

of the types of machine learning used to generate discerning 

algorithms, it is nearly impossible for scientists to work 

together to maximize accuracy of future iterations. It is also 

highly important that more information be given about 

accuracy, including information about both sensitivity and 

specificity. The accuracy numbers given by the majority of 

studies listed failed to document these numbers separately, 

which makes it difficult to determine the relative 

contributions of Type I and Type II error. While both types 

of error present concerns, they should be handled differently. 

Type I error, or false positives, can quickly lead to over-

diagnosis and treatment, which is costly both in terms of 

health-care expenditure and aggravated anxiety and fear of 

falling in those patients falsely identified as fall risks. 

However, such systems can still be used well as a first line of 

defense in conjunction with further testing. For example, an 

automatic home-based fall risk screening wearable with high 

sensitivity but low specificity might indicate to the patient 

that they should schedule an appointment with their physician 

for a more in-depth fall risk assessment. If the physician finds 

reason for concern about fall risk, further treatment can then 

be suggested. Alternatively, the same device may suggest 

targeted home-based exercise to reduce fall risk that will 

provide low-cost benefit to the patient even in the case of a 

false positive. In contrast, devices with high specificity but 

low sensitivity to fall risk may still be useful for tracking 

patients already known to be at risk to measure sudden 

changes indicative of need for immediate action. 
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3.8. Feedback About Fall Risk 

Only two studies measuring fall risk with wearables provided 

feedback to their users about fall risk in real time. Mikos, et 

al. (2019) used vibration feedback supplied to the ankle to 

alert PD patients in the case of FOG. Rasche, et al. (2017) 

gave users visual feedback of their fall risk upon completion 

of a fall risk assessment including questionnaires and 

standing balance.  

3.9. Fall Risk Intervention/Treatment 

Two studies delivered treatment to ease fall risk. Mikos, et al. 

(2019) delivered vibration biofeedback during FOG episodes 

to alert patients to the incorrect stepping pattern and 

encourage correct stepping. Simila, et al. (2017) randomized 

patients at fall risk to receive computer-based exercise plans 

and activity/falls monitoring, paper-based exercise plans and 

activity diary, or no exercise/monitoring, though the effects 

of these interventions were not considered. 

4. ARTICLES IN PERIODICALS 

Falls present a devastating and rapidly growing problem for 

our aging society. Currently, fall risk assessment may be 

conducted using short, subjective, clinical measures during 

regular physician appointments, but guidance to prevent falls 

is very general and targeted treatments such as physical 

therapy are often reserved for individuals who have already 

fallen and are in need of rehabilitation. Technology may help 

to improve fall risk assessment and response in multiple 

ways, including allowing for more regular fall risk screening 

at home, isolating more objective parameters that may be 

indicative of more subtle changes related to fall risk, and 

providing more targeted treatments and lifestyle changes 

based on the exact types of degradation noted. The same 

sensors used to assess fall risk may be usable to measure 

suggested at-home therapy routines. Both home-based 

systems such as the Kinect (Hondori & Khademi, 2014, Su, 

Chiang & Huang, 2014) and wearables (Dobkin & Dorsch, 

2011, Yurtman & Barshan, 2013) have been shown to be 

effective at tracking and guiding therapy-related exercise.  

End-user studies of the preferences of elderly individuals 

(some of whom are known fallers) and their care-givers 

demonstrate the need for a device that can subtly track fall 

risk and then supply feedback about both risk and treatment 

and lifestyle changes that can actually help to reduce this risk. 

Patients do not wish to receive a fall risk assessment if they 

feel helpless to change the results. However, while all of the 

studies reviewed here were specifically designed to measure 

fall risk, only two articles each made a point to present fall 

risk results directly to subjects or to provide treatment to try 

to improve fall risk or a related factor. One of these studies, 

which provided feedback about FOG in PD in real-time, is 

incredibly helpful but can only be targeted to a fraction of the 

individuals who fall each year. Clearly, interventions and 

suggestions specifically targeted to fall risk profile and 

readily accessible following assessment is an area in which 

research, development, and innovation are gravely needed.  

The available research has demonstrated that wearable 

sensors are a viable way of determining biomarkers of fall 

risk, that data may be collected by sensors in a number of 

locations (many of which allow the sensor to be easily hidden 

against the body, beneath clothing, or disguised as a watch or 

other traditional accessory to encourage frequent wear), and 

that data from simple tasks such as walking and standing may 

be useful in collecting these biomarkers. Based on these facts, 

the need for such tasks as practiced in many clinical scales of 

fall risk such as the Tinetti or the Berg Balance Scale, which 

must be attended by a trained practitioner, can be 

significantly alleviated. However, further research is still 

needed before home-based fall risk assessment using 

wearables is feasible. There is still a need for studies of both 

continuous and structured assessments conducted in home 

and community environments over the period of several 

weeks or months to note variations in parameters that might 

be more indicative of change in scenery or task than decline 

in gait or balance function. For example, individuals may 

walk differently in tight spaces, when carrying something or 

conducting another task, or when wishing to look at 

something along their path. Longer assessment times, 

combined with prospective falls monitoring, may also help 

pick up subtle changes leading up to a fall, both over the term 

of several weeks to allow for treatments to be recommended 

and in the preceding few minutes to warn the patient and ask 

them to sit or otherwise reduce their immediate risk of fall.  

If structured assessments are to be used, several factors will 

need to be taken into account to design a user-friendly 

system. Any tasks to be completed should be simple, easily 

explained, and safely and readily completed within a small 

space, and minimal if any outside equipment should be 

required. It should be considered that many elderly 

individuals at risk for falls suffer from comorbidities such as 

cognitive or sensory impairment, which could drastically 

reduce the ability of individuals to understand and carry out 

instructions requiring more than a few sequential steps. 

Simple walks or standing are likely feasible, but dual tasks or 

complicated stances would be difficult to implement. Safety 

is also paramount, so exercises such as single-leg balance 

should not be requirements for assessment. If used in therapy, 

precautions such as advising someone else be present to assist 

and a mat or other padding be placed on the floor, should be 

made clear. Finally, all assessments should be easily 

completed in a small space, which may restrict the length of 

walking tasks, and should not require the use of outside tools 

such as tape lines to mark off a set distance, as this would 

likely drastically reduce compliance.  

In other words, while studies to date have laid important 

groundwork in establishing the feasibility of using IMUs and 

other wearables to track features of gait and balance related 

to fall risk, they have still suffered from important limitations. 
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Very few studies have considered user feedback or risk 

reduction. Most research thus far has been completed in 

controlled environments, and data may not easily transfer to 

daily life. Longer trial durations are needed to account for 

normal variability in sensor placement and movement 

patterns and to allow for closer temporal comparison with fall 

events. Trials using measures other than IMUs, especially 

those tracking vital signs such as ECG, respiration, blood 

pressure, or production of metabolic factors such as insulin, 

which have all been linked to falls in some cases, are also 

needed. Given the nearly infinite number of models that 

could possibly be tested, it is important that there be large 

scale (>1000-1500 individual) trials of those parameters 

deemed most viable based on current research. To facilitate 

this process and subsequent endeavors, greater transparency 

in research methodology is urgently needed so all parameters 

of interest may be known.  

These longer, large-scale trials and the eventual release of fall 

risk assessment and treatment tools into the population will 

create several technical challenges to overcome. First, battery 

life must be considered. Most wearables currently marketed 

for consumer use last a maximum of 12-18 hours, meaning 

most charge these devices overnight. While this may be 

feasible, removal of the sensor during sleep may lose 

important information, such as transitions from lying to 

standing or a degradation in vital signs overnight. It may also 

be difficult for some seniors to remember to reapply the 

sensor the following morning. Thus, batteries lasting longer 

periods (such as that of the Dynaport, a research IMU which 

lasts a week) while still retaining consumer features, and 

possibly alerting the patient once the charge cycle is 

complete, would be greatly helpful. Another technical 

challenge, which is currently being experienced in may 

arenas due to the boom in big data and artificial intelligence, 

is the need to store, sort through, and analyze very large 

amounts of information, and to do as much of this analysis as 

possible in real-time and on the user’s devices to prevent 

delays in areas without wireless signal.  

As with any systematic review, there are limitations to this 

study. It is impossible to review every paper, even within 

specific fields such as wearables or fall risk, necessitating the 

use of search terms to limit and filter results. As such, it is 

likely that some papers that would helpfully contribute to this 

discussion were left out of the literature search and analysis. 

This paper also did not conduct a meta-analysis regarding the 

comparative efficacy of different parameters or algorithms in 

determining fall risk, largely due to the wide and different 

designs used in the cited studies and the lack of needed 

information given about these variables by a sizable minority 

of them. In the future, continued research may make such an 

analysis possible.  

5. CONCLUSIONS 

Falls represent a huge and expanding threat to our aging 

population, and the measurement of fall risk (with subsequent 

action) shows promise in reducing the number of fall 

incidents. Technology such as wearable monitors can 

measure biomarkers related to fall risk (thus far, identified 

markers have mainly been features of gait). However, further 

research is still needed to reach a consensus on the best 

parameters to measure, the best positioning for sensors (both 

in terms of accuracy and user acceptance), types of interface 

consumers prefer and best understand, and what treatment 

options or lifestyle changes best improve rates of falls 

subsequent to an increase in measured fall risk.  
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