Impact of Sensor Degradation on Measurement Uncertainty in Prognostics and Maintenance Decision-Making: State of the art and challenges

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Nov 11, 2025
Trung-Thanh N. Thai Phuc Do
Benoit Iung Paolo Gardoni

Abstract

Prognostics and maintenance decision-making rely heavily on accurate and reliable measurements derived from sensors. However, sensor degradation introduces measurement uncertainties that compromise the precision of fault detection, remaining useful life estimation, and overall maintenance strategies. This paper provides a comprehensive review of the multifaceted impacts of sensor degradation on measurement uncertainty and its subsequent influence on prognostics and maintenance. The paper synthesizes various sensor degradation mechanisms and existing modelling techniques, emphasizing the growing research focus on developing accurate degradation models. The review also provides an in-depth analysis of how sensor degradation affects measurement uncertainty, exploring both qualitative and quantitative impacts through various modelling approaches and tools. Furthermore, this review examines the implications of this uncertainty on prognostics and maintenance decision-making methodologies, showcasing current mitigation methods and models. Finally, the review identifies key challenges and research gaps, outlining promising directions for future research in sensor degradation and its impact on prognostics and maintenance. By addressing these critical issues, this paper contributes to the advancement of more reliable, adaptive, and efficient Prognostics and Health Management (PHM) systems across various industrial and technological domains.

Abstract 218 | PDF Downloads 115

##plugins.themes.bootstrap3.article.details##

Keywords

Sensor Degradation, Measurement Uncertainty, Prognostics, Maintenance Decision-Making

References
Wilson, J. S. (2004). Sensor technology handbook. Elsevier.
Algamili, A. S., Khir, M. H. M., Dennis, J. O., Ahmed, A. Y., Alabsi, S. S., Ba Hashwan, S. S., & Junaid, M. M. (2021). A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale research letters, 16, 1-21.
Basuwaqi, A. M., Khir, M. M., Ahmed, A. Y., Rabih, A. A., Mian, M. U., & Dennis, J. O. (2017, October). Effects of frequency and voltage on the output of CMOS-MEMS device. In 2017 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia) (pp. 49-52). IEEE.
Su, Y., Ma, C., Chen, J., Wu, H., Luo, W., Peng, Y., ... & Li, H. (2020). Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a review. Nanoscale research letters, 15, 1-34.
Abid, K., Sayed Mouchaweh, M., & Cornez, L. (2019). Fault prognostics for the predictive maintenance of wind turbines: State of the art. In ECML PKDD 2018 Workshops: DMLE 2018 and IoTStream 2018, Dublin, Ireland, September 10-14, 2018, Revised Selected Papers 18 (pp. 113-125). Springer International Publishing.
Elattar, H. M., Elminir, H. K., & Riad, A. M. (2016). Prognostics: a literature review. Complex & Intelligent Systems, 2(2), 125-154.
Javed, K., Gouriveau, R., & Zerhouni, N. (2017). State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues towards maturity at different technology readiness levels. Mechanical Systems and Signal Processing, 94, 214-236.
Lukens, S., Rousis, D., Baer, T., Lujan, M., & Smith, M. (2022, October). A data quality scorecard for assessing the suitability of asset condition data for prognostics modeling. In Annual Conference of the PHM Society (Vol. 14, No. 1).
Mukhopadhyay, K., Liu, B., Bedford, T., & Finkelstein, M. (2023). Remaining lifetime of degrading systems continuously monitored by degrading sensors. Reliability Engineering & System Safety, 231, 109022.
Ohsuga, M., & Ohyama, Y. (1988). High performance engine control system. SAE transactions, 1356-1362.
Zhang, J. X., Si, X. S., Du, D. B., & Hu, C. H. (2018). Specification analysis of the deteriorating sensor for required lifetime prognostic performance. Microelectronics Reliability, 85, 71-83.
He, K., Sun, Q., Xie, M., & Kuo, W. (2022). Sequential Bayesian planning for accelerated degradation tests considering sensor degradation. IEEE Transactions on Reliability, 72(3), 964-974.
Zhang, Q., Xin, J., Yin, Y., Wang, L., & Wang, Y. (2016). The variations and trends of MODIS C5 & C6 products’ errors in the recent decade over the background and urban areas of North China. Remote Sensing, 8(9), 754.
Hachem, H., Vu, H. C., & Fouladirad, M. (2024). Different methods for RUL prediction considering sensor degradation. Reliability Engineering & System Safety, 243, 109897.
Li, H., Price, M. C., Stott, J., & Marshall, I. W. (2007, September). The development of a wireless sensor network sensing node utilising adaptive self-diagnostics. In International Workshop on Self-Organizing Systems (pp. 30-43). Berlin, Heidelberg: Springer Berlin Heidelberg.
Wanga, S., Al Atata, H., Ghaffaria, M., Leea, J., & Xib, L. F. (2008, January). Prognostics of Automotive Sensors: Tools and Case Study. In Failure Prevention for System Availability-Proceedings of the 62nd Meeting of the Society for Machinery Failure Prevention Technology accessed (Vol. 12).
Li, L., & Dai, Y. (2020). An adaptive soft sensor deterioration evaluation and model updating method for time-varying chemical processes. Chemical Industry and Chemical Engineering Quarterly, 26(2), 135-149.
He, X., Wang, Z., & Zhou, D. H. (2008). State estimation for time‐delay systems with probabilistic sensor gain reductions. Asia‐Pacific Journal of Chemical Engineering, 3(6), 712-716.
Huang, C., & Shen, B. (2021). Event-based fusion estimation for multi-rate systems subject to sensor degradations. Journal of the Franklin Institute, 358(16), 8754-8771.
Wen, C., Wang, Z., Yang, J., & Ma, L. (2023). Recursive state estimation for state-saturated systems with two groups of measurements: Handling delayed and degraded sensors. Information Fusion, 97, 101814.
Sun, J., & Xiong, X. (2020). SNPP VIIRS reflective solar bands on-orbit calibration using the Moon. IEEE Transactions on Geoscience and Remote Sensing, 59(6), 4499-4512.
Yu, F., & Wu, X. (2009). Removal of contaminated pixels from the desert target for AVHRR vicarious calibration. Journal of Atmospheric and Oceanic Technology, 26(7), 1354-1366.
Kamei, A., Nakamura, K., Yamamoto, H., Nakamura, R., Tsuchida, S., Yamamoto, N., ... & Wu, A. M. (2012). Cross calibration of formosat-2 remote sensing instrument (rsi) using terra advanced spaceborne thermal emission and reflection radiometer (aster). IEEE transactions on geoscience and remote sensing, 50(11), 4821-4831.
Aldrin, J. C., Medina, E. A., Allwine, D. A., QadeerAhmed, M., Fisher, J., Knopp, J. S., & Lindgren, E. A. (2007, March). Probabilistic risk assessment: impact of human factors on nondestructive evaluation and sensor degradation on structural health monitoring. In AIP Conference Proceedings (Vol. 894, No. 1, pp. 1461-1468). American Institute of Physics.
De Jonge, B., & Scarf, P. A. (2020). A review on maintenance optimization. European journal of operational research, 285(3), 805-824.
Liu, J., Lv, J., & Yang, J. (2016, July). Research on Decision-making Model for Maintenance Mode Risks of Equipment Components within Task Cycle. In 2016 International Conference on Mechatronics, Control and Automation Engineering (pp. 86-90). Atlantis Press.
Cao, X. G., Zhang, M. Y., Gong, Y. R., Jia, X. L., & Zhang, R. Y. (2021). Maintenance decision method considering inspection of mining equipment. International Journal of Metrology and Quality Engineering, 12, 21.
Zandiyehvakili, M., Aminnejad, B., & Lork, A. (2022). A Mathematical Optimization Model for Maintenance Planning of School Buildings. Intelligent Automation & Soft Computing, 32(1).
Đurić, Ž., Josimović, L., Adamović, Ž., Radovanović, L., Jovanov, G., Adamović, Ž. Đ. L. J. Ž., ... & Jovanov, G. (2012). An evaluation of formed maintenance programme efficacy. Strojniški vestnik-Journal of Mechanical Engineering, 58(5), 300-308.
Ding, S. H., Goh, T. T., Tan, P. S., Wee, S. C., & Kamaruddin, S. (2012). Implementation of decision tree for maintenance policy decision making-a case study in semiconductor industry. Advanced Materials Research, 591, 704-707.
Tee, K. F., & Ekpiwhre, E. (2020). Strategic cost modelling and optimisation for highway asset maintenance. Journal of Quality in Maintenance Engineering, 26(2), 198-212.
Liu, B., Do, P., Iung, B., & Xie, M. (2019). Stochastic filtering approach for condition-based maintenance considering sensor degradation. IEEE Transactions on Automation Science and Engineering, 17(1), 177-190.
Kaiser, K. A., & Gebraeel, N. Z. (2009). Predictive maintenance management using sensor-based degradation models. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 39(4), 840-849.
Salehpour-Oskouei, F., & Pourgol-Mohammad, M. (2017). Risk assessment of sensor failures in a condition monitoring process; degradation-based failure probability determination. International Journal of System Assurance Engineering and Management, 8, 584-593.
van Oosterom, C., Maillart, L. M., & Kharoufeh, J. P. (2017). Optimal maintenance policies for a safety‐critical system and its deteriorating sensor. Naval Research Logistics (NRL), 64(5), 399-417.
Li, M., Jiang, X., Carroll, J., & Negenborn, R. R. (2021, September). Influence of uncertainty on performance of opportunistic maintenance strategy for offshore wind farms. In OCEANS 2021: San Diego–Porto (pp. 1-10). IEEE.
Huynh, K. T., Barros, A., & Bérenguer, C. (2012). Maintenance decision-making for systems operating under indirect condition monitoring: value of online information and impact of measurement uncertainty. IEEE Transactions on Reliability, 61(2), 410-425.
Hegedűs, C., & Kosztyán, Z. T. (2011). The consideration of measurement uncertainty in forecast and maintenance related decisions. Problems of Management in the 21st Century, 1, 46.
ISO. (2004). Condition Monitoring and Diagnostics of Machines Prognostics Part1: General Guidelines. Tech. Rep. ISO13381-1.
Goebel, K., Saxena, A., Daigle, M., Celaya, J., Roychoudhury, I., & Clements, S. (2012, July). Introduction to prognostics. In European PHM conference.
Saxena, A., & Goebel, K. (2012, September). Uncertainty representation and interpretation in model-based prognostics algorithms based on kalman filter estimation. In Annual Conference of the PHM Society (Vol. 4, No. 1).
Sankararaman, S., & Goebel, K. (2015). Uncertainty in prognostics and systems health management. International journal of prognostics and health management, 6(4).
Huang, Q., Gardoni, P., & Hurlebaus, S. (2012). A probabilistic damage detection approach using vibration-based nondestructive testing. Structural safety, 38, 11-21.
Zhao, Z., Zhang, Y., Liu, G., & Qiu, J. (2019). Sample selection of prognostics validation test based on multi-stage Wiener process. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 233(4), 605-614.
Sun, J., Zuo, H., & Pecht, M. G. (2011, May). Advances in sequential monte carlo methods for joint state and parameter estimation applied to prognostics. In 2011 Prognostics and System Health Managment Confernece (pp. 1-7). IEEE.
Tao, Y. J. (2012). A Fusion Prognostics Framework Based on FMMEA and Bayesian Theory. Advanced Materials Research, 569, 703-706.
Qin, Y., Cai, N., Gao, C., Zhang, Y., Cheng, Y., & Chen, X. (2022). Remaining useful life prediction using temporal deep degradation network for complex machinery with attention-based feature extraction. arXiv preprint arXiv:2202.10916.
Keele, S. (2007). Guidelines for performing systematic literature reviews in software engineering (Vol. 5). Technical report, ver. 2.3 ebse technical report. ebse.
Abdel-Jaber, H., & Glisic, B. (2016). Systematic method for the validation of long-term temperature measurements. Smart Materials and Structures, 25(12), 125025.
Bikmukhametov, T., Stanko, M., & Jäschke, J. (2018, October). Statistical analysis of effect of sensor degradation and heat transfer modeling on multiphase flowrate estimates from a virtual flow meter. In SPE Asia Pacific Oil and Gas Conference and Exhibition (p. D031S022R004). SPE.
Chen, S., Yang, N., Liu, Y., & Liu, X. (2021). Monitoring the Cumulative Process of Corrosion Defects at the Elbow of a Welded Pipe Using Magnetostrictive-Based Torsional Guided Waves. Journal of Failure Analysis and Prevention, 21(5), 1630-1643.
Bonhote, C., Chang, J. W., Judy, J. W., Kitamoto, Y., Krongelb, S., Romankiw, L. T., ... & Zangari, G. (2006). Magnetic Materials, Processes and Devices VII and Electrodeposition of Alloys Proceedings. Electrochemical Society Series.
Mehdizadeh, M., John, S., Wang, C. H., Ghorbani, K., & Rowe, W. S. (2012, September). Distinguishing the degradation of the interdigital piezoelectric fibre transducers from structural damage in multifunctional composites. In Smart Materials, Adaptive Structures and Intelligent Systems (Vol. 45097, pp. 869-877). American Society of Mechanical Engineers..
Li, H., Zhang, H., Thayil, S., Chang, A., Sang, X., & Ma, X. (2021). Enhanced aging and thermal shock performance of Mn 1.95− x Co 0.21 Ni 0.84 Sr x O 4 NTC ceramics. Journal of Advanced Ceramics, 10, 258-270.
Sakurai, H., Yamaguchi, T., Hiura, N., Yoneshita, K., Kimura, H., & Tamura, O. (2008). Oxidization characteristics of some standard platinum resistance thermometers. Japanese journal of applied physics, 47(10R), 8071.
Mandal, S., Sairam, N., Sridhar, S., & Swaminathan, P. (2017). Nuclear power plant sensor fault detection using singular value decomposition-based method. Sādhanā, 42, 1473-1480.
Khanam, Z., Aslam, B., Saha, S., Zhai, X., Ehsan, S., Stolkin, R., & McDonald-Maier, K. (2021). Gamma-induced image degradation analysis of robot vision sensor for autonomous inspection of nuclear sites. IEEE Sensors Journal, 22(18), 17378-17390.
Yin, X., Shi, G., Peng, S., Zhang, B., & Guo, H. (2022). A new model based on belief rule base and membership function (BRB-MF) for health state prediction in sensor. Advances in Mechanical Engineering, 14(1), 16878140221076459.
Kamstrup, N., & Hansen, L. B. (2003). Improved calibration of Landsat-5 TM applicable for high-latitude and dark areas. International Journal of Remote Sensing, 24(24), 5345-5365.
Kim, W., Cao, C., & Liang, S. (2013). Assessment of radiometric degradation of Fy-3A MERSI reflective solar bands using TOA reflectance of pseudoinvariant calibration sites. IEEE Geoscience and Remote Sensing Letters, 11(4), 793-797.
Shu, L., Wang, X., Yan, D., Fan, L., & Wu, W. (2019). The investigation of high-temperature SAW oxygen sensor based on ZnO films. Materials, 12(8), 1235.
Li, L., Peng, B., & Yu, H. (2017). Effects of coating layers on properties of LGS SAW resonators. In 2017 2nd International Seminar on Applied Physics, Optoelectronics and Photonics (APOP 2017).
Johnson, J. A., Kim, K., Zhang, S., Wu, D., & Jiang, X. (2014). High-temperature acoustic emission sensing tests using a Yttrium calcium oxyborate sensor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61(5), 805-814.
Quattrocchi, A., Alizzio, D., Martella, F., Lukaj, V., Villari, M., & Montanini, R. (2022). Effects of accelerated aging on the performance of low-cost ultrasonic sensors used for public lighting and mobility management in smart cities. Sensors, 22(4), 1560.
Park, B., Jung, Y., Ko, J. S., Park, J., & Cho, H. (2021). Self-restoring capacitive pressure sensor based on three-dimensional porous structure and shape memory polymer. Polymers, 13(5), 824.
Xu, Y., Meng, R., & Yang, Z. (2022). Research on micro-fault detection and multiple-fault isolation for gas sensor arrays based on serial principal component analysis. Electronics, 11(11), 1755.
Anil, Rb., (2020). Choice of Material for Sensor: Nanostructured Zinc Oxide. Nanomedicine & Nanotechnology Open Access.
Moriya, K., & Sako, T. (2001). Oxygen sensor monitoring a deterioration of a three-way catalyst in natural gas fueled engines. Sensors and Actuators B: Chemical, 73(2-3), 142-151.
Bai, L., Huang, L., Wang, Z., Ying, Q., Zheng, J., Shi, X., & Hu, J. (2020). Long-term field evaluation of low-cost particulate matter sensors in Nanjing. Aerosol and Air Quality Research, 20(2), 242-253.
Liu, Y., Diao, Y., Hu, G., Zhao, Y., Shi, Y., Wang, H., & Li, Z. (2023). Renewable antimony-based pH sensor. Journal of Electroanalytical Chemistry, 928, 117085.
Hu, X., Zhang, K., Liu, K., Lin, X., Dey, S., & Onori, S. (2020). Advanced fault diagnosis for lithium-ion battery systems: A review of fault mechanisms, fault features, and diagnosis procedures. IEEE Industrial Electronics Magazine, 14(3), 65-91.
Xia, Y., Xu, Y., & Gou, B. (2020). Current sensor fault diagnosis and fault‐tolerant control for single‐phase PWM rectifier based on a hybrid model‐based and data‐driven method. IET Power Electronics, 13(18), 4150-4157.
Lu, J., He, T., Liang, S., & Zhang, Y. (2021). An automatic radiometric cross-calibration method for wide-angle medium-resolution multispectral satellite sensor using landsat data. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-11.
Gao, A., & Liu, L. (2022, February). Performance evaluation method of closed-loop system considering sensor degradation. In Journal of Physics: Conference Series (Vol. 2187, No. 1, p. 012012). IOP Publishing.
Murthy, D. N. P. (1982). Modelling and Maintenance of Deteriorating Sensors for Filtering. In Theory and Application of Digital Control (pp. 209-213). Pergamon.
Zhang, X., Song, C., Zhao, J., & Deng, X. (2021). Domain adaptation mixture of Gaussian processes for online soft sensor modeling of multimode processes when sensor degradation occurs. IEEE Transactions on Industrial Informatics, 18(7), 4654-4664.
Hachem, H., Vu, H. C., & Fouladirad, M. (2021). Remaining useful lifetime prediction and noisy stochastic deterioration process considering sensor degradation.
Li, H., Gou, L., Li, H., & Liu, Z. (2023). Physics-guided neural network model for aeroengine control system sensor fault diagnosis under dynamic conditions. Aerospace, 10(7), 644.
Detsch, F., Otte, I., Appelhans, T., & Nauss, T. (2016). A comparative study of cross-product NDVI dynamics in the Kilimanjaro region—A matter of sensor, degradation calibration, and significance. Remote Sensing, 8(2), 159.
Michaels, J. E., Michaels, T. E., Mi, B., Cobb, A. C., & Stobbe, D. M. (2005, April). Self‐Calibrating Ultrasonic Methods for In‐Situ Monitoring of Fatigue Crack Progression. In AIP Conference Proceedings (Vol. 760, No. 1, pp. 1765-1772). American Institute of Physics.
Arosh, S., Nayak, S. K., & Duttagupta, S. P. (2015). Fitness function based sensor degradation estimation using H∞ filter. Procedia Computer Science, 58, 172-177.
Hua, D., Al-Khalifa, K. N., Hamouda, A. S., & Elsayed, E. A. (2013). Multi-sensor degradation data analysis. Chemical Engineering, 33.
Saha, B., Goebel, K., Poll, S., & Christophersen, J. (2007). A Bayesian Framework for Remaining Useful Life Estimation. In AAAI Fall Symposium: Artificial Intelligence for Prognostics (pp. 97-102).
Hossain, R. B., Kobayashi, K., & Alam, S. B. (2024). Sensor degradation in nuclear reactor pressure vessels: the overlooked factor in remaining useful life prediction. npj Materials Degradation, 8(1), 71.
Liu, Y., Wang, Z., Liu, C., Coombes, M., & Chen, W. H. (2022). A novel algorithm for quantized particle filtering with multiple degrading sensors: Degradation estimation and target tracking. IEEE Transactions on Industrial Informatics, 19(4), 5830-5838.
Liu, Q., Wang, Z., He, X., Ghinea, G., & Alsaadi, F. E. (2016). A resilient approach to distributed filter design for time-varying systems under stochastic nonlinearities and sensor degradation. IEEE Transactions on signal processing, 65(5), 1300-1309.
Yoo, M., Kim, T., Yoon, J. T., Kim, Y., Kim, S., & Youn, B. D. (2020). A resilience measure formulation that considers sensor faults. Reliability Engineering & System Safety, 199, 106393.
Jiang, L., Djurdjanovic, D., Ni, J., & Lee, J. (2006). Sensor degradation detection in linear systems. In Engineering Asset Management: Proceedings of the 1 st World Congress on Engineering Asset Management (WCEAM) 11–14 July 2006 (pp. 1252-1260). Springer London.
Chughtai, A. H., Tahir, M., & Uppal, M. (2022). Outlier-robust filtering for nonlinear systems with selective observations rejection. IEEE Sensors Journal, 22(7), 6887-6897.
Li, J., & Ying, Y. (2017). A method to improve the robustness of gas turbine gas-path fault diagnosis against sensor faults. IEEE Transactions on Reliability, 67(1), 3-12.
Loo, J. Y., Ding, Z. Y., Baskaran, V. M., Nurzaman, S. G., & Tan, C. P. (2022). Robust multimodal indirect sensing for soft robots via neural network-aided filter-based estimation. Soft Robotics, 9(3), 591-612.
Feng, J., Hajizadeh, I., Samadi, S., Sevil, M., Hobbs, N., Brandt, R., ... & Cinar, A. (2018). Hybrid online multi-sensor error detection and functional redundancy for artificial pancreas control systems. IFAC-PapersOnLine, 51(18), 138-143.
Guo, H., Li, J., Xue, X., & Zhang, M. (2024). High Precision Raman Distributed Fiber Sensing Using Residual Composite Dual-Convolutional Neural Network. Journal of Lightwave Technology, 42(10), 3918-3928.
Jordan, D. C., Deline, C., Kurtz, S. R., Kimball, G. M., & Anderson, M. (2017). Robust PV degradation methodology and application. IEEE Journal of photovoltaics, 8(2), 525-531.
Phan, T. T., Kim, S. K., Islam, J., Kim, M. J., & Lee, J. H. (2024). Degradation analysis of polymer electrolyte membrane water electrolyzer with different membrane thicknesses. International Journal of Hydrogen Energy, 49, 875-885.
Hickinbotham, S. J., & Austin, J. (1999). Detecting strain-gauge failures in stress-cycle count matrices. Key Engineering Materials, 167, 391-400.
Zhang, Y., Wang, Z., Ma, L., & Alsaadi, F. E. (2019). Annulus-event-based fault detection, isolation and estimation for multirate time-varying systems: applications to a three-tank system. Journal of Process Control, 75, 48-58.
Singh, R. K., & Shanmugam, P. (2018). A novel method for destriping of OCM-2 data and radiometric performance analysis for improved ocean color data products. Advances in Space Research, 61(11), 2801-2819.
Guo, J., Li, Z., & Li, M. (2019). A review on prognostics methods for engineering systems. IEEE Transactions on Reliability, 69(3), 1110-1129.
Golmakani, H. R. (2022). A novel approach for optimal replacement threshold and inspection scheme for condition based maintenance. Journal of Quality in Maintenance Engineering, 28(2), 277-295..
Kroculick, J. (2014). An end-to-end communications architecture for condition-based maintenance applications. In Open Architecture/Open Business Model Net-Centric Systems and Defense Transformation 2014 (Vol. 9096, pp. 41-46). SPIE.
de Meyer, J. N., Goosen, P., van Rensburg, J. F., du Plessis, J. N., & van Laar, J. H. (2021). Estimating the reliability of condition-based maintenance data using contextual machine-specific characteristics. South African Journal of Industrial Engineering, 32(3), 173-184.
Roehrich, G., & Raffaele, D. (2023). Fault Classification in Predictive Maintenance.
Assagaf, I., Sukandi, A., Abdillah, A. A., Arifin, S., & Ga, J. L. (2023). Machine predictive maintenance by using support vector machines. Recent in Engineering Science and Technology, 1(01), 31-35.
Qiu, Z., Shen, H., Yue, L., & Zheng, G. (2023). Cross-sensor remote sensing imagery super-resolution via an edge-guided attention-based network. ISPRS Journal of Photogrammetry and Remote Sensing, 199, 226-241.
Liu, Z., Blasch, E., Liao, M., Yang, C., Tsukada, K., & Meyendorf, N. (2023). Digital twin for predictive maintenance. NDE 4.0, Predictive Maintenance, Communication, and Energy Systems: The Digital Transformation of NDE, 12489, 27-37.
Li, M., Wang, Z., Fan, H., Zhang, Y., & Gao, P. (2023). Establishment of Web-Based Digital Twin System for Truss Gantry Crane. IEEE Access, 11, 146282-146296.
Dinh, D. H., Do, P., Hoang, V. T., Vo, N. T., & Bang, T. Q. (2024). A predictive maintenance policy for manufacturing systems considering degradation of health monitoring device. Reliability Engineering & System Safety, 248, 110177.
Wu, Q., & Yan, X. (2022). Interval-valued-based stacked attention autoencoder model for process monitoring and fault diagnosis of nonlinear uncertain systems. IEEE Transactions on Instrumentation and Measurement, 72, 1-10.
Zhang, W. H., Qin, J., Lu, D. G., Liu, M., & Faber, M. H. (2023). Quantifying the value of structural health monitoring information with measurement bias impacts in the framework of dynamic Bayesian Network. Mechanical Systems and Signal Processing, 187, 109916.
Wu, W., Cantero-Chinchilla, S., Prescott, D., Remenyte-Prescott, R., & Chiachío, M. (2024). A general approach to assessing SHM reliability considering sensor failures based on information theory. Reliability Engineering & System Safety, 250, 110267.
Carrino, S., Nicassio, F., & Scarselli, G. (2018). Nonlinearities associated with impaired sensors in a typical SHM experimental set-up. Electronics, 7(11), 303.
Yuan, T., Xu, W., Adjallah, K. H., Wang, H., Liu, L., & Xu, J. (2024). A Risk Evaluation Framework in System Control Subject to Sensor Degradation and Failure. Sensors, 24(5), 1550.
Carratù, M., Gallo, V., Iacono, S. D., Sommella, P., Ciani, L., & Patrizi, G. (2024). A new Health Index for RUL estimation of MEMS sensors using dimensionality reduction and Artificial Neural Networks. IEEE Transactions on Instrumentation and Measurement.
Su, W., Huang, T., Liu, F., & Wang, H. (2024). ASLAM-FD: a multi-sensor adaptive collaborative fusion SLAM framework based on degradation detection and deep reinforcement learning. Measurement Science and Technology, 35(12), 126312.
Zhang, X., Song, C., Zhao, J., Xu, Z., & Deng, X. (2022). Deep subdomain learning adaptation network: A sensor fault-tolerant soft sensor for industrial processes. IEEE Transactions on Neural Networks and Learning Systems.
Yang, S., Wen, L., Zhao, Z., Liu, B., Feng, J., Li, Y., & Guo, Q. (2024). Proton radiation damage and temperature response mechanism of CMOS image sensor for space high-precision metering. Radiation Effects and Defects in Solids, 1-14.
Cao, J., Niazi, M. U. B., Barreau, M., & Johansson, K. H. (2024, June). Sensor Fault Detection and Isolation in Autonomous Nonlinear Systems Using Neural Network-Based Observers. In 2024 European Control Conference (ECC) (pp. 7-12). IEEE.
Wu, B., & Liu, Q. (2024, May). TactileAR: Active Tactile Pattern Reconstruction. In 2024 IEEE International Conference on Robotics and Automation (ICRA) (pp. 16104-16110). IEEE.
Section
Technical Papers