

System reliability upper bound assessment for health-aware control of complex systems

phmsociety

Fourth European Conference of Prognostics and Health **Management Society** 3-6 July 2018, Utrecht, The Netherlands

Student Poster

Jean C. Salazar

Universitat Politècnica de Catalunya jean.salazar@upc.edu

Ramon Sarrate

Universitat Politècnica de Catalunya ramon.sarrate@upc.edu

Catalunya fatiha.nejjari@upc.edu

Fatiha Nejjari

Universitat Politècnica de

Research Objective

This work investigates the possibility of using an approximate computation of the system reliability into a HAC scheme. Specifically, an upper bound of the system reliability will be computed in order to overcome the computational problem of determining the exact system reliability of a complex system and its integration into a health-aware control strategy [1].

Expected Contributions

- A HAC scheme for complex systems based on the system reliability upper bound computation.
- A reduction of the system reliability computation cost by using the upper bound approximation.

Research Details

MPC scheme tuning methodology

- 1. Enumerate the minimal path sets P_i
- 2. Compute the structure function

$$\Phi_p(\mathbf{X}) = 1 - \prod_{j=1}^s \left(1 - \prod_{i \in \mathbf{P}_j} X_i \right)$$

3. Compute the system reliability upper bound

$$R_s^{up} = 1 - \prod_{j=1}^s \left(1 - \prod_{i \in \mathbf{P}_j} R_i \right)$$

4. Compute the components reliability

$$R_i(t) = e^{-\int_0^t \lambda_i(v)dv} \quad \lambda_i(t) = \lambda_i^0 \left(1 + \beta_i \int_0^t |u_i(v)|dv\right)$$

5. Compute the MPC weights based on a normalized component Birnbaum's measure

 $I_{B,i}^{up} = \frac{\partial R_s^{up}}{\partial R_i}$ $\boldsymbol{\rho}(k) = \hat{\boldsymbol{I}}_{\boldsymbol{B}}^{up}(k)$

Control scheme

State of Research

Even with the approximate approach, better system reliability results than in the nominal case are obtained.

Computation times

0.5060

0.6041

0.2329

0.2937

Next Steps

 These results encourage us to do further research in the domain of HAC for complex systems.

Birnbaum's measure

TOTAL

Investigate the use of a system reliability lower bound approximation to implement the HAC methodology.

Comparative study

Three case studies: exact approach ($oldsymbol{
ho}(k) = \hat{oldsymbol{I}}_{oldsymbol{B}}^{ex}(k)$), approximate approach ($oldsymbol{
ho}(k) = \hat{oldsymbol{I}}_{oldsymbol{B}}^{up}(k)$), nominal approach $(\rho = 1$, no reliability feedback).

Acknowledgments and References

This work has been funded by the Spanish Ministry of Science and Technology through the projects CICYT HARCRICS (ref. DPI2014-58104-R), CICYT SCAV (ref. DPI2017-88403-R), and by the DGR of Generalitat de Catalunya (SAC group Ref. 2017/SGR/482).

MPC weight evolutions

€ 0.5