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ABSTRACT 

The envelope spectrum analysis on vibration signals has 

been demonstrated for many years as a powerful technique 

to extract effective indicators (features) for condition 

monitoring of rolling element bearings under stationary 

operating conditions. As will be shown in this paper, 

applying these diagnostic features without a care to rotating 

machines subject to varying operating conditions may lead 

to unreliable bearing fault diagnostics. Hence, the 

applicability of the diagnostic features is rather limited. To 

extend the applicability of the diagnostic features, number 

of researchers/research institutes have developed new 

features/methods to deal with variation of operating 

conditions. However, the methods proposed in the literature 

mainly focuses on shaft speed variations. In practice, both 

shaft speed and load can vary in time simultaneously so 

there might be an interaction effect on the diagnostic 

features responses. Moreover, the bearing temperature, 

being an operational parameter, may also vary significantly 

in some applications. Because the temperature affects the 

film thickness formed between the rolling elements and the 

raceways of bearings, which in turn contributes to the 

damping and contact stiffness of bearings, it is believed that 

the bearing temperature might also play an important role on 

the diagnostic features responses. To improve our 

understanding on how the three operational parameters 

variations, namely speed, load and temperature, affect the 

diagnostic feature responses, a set of experiments has been 

designed to investigate the effects using an in-house 

developed test setup. The main effects of the operational 

parameters on the diagnostic features are presented and 

discussed in this paper. Qualitative models describing the 

relationships between the diagnostic features and the 

operational parameters are deduced and discussed in the 

paper. It is believed that these qualitative models can be 

useful to inspire us in the future to develop 

methods/strategies for bearing fault diagnostics under 

varying rotational speed, load and temperature. 

1. INTRODUCTION 

As one of the most critical elements in rotating machinery, 

the development of robust and automated bearing fault 

diagnostics methods using vibration signals has been 

continuously attracting the attention of many 

researchers/practitioners for decades. 

One of the most successful methods for bearing fault 

diagnostics is based on the envelope spectrum analysis 

(Randall & Antoni, 2011). Various approaches to extract 

bearing fault features automatically from the envelope 

spectra have been proposed and reported in the literature 

(Gelman et al., 2013; Ompusunggu et al., 2016; Barbini, et 

al., 2016). These published papers show that the bearing 

fault features extracted from the envelope spectra are very 

effective for distinguishing between a healthy bearing and a 

faulty bearing under the same operating conditions. 

Often, a main bottleneck for companies to fully exploit 

these innovative diagnostic methods, is the lack of 

confidence that these – more complex - methods allow to 

detect faults earlier or more accurately than state of practice 

solutions. Most often, the relevant data measured on real 

machines on which bearing faults are occurring, are not 

immediately available for evaluating the diagnostic 

methods. Furthermore, for machines operating in many 

different operating conditions (in particular speed, load and 

temperature), relevant data obtained from a broad range of 

operating conditions are needed in order to gain confidence 

by validating the methods for a given application. 

A number of works investigating the effects of different 

operating conditions (i.e. different speeds and loads) on 

features extracted from vibration signals of healthy and 
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faulty bearings have been published. Bartelmus and the co-

authors (Bartelmus, & Zimroz, 2009; Zimroz et al. , 2014) 

used a first order polynomial function to relate the extracted 

features with the operational parameter (to form a feature-

operating condition space). The polynomial coefficients are 

then used as new features for bearing fault diagnostics. In 

(Boskoski et al., 2010), features based on the wavelet 

transformation and the spectral kurtosis were extracted from 

vibration signals of a gearbox with healthy and faulty 

bearings under different speed and load conditions. The 

latter publication shows that the features are influenced by 

the operating conditions. 

To the authors’ knowledge, a profound understanding the 

effects of different operating conditions on envelope-based 

bearing fault features is still very limited. In this paper, the 

authors want to clarify the dependency of the enveloped-

based diagnostic feature value on different stationary 

operating conditions (speed, load and temperature), and 

furthermore evaluate whether this dependency further 

depends on fault severity. Understanding of these relations 

will allow us to select the most appropriate features for a 

particular application and limit the amount of data that is 

needed for validation. 

This paper is structured as follows. Section 2 presents an 

algorithm based on enhancing envelope spectrum to extract 

bearing fault feature for specific fault types. Section 3 

discusses the experimental methodology. Section 4 

discusses the analysis results. Section 5 concludes the paper 

and discusses some perspectives. 

2. BEARING FAULT FEATURE CALCULATION 

The bearing fault diagnostics algorithm proposed in this 

paper is summarized in the flowchart shown in Figure 1. 

Firstly, discrete components, which are typically dominant 

in vibration signals of rotating machinery, are removed from 

the raw signal by the phase-editing method described in 

(Barbini, et al., 2016). These discrete components are 

originated from gear-related signals and/or EMI-related 

signals. Secondly, the filtered signal containing bearing-

related information is then subsequently enhanced by the 

spectral subtraction (SS) and minimum entropy 

deconvolution (MED). The spectral subtraction aims at 

reducing random noise from measurements, while the MED 

filtering aims at enhancing the impulsiveness of the bearing-

related signal if present. Finally, bearing fault features are 

then calculated from the squared envelope spectrum (SES) 

of the enhanced signal (Randall & Antoni, 2011). 

The bearing fault feature 𝐹 is defined as the summation of 

the normalized SES magnitudes 𝑆𝐸𝑆̅̅ ̅̅ ̅  of the first five 

harmonics of a bearing fault frequency of interest 𝜈𝑏 . This 

definition can be formulated in the following equation: 

 𝐹 = ∑ 𝑆𝐸𝑆̅̅ ̅̅ ̅[𝑘𝜈𝑏]

5

𝑘=1

 (1) 

The normalised SES magnitude 𝑆𝐸𝑆̅̅ ̅̅ ̅  is expressed in the 

following equation: 

 𝑆𝐸𝑆̅̅ ̅̅ ̅[𝑘] = 𝑆𝐸𝑆[𝑘] 𝑆𝐸𝑆[0]⁄  (2) 

with 𝑆𝐸𝑆[0] denoting the magnitude of SES at frequency 

zero. 

 

Figure 1. Flowchart of the bearing fault features calculation 

3. EXPERIMENT 

3.1. Test setup 

Figure 2(a) and (b) show the overview and zoomed-in 

photograph of the bearing setup at Flanders Make. The 

bearing under test (1) is driven by a speed controlled motor. 

Its outer ring is supported by a hub. A radial force can be 

applied to the tested bearing via the hub by means of a 

hydrostatic pad (2) and pneumatic muscle (3) with a 

minimal parasitic torque. The frictional force reacting on the 

outer ring is measured by means of the force cell (4). This 

frictional force can be used further to estimate the energy 

consumption of the bearing. The oil is circulated through the 

bearing and its temperature can be varied by controlling the 

temperature in the oil tank (not shown in the figure). The 

bearing temperature is measured by means of temperature 

sensors (5). An accelerometer is placed in the load zone to 

measure the acceleration response of the bearing system. 

Note that the measuring direction of the accelerometer is in 

parallel with the applied radial load direction. 
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(a) 

 
(b) 

Figure 2. (a) The overview photograph of the bearing setup 

(b) the zoomed-in photograph showing the loading 

condition and the accelerometer position. 

3.2. Bearing under test 

The bearing type of 6205-C-TVH was selected in this 

study. The main criterion for the selection was because this 

bearing type is relatively easy to be disassembled and 

reassembled. This criterion is important for inducing faults 

on the bearings that will be discussed later on in the 

following paragraphs.  

The selected bearing type is a ball bearing having the 

specifications shown in Figure 3. Based on the geometrical 

data shown in the figure, the theoretical bearing fault 

frequencies, like (i) ball-pass frequency outer (BPFO), (ii) 

ball damage frequency (BDF) and (iii) ball-pass frequency 

inner (BPFI), can be calculated using the well-known 

kinematic equations. The equations can be found for 

example in (Randall & Antoni, 2011). The theoretical fault 

frequencies of the selected bearing at the shaft speed of 60 

rpm are shown in Table 1. 

 

Figure 3. The specifications of the selected bearing type 

(Source: FAG). 

 

Fault frequency Value [Hz] 
BPFO 3.59 

BDF 4.71 

BPFI 5.41 

Table 1. The theoretical fault frequencies of the 6205-C-

TVH bearing at the shaft speed of 60 rpm. 

Three bearings of the selected type were used in the 

experiment. One brand-new bearing was used to represent a 

healthy bearing. While the other two bearings were induced 

with realistic spall faults on the inner race with different 

sizes to represent faulty bearings at different severity levels. 

Figure 4 shows the optical images of the two bearings 

induced with realistic spall faults. 

 
(a) 

 
(b) 

Figure 4. Optical images taken from the two faulty ball 

bearings under tests: (a) with localized inner race fault, (b) 

with extended inner race fault. Note that both images have 

different magnification scales. 

The realistic spall faults were induced on the bearings by 

means of accelerated life tests (ALTs) performed on a 

custom-made test rig (not discussed in detailed here). The 

ALT on each bearing was realized according to the 
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procedure described in Figure 5. First of all, a brand-new 

bearing is disassembled. Later on, the inner race of the 

bearing is indented with a Rockwell C indenter (the applied 

load is chosen such that the indent diameter is about 240 

micron). After that, the bearing is reassembled and mounted 

to a dedicated test rig. The bearing is continuously run on 

the setup with a constant shaft speed of 1500 rpm and a 

constant radial load of 10 kN (~66% of dynamic rating 

load). Finally, the test is stopped until a pre-determined 

duration is attained. 

 

 

Figure 5. Procedure to create realistic spall faults in an 

accelerated way. 

3.3. Design of Experiment 

Three operational parameters, (1) shaft speed, (2) radial load 

and (3) bearing/oil temperature, that are typically time-

varying in many applications were selected in this study. 

The range of each operational parameter was considered as 

industrially relevant as possible. Table 2 lists out the 

absolute and relative range of each operational parameter. 

Operational 

parameter 

Nominal 

value 

Absolute 

variation 

Relative 

variation 

Shaft speed [rpm] 1050 600-1500 [-43%; +43%] 

Radial load [N] 1500 750-2250 [-50%; +50%]] 

Oil temperature [0C] 45 30-55 [-33%; +22%] 

Table 2. The range of the operational parameters considered 

in the experiment. 

A custom Design of Experiment (DoE) for three factors 

publicly made available by (Brezani, 2014) was used to 

determine the number of tests for each bearing and the 

combinations of three operational parameters in each test 

condition. In total, there were 41 conditions to be tested for 

each bearing. Note that the custom DoE is based on the 

Central Composite Design (CCD) (Montgomery, 1997), but 

with more levels for each factor. Figure 6 visualizes all the 

41 test conditions distributed in the cubic space to be tested 

in each bearing. 

 

Figure 6. Visualization of the 41 operating conditions to be 

tested for each bearing. Note that each node denotes a test 

condition. 

3.4. Test Procedure 

After a bearing of interest (either healthy bearing or faulty 

bearing) is properly mounted on the setup shown in Figure 

2, a test condition specified in Figure 6 was imposed by 

controlling the shaft speed, radial load and bearing 

temperature to the desired values. Once the steady state at 

each specified condition is achieved (i.e. by waiting for the 

setup to have run for about 1–2 minutes), the accelerometer 

signal is recorded for a duration of 10 seconds using a 

commercial data acquisition system. The digital data are 

then transmitted and stored into a PC for further analysis as 

will be discussed in the next section. This procedure is 

repeated for each bearing until all the specified test 

conditions are completed. 

4. RESULTS AND DISCUSSION 

The vibration signals acquired from all test conditions have 

been processed to compute the BPFI feature using the 

algorithm described in Section 2. As a benchmark, some 

traditional statistical features like (i) RMS, (ii) kurtosis, (iii) 

crest factor, (iv) peak-value and (v) peak-to-peak, have also 

been extracted from the raw vibration signals. 

The F-statistics was used in this study for comparing the 

diagnostic performance of the BPFI feature with the 

traditional statistical features. This metric is defined as the 

ratio between between-group variability and within-group 
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variability Mathematically speaking, the F-statistics is 

formulated as follows (Lomax, 2007): 

 F − statistics =
between − group variability

within − group variability
 (3) 

where the between-group variability Var𝑏𝑔 is expressed as: 

 Var𝑏𝑔 =
1

𝐾 − 1
∑ 𝑛𝑖(�̅�𝑖 − �̅�)2

𝐾

𝑖=1

 (4) 

with �̅�𝑖  denoting the sample mean of the i-th group, 𝑛𝑖 

denoting the number of observations in the i-th group, �̅� 

denoting the overall mean of the data, and 𝐾 denoting the 

number of groups. Meanwhile, the within-group variability 

Var𝑤𝑔 is expressed as: 

 Var𝑤𝑔 =
1

𝑁 − 𝐾
∑ ∑ 𝑛𝑖(𝑌𝑖𝑗 − �̅�𝑖)

2

𝑛𝑖

𝑗=1

𝐾

𝑖=1

 (5) 

with 𝑌𝑖𝑗  denoting the j-th observation in the i-th group out of 

𝐾 groups and 𝑁 denoting the overall sample size. 

Intuitively, the F-statistics expressed in the equation above 

can be seen as a metric describing a discriminating power 

(separation degree) between groups as illustrated in Figure 

7. The higher the F-statistics value, the better the separation 

between groups will be. 

 

Figure 7. Graphical representation of the probability 

distribution functions (pdf) of two groups with low and high 

F-statistics 

Figure 8 and Figure 9 show the boxplots labelled with the F-

statistics of the BPFI feature and the crest factor feature 

from all test conditions, respectively. The boxplots of the 

other statistical features are not shown here because their F-

statistics are lower than that of the crest factor as seen in 

Table 3. Hence, based on the calculated F-statistics shown 

in the figures and the table one may conclude that the BPFI 

feature outperforms the traditional statistical features (the F-

statistics of the BPFI feature is the highest).  

 

Figure 8. Boxplot of the BPFI feature extracted from all the 

test conditions  

 

Figure 9. Boxplot of the crest factor (CF) feature extracted 

from all the test conditions. 

Notably, the global trends of the BPFI and crest factor 

feature with respect to the fault size are quite similar. Both 

the BPFI and crest factor feature values get higher when the 

localized fault occurs. Furthermore, when the fault 

progresses, both feature values decrease. A possible 

explanation for this observation is that localized faults 

occurring in bearing systems generates high-level impulsive 

excitations compared to extended faults (Randall & Antoni, 

2011). Since the BPFI feature is a quantity expressing the 

impulsiveness degree for a specific inner race fault, while 

the crest factor feature is a quantity expressing the overall 

impulsiveness degree, as a result, the values of both features 

for the localized fault are higher compared to the healthy 

state and they get lower for the extended fault. 

Traditional statistical feature F-statistics 

RMS 3.99 

Kurtosis 6.16 

Peak value 9.15 

Peak-to-peak 9.64 

Table 3. The F-statistics value of the other traditional 

statistical features. 
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Although the F-statistics for both the BPFI and crest factor 

features are relatively high, however one may still observe 

some overlapping between groups (i.e. bearing with 

different degradation level) in the boxplots. This 

overlapping may lead to false negative/false positive that 

will in turns affect a wrong diagnostic decision. As will be 

shown in the subsequent paragraphs, the overlapping is 

mainly caused by the variations in the operating conditions. 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Visualization of the main effects of the three operational parameters, namely shaft speed, radial load and oil 

temperature, on the BPFI feature extracted from vibration signals measured in (a) healthy bearing, (b) bearing with localized 

inner race fault, (c) bearing with severe extended inner race fault. 
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(a) 

 
(b) 

 

 
(c) 

Figure 11. Visualization of the main effects of the three operational parameters, namely shaft speed, radial load and oil 

temperature, on the Crest factor feature extracted from vibration signals measured in (a) healthy bearing, (b) bearing with 

localized inner race fault, (c) bearing with severe extended inner race fault. 

 

Figure 10 and Figure 11 show the effects of the shaft speed, 

radial load and bearing temperature variations on the BPFI 

and crest factor features, respectively. Both figures clearly 

show strong dependencies of the two features on the 

operating conditions. Moreover, the figures also show that 

there is a significant dependency of the feature values on the 

fault severity, which can be observed on the global trends 

(indicated by the dashed lines) between the feature values 

and the operating parameter. The overall trends of the 

features values in function of the operating conditions can 

be qualitatively summarized in Table 4 and Table 5. Note 
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that the sign (+) denotes a positive slope, while the sign (-) 

denotes a negative slope. 

Severity level Shaft speed Load Temperature 

Healthy (+) (+) (+) 

Localized fault (+) (-) (-) 

Extended fault (+) (+) (+) 

Table 4. The overall dependencies of the BPFI feature on 

the operating parameters. 

Severity level Shaft speed Load Temperature 

Healthy (-) (+) (+) 

Localized fault (-) (-) (-) 

Extended fault (+) (+) (+) 

Table 5. The overall dependencies of the crest factor feature 

on the operating parameters. 

It is worth of mentioning here that the overall trends of both 

the BPFI and crest factor feature in function of bearing 

temperature are quite similar for different fault severity 

level. For localized fault, the BPFI and crest factor feature 

values decrease with increasing temperature. On the 

contrary, both feature values increase with increasing 

temperature for extended fault. This indicates that the fault 

geometry might affect the formation of the oil film thickness 

between the rolling element and the inner race that will 

eventually influence the bearing vibration response. 

Both the BPFI and crest factor feature values decrease with 

increasing load for the localized fault. In contrast, the two 

feature values seem to increase with increasing load for the 

extended fault. It is not clear yet to the authors a possible 

explanation of this observation. 

Besides the fault size, the impulsive excitation force caused 

by a defect in bearings is also dependent on the shaft speed 

(Choudhury & Tandon, 2005). At low shaft speeds, the 

resulting impulsive excitation force is small and is severely 

attenuated through the propagation from the excitation 

source (fault location) and the measuring points 

(accelerometer locations). In contrast, the resulting 

impulsive excitation at high speeds is large. As expected 

from this reasoning, the BPFI feature value increases with 

the increasing shaft speed for the three bearing conditions. 

However, the increasing trend in function of the shaft speed 

is not consistently observed on the crest factor feature. 

5. CONCLUSION & PERSPECTIVES 

The robustness of the envelope based feature for bearing 

fault detection against operating condition variations has 

been evaluated. As a benchmark, the robustness of some 

statistical features (RMS, kurtosis, peak-to-peak, peak 

value, and crest factor) against operating condition 

variations has also been evaluated. The performance of all 

the considered features was evaluated quantitatively by 

means of the F-statistics metric. It turns out that the crest 

factor feature is the best feature out of the traditional 

statistical features for bearing fault detection. Nonetheless, 

the envelope based feature outperforms the crest factor 

feature in terms of a fault detection purposes. 

Some overlapping between feature values extracted from 

different bearing states are still observed if the operating 

condition is not taken into account in the decision. In fact, 

this overlapping needs to be avoided because it leads to 

false negative/false positives. As already proposed by some 

authors in the literature (Bartelmus, & Zimroz, 2009; 

Zimroz et al., 2014), a relationship between a feature and 

operational parameters can be used to define new features or 

to normalize features for fault detection that are more robust 

against operating condition variations. 

The main effects of operational parameters variations on the 

envelope based feature and the crest factor feature have 

been experimentally analyzed. It is shown that the 

operational parameters (shaft speed, radial load, bearing 

temperature) significantly influence both the envelope-based 

feature and the statistical features. The relationships 

between the feature values extracted from three different 

bearing states and the operational parameters (shaft speed, 

radial load, and bearing temperature) have been individually 

established. As discussed earlier, these relationships can be 

used to compute new features or to normalize the features 

such that they become robust (i.e. independent of operating 

conditions) for fault detection purposes. 

However, modeling the relationships between the features 

and the operational parameters to define new features as 

discussed above seems to be unreliable approach for fault 

severity assessment and prognostics purposes. The 

reasoning of this conclusion is that the fault severity level 

also affects the relationships between the features and the 

operational parameters. This implies that unique models 

relating the features and the operational parameters cannot 

be built during the lifetime of bearings. Some future works 

that can be addressed to tackle the limitation of the 

presented features for bearing fault prognostics are as 

follows. The first possible approach is to develop a strategy 

using the presented features on how to define operating 

condition range in which the effects of operational 

parameters on the features are minimal. In this context, 

significant amount of data are needed, where one can 

benefit from fleet-data. The second possible approach that 

requires more fundamental research and significant effort is 

to define new bearing fault features to be extracted from 

vibration signals that are independent of operating condition 

variations. 
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