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ABSTRACT 

This contribution presents a data-based model that exploits 

the power consumed by point engines during blades 

movement of railway switches to detect relevant anomalies 

in switch behavior. The model incorporates local air 

temperature at the time of the measurement to account for 

the significant influence it has on normal switch behavior. 

The anomaly detection capability of the model is validated 

against alerts triggered by the state-of-the-art monitoring 

system POSS®, which is based on switch-specific and 

manually selected reference curves. The data-based model 

leads to less in number and more reliable alerts in 

comparison to the current version of POSS®. Especially 

false alerts caused by temperature effects are significantly 

reduced. Furthermore, the high sensitivity of the model 

proves to be capable of detecting emerging switch failures at 

an early stage of development. The detection capabilities of 

switch condition (nowcast) and identification of emerging 

failures at an early stage (required for failure forecast) 

proves that the model is useful for traffic interference 

prevention, condition-based predictive maintenance and 

switch health enhancement.  

1. INTRODUCTION 

Railway switches are crucial for guiding trains to tracks or 

platforms and allow them to take alternative routes in case 

of disruption. Switches are costly assets since the 

components and functions require frequent inspection, 

maintenance and renewal. The switch moving parts are 

subject to high deterioration and prone to malfunctioning, 

posing, in the worst case, a safety hazard if no action is 

taken. Nowadays online condition monitoring, inspection 

vehicles, standardization of both inspection and 

maintenance actions, as well as data-based models are tools 

supporting decision making for optimizing preventive and 

condition-based maintenance plans. These efforts shall lead 

to asset life extension, cost reduction and an overall 

improvement in the quality of railway transportation.  

Automated switch status forecasting systems based on 

continuous switch current consumption (or other 

comparable measurements such as from a force sensor at the 

switch-blades) are not yet seen in 24/7 operation. (Camci et 

al., 2016) provides a comprehensive overview of existing 

efforts at research institutions and companies to develop 

forecasting models. The main challenge that such systems 

pose is the numerous failure types, which can occur 

simultaneously, and that are inherent to railway switches as 

complex electro-mechanical systems. Physical models show 

poor performance even under well controlled laboratory 

conditions with simulated failure development (Camci et al., 

2016). Recent efforts have focused on developing data-  

driven models for monitoring the function of the switch and 

diagnosing failures e. g. by (Eker et al., 2010; Letot et al., 

2015). (Böhm, 2017) applied different supervised 

classification techniques to predict the remaining useful 

time of switches. The main advantage of data-driven 

methods is that models with good apparent prediction 

performance can be derived from example data sets. The 

main remaining challenges are over-fitting, the creation of 

complete (containing all relevant switch failures types) 

training data sets with correct labelling, and the 

generalization of derived models for a large amount of 

switches. 
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Strukton Rail (SR) uses POSS®
1
, a state-of-the-art system 

to monitor critical assets such as switch engines. Over 

10,000 assets worldwide, most of them switches, are 

equipped with sensors and monitored by this system. 

POSS® measures the engine current (proportional to the 

engine power consumption (Stoll and Bollrath, 2002)) 

during the switch blades movement (see Figure 1). Switch 

malfunctioning, mostly of mechanical nature, can lead to 

irregularities in the power consumed during this movement. 

When these irregularities exceed certain thresholds defined 

by maintenance experts from manually selected reference 

curves
2
, POSS® alerts are triggered (Dutschk et al., 2017). 

These alerts can indicate that the current state of the switch 

is different than expected (based on reference curves and 

thresholds derived from them). Moreover, weather 

conditions such as temperature and precipitation also play a 

role on the typical shape and the characteristics of such 

current measurements. Reference curves in POSS® are 

updated about every half a year in order to reduce the 

influence of seasonal temperature variation on switch 

condition monitoring and to prevent this from causing false 

alerts. Even for maintenance experts it is challenging to 

identify the source of detected irregularities or differences 

with respect to a selected reference curve, and to decide 

whether these are of concern or not (e.g. when a threshold is 

set too low). In case an alert is triggered in POSS®, 

maintenance experts assess weather conditions, switch 

history, threshold levels and the corresponding measured 

current, and decide whether the alarm is true or false as well 

as on the urgency of inspection.  

Frequent manual selection of up-to-date reference curves for 

every switch and every direction of blade movement, in 

addition to the assessment of every POSS® alert, represents 

a significant work load for the condition monitoring 

operators. The selection of relatively large thresholds avoids 

false alerts but likewise hampers the early detection of 

degrading switch condition and emerging switch failures. 

The objective of the data-based model for anomaly 

detection presented here is to significantly reduce the work 

load by disposing the need for manual reference curve 

selection, while reducing the amount of false alerts and 

enhancing early detection, which is necessary for failure 

forecasting and to prevent complete switch failure. 

In the following section the input data to the model, as well 

as POSS® output data used for validating the model are 

described. In section 3 the data-based model is discussed 

(see also (Böhm et al., 2016)). In section 4 the model output 

                                                           
1
 In this paper the most common version of POSS® is used as reference. 

During 2018 a new POSS® release will become available with improved 

functionality to manage thresholds. 
2 For a few switches the summer/winter reference curve is automatically 
selected depending if the temperature at the relay house at the time a 

current curve is acquired is larger/smaller than a manually selected critical 

temperature. This was the case for switch 2604, which had a critical 
temperature of 5°C. 

is validated against POSS® alerts (in what follows called 

just alerts) additionally assessed by a maintenance expert 

from seven switches and found to provide temperature-

robust anomaly detection. It is also shown that the model is 

capable of detecting evolving failures, which can ultimately 

lead to failure forecast. In section 5 the validation results as 

well as future efforts to develop automated methods for 

providing more reliable diagnostic and prognostic 

information to support condition-based and predictive 

maintenance are discussed. 

2. DATA SET 

The data considered in this paper consists of current curves 

measured with a frequency of 50 Hz at seven switches for 

blades movement in direction 1 only. The current curves 

were acquired between January 2012 and February 2017. 

The air temperature at the relay house (located between 30 

m and 2.5 km away from the switches) at the time each 

current curve was measured is available. Table 1 contains an 

overview of the available data for each switch identified 

with an ID-number.   

In its output, POSS® provides a status description for each 

measured current curve. The large majority of curves have 

an “okay” status. However when one or more of the set 

thresholds based on the reference curve are exceeded the 

status is different than “okay” (i.e. an alert is triggered). In 

the data considered here, all alerts belong to the most 

common four alert types generated in POSS®. Two are 

based on the total power consumed by the engine and can 

lead to “power too high” or “power too low” status. Another 

type is related to the total duration of the current curves and 

leads to “time too long” or “time too short” type of alert. 

Some curves may lead to both “time too long” and “power 

too high” alerts, since these quantities are correlated. 

However the status only provides one alert type. When the 

measured current reaches high values and exceeds 

corresponding thresholds a “current too high” alert is 

triggered.  Table 1 shows for each switch the number of 

total alerts triggered in the considered time period, as well 

as the number of alerts for which the reference curve 

corresponding temperature is available. 

A SR maintenance expert assessed each single alert a-

posteriori. The goal of this assessment was to categorize all 

alerts into false, true or undefined according to domain 

knowledge. For this assessment the maintenance expert 

considered the following: the validity of the reference curve 

(i.e. the temperature difference with respect to the curve that 

triggered the alert), the set threshold and by how much it 

was exceeded, the current curve shape, and the switch 

history.  Alerts classified as undefined correspond to cases 

in which e.g. a current curve presented a small deviation 

from the expected shape but the current curve of the next 

switchblades movement looked completely normal. 
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Switch 

ID 

Total 

no. of 

c. c.  

No. of 

c. c. in 

Tr. 

set 

Tr. set 
length 

in 

months 

No. of 

alerts 

with 

available 

τref 

(alerts in 

total) 

Distance 

to relay 

house in 

meters 

2604 5543 1041 12 42 (42) 1015 

2606 14326 1766 12 12 (76) 910 

3015 2535 444 12 38 (38) 2410 

3069 9617 1810 12 24 (24) 282 

3076 10653 1801 12 73 (189) 175 

3083 10213 2239 12 125 (125) 30 

3090 4968 729 9 39 (39) 770 

Table 1. Overview of data set considered in the analysis. 

Training set abbreviated as Tr. set, current curves as c. c. 

 

Furthermore historical data sets of all reported failures (or 

technical malfunctions) are available. This data set contains 

time and date when failures were reported by the network 

operator as well as when the switch was made available 

again. It also contains additional remarks provided by the 

maintenance team on site. These remarks are not stored in a 

systematic way and descriptions may strongly vary from 

operator to operator. The data set of reported failures can be 

incomplete due to e.g. malfunctions that were fixed without 

reporting or were only temporary. It is not unusual that 

malfunctions are not reported by the railway operators if the 

switch moves finally to a safe end position after several 

retries. Failures are represented in Figure 2a, Figure 3a and 

Figure 6 by vertical dashed bars; their duration is 

proportional to the bar thickness (which is only noticeable in 

Figure 6).  

Planned maintenance activities related to each maintenance 

campaign, as well as planned execution dates (actual 

execution of maintenance might differ from the planned 

timetable) are registered in a separate data set for each 

switch. Details of the maintenance performed are not 

included in this data set, i.e. it is not possible to know 

exactly which switch parts were subjected to which specific 

actions. The duration of maintenance activities is unknown. 

For the sake of visualization it is assumed here that 

maintenance actions spanned 24 hours and they are included 

as vertical solid bars in Figure 6 (also in Figure 2a and 

Figure 3a but given the wide time range shown in them 

these lines can barely be seen). Note that failures and 

maintenance information are used as additional information 

for interpreting the model results (as in Figure 6) and not 

included in the data-based model.  

3. DATA-BASED MODEL 

Supervised learning strategies require high quality training 

data sets for their success. As described in section 2, such 

data sets are not (yet) available for switch condition since 

relevant influences are unknown (e.g. influence of a specific 

type of maintenance action, weather variables, etc.) and 

corresponding data is missing or stored in a non-systematic 

way. Therefore a data-driven approach based on current 

curves and air temperature simultaneously measured is 

presented in this paper. One assumption is made; that the 

training set used to build the model represents switch 

normal behavior. This approach is work in progress and the 

results preliminary.  

Every switch behaves in a unique way as the switchblades 

are unlocked, then moved from the start to the end position, 

and finally locked in their set end position (see Figure 1). 

These phases of the switch movement leave a typical (but 

not identical among different switches) trace on the 

measured current at the engine. Therefore the model is 

necessarily switch and direction-specific.  

3.1. Selection of training set 

First the model is trained with features extracted from a 

selection of current curves (so-called training set) that are 

assumed to predominantly represent normal switch 

behavior. Then the trained model is applied to the same 

features extracted from other current curves (from the same 

switch and in the same direction).  

 
Figure 1. Current measured at the engine during all phases 

(each separated by a vertical dashed line: current inrush, 

blades unlock, blades movement and blades lock in end 

position) involved in the switchblades movement. 

 

The selection of the training set is a non-trivial aspect of the 

model development, as it defines the model output and is 

the base for detecting abnormal switch behavior. Different 

approaches for selecting samples representing normal 

operation are possible. The method applied here consists of 

identifying beforehand a timeframe in which it is assumed 

that the switch predominantly functioned normally (e.g. the 

time between a pair of consecutive reported failures). This is 

possible since information on historical reported failures is 

available. Current curves measured in this timeframe are 

analyzed in order to remove the ones that are statistical 

outliers from the training set based on two criteria: total 
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duration of switch blades movement and area under the 

curve. The number of current curves in the training set 

depends on switch usage and the time-window chosen for 

training (typically one year), see Table 1.  

3.2. Feature extraction 

Features are derived from each current curve and defined 

such that they represent the switch behavior. Feature 

selection derives from data science, asset domain 

knowledge and explorative data analysis (see (Dutschk et 

al., 2017)). Here we consider a subset of the features 

identified in (Dutschk et al., 2017): 1) area under the curve, 

2) maximum, 3) median, 4) kurtosis, 5) skewness, 6) 

duration, 7) mean value during blades movement, and 8) 

standard deviation during blades movement.  

The model input consists of features from training set 

curves, including the temperature measured at the relay 

house at the time current curves were acquired. The switch 

behavior temperature dependence is reflected in the 

features. For example the area under the curve (or total 

power consumed by the engine) and the total duration of the 

curve systematically decrease with increasing temperature, 

up to a certain limit (Böhm and Doegen, 2010). Each feature 

is scaled to have zero mean and standard deviation equal to 

one; see (Kuhn and Johnson, 2016). This transformation is 

separately applied to feature values from current curves, 

which were measured at a temperature within the same one 

Kelvin bin. With this scaling the temperature dependence is 

removed from the features that are the input to the model. In 

what follows we refer to the scaled features as features. 

3.3. Model training 

The model is built by taking the training set features as 

input and applying the Principal Component Analysis 

(PCA) to them (Jackson and Mudholkar, 1979; Sotiris and 

Pecht, 2017). Because PCA is sensitive to feature ranges it 

requires their previous normalization or scaling. PCA 

consists of finding a basis defined by orthonormal vectors 

(i.e. Principal Components or PCs) that minimize 

redundancy among the training set features, while 

maximizing their variance. The dimension of this new basis 

is determined by the amount of variance the PCs are chosen 

to retain; in our case the retained variance is 90% and the 

dimension of the basis is between 2 and 4, depending on the 

switch. The PCs form the model subspace. The orthonormal 

vectors that are not retained form the residuals subspace. At 

this point the model is said to be trained or built. Now, a 

point in the features space (i.e. features extracted from a 

single current curve) is projected into both the model and 

the residual subspaces. Its squared Euclidean distance to the 

origin in the model subspace projection is the Hotelling’s 

parameter (T2), and the Euclidean distance to the origin in 

the residual subspace projection equals the Square 

Prediction Error (SPE). Therefore for each current curve the 

model output consists of two parameters ( T2  
and SPE) 

(Böhm et al., 2016).  

3.4. Range of normal switch behavior 

For each of the model output parameters we obtain the 90% 

quantile (defines the probability that the parameter takes a 

value less than or equal to 90%) of the training data set 

distribution. The 90% quantile q0.9(T
2)  is defined with 

relatively high accuracy given the relatively high density of 

data points in the probability distribution. This value is then 

scaled by 1.2 and used to define the range of normal switch 

behavior: [0, 1.2 ∙ q0.9(T
2) ]. The factor 1.2 is somewhat 

arbitrary and represents a first approach to define a 

threshold for anomaly detection based on a statistical 

quantity defined with relatively high accuracy (90% 

quantile). Note that choosing alternatively e.g. the 99% 

quantile is less accurate given the low density of points in 

the right tail of the T2 distribution. The T2 value from the i-

th current curve Ti
2  that is not part of the training set is 

evaluated and identified to represent significant abnormal 

switch behavior if it fulfills: 

Ti
2 ≫ T2

thre ≔ 1.2 ∙ q0.9(T
2)  

Due to the somewhat arbitrary definition of the upper 

threshold T2
thre , Ti

2  values close to it cannot be strictly 

associated to normal or abnormal switch behavior. 

Therefore Ti
2 values slightly larger than T2

thre are referred 

here to as mild anomalies. A similar situation is encountered 

by maintenance experts when they need to decide whether a 

current curve that triggered an alert is mildly or significantly 

different from expected normal switch behavior. In the 

former case they will probably not react to it, while in the 

latter they will. 

The lower threshold of T2 related to normal switch behavior 

equals zero since the features are normalized and centered 

(previous to applying the PCA), and thus distributed around 

zero. In consequence, small values of T2  and SPE 

correspond to current curves with feature values close to the 

feature mean values as obtained from the training set. These 

mean values represent normal switch behavior by definition 

and selection of the training set. We note that the training 

set features (after the PCA transformation) are not 

necessarily standard distributed. If, however, that was the 

case the T2 parameter would be chi-squared distributed with 

a degree of freedom equal to the number of PCs (Sotiris and 

Pecht, 2017). 

So far it is assumed that normal behavior of a switch does 

not change in time. That is, for most switches the model is 

trained with current curves measured in one year and 

applied to current curves measured in four other years. 

However this assumption might be violated when e.g. a 

high-impact maintenance action is performed on the switch, 

modifying the switch behavior under normal operation and 

thus the range of normal behavior (T2
thre is based on the 
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training set distribution). The topic of the constancy of 

normal switch behavior is an important aspect of the method 

proposed here but is out of scope in this paper.  

4. RESULTS 

Figure 2a and Figure 3a show each the Hotelling’s 

parameter (in log scale since T2 values cover up to 5 orders 

of magnitude) over time for two different switches. Data 

points larger than T2
thre of the training set are outside the 

range of assumed normal behavior, thus called 

mild/significant anomalies here. Switch 3083 (Figure 2) 

experienced many more switchblades movements than 

switch 2604 (Figure 3). The training set, spanning a whole 

year in both cases, consists of 2239 and 1041 current curves 

(see Table 1), respectively.   

In Figure 2a most anomalies detected by the model coincide 

with two types of alerts. On the other hand, only a few 

“power too high” alerts are not strictly detected as 

anomalies but are close to T2
thre . Some alerts and 

anomalies occurred briefly before a failure was reported, 

likely indicating the compromised functionality of the 

switch. In spite of the fact that the seasonal temperature 

variation (see Figure 2b) is compensated through the scaled 

features (see section 3), T2 values tend to be slightly smaller 

in the winters than in the summers, except for years with 

reported failures in the winter (2015 and 2017). This 

indicates that the temperature influence on the features is 

not fully accounted for in the normalization, which is not 

surprising given that the air temperature is only a proxy of 

the asset actual temperature. 

 

In Figure 3a all alerts, which incurred in the cold months 

(see Figure 3b showing the temperature at the time of blades 

movements), are within the range of normal behavior. In 

fact, none of these alerts seem to have been crucial: there is 

no failure (indicated by vertical dashed-lines) reported after 

they were triggered, except for one in 2015 (a loose 

clamp/bolt between the blade and the stock rail was reported 

and fixed, eventually preventing the complete failure) and 

its shape was identified as normal by experienced POSS® 

operators (see Figure 3c and  

Figure 4). T2 values for this switch do not show a particular 

correlation with cold/warm months.  

Figure 2c and Figure 3c present the difference between 

log(T2 ) values of alerts and log(T2
thre ). This quantity is 

plotted as a function of the difference between the 

temperature when the alert-triggering curve was measured 

(τ) and the one of the reference curve associated to that alert 

(τref). Thus, according to the model and the detection rule 

chosen (see section 3.4), small/large positive log⁡(T2⁡/⁡Tthre
2 ) 

values correspond to mild/significant anomalies and 

negative (enough) ones to normal switch behavior.  

Adding on to Figure 2c and Figure 3c, Figure 5 shows all 

alerts from seven switches (see Table 1) provided the 

corresponding τref is available (for some years and switches 

it is not). It is found that temperatures at the time of switch 

movements were up to 20 Kelvin larger or smaller than τref 

used in POSS® to detect alerts. 

a) 

 

b) 

 

c) 

 

Figure 2. Switch 3083 in direction 1. POSS® alerts: “time 

too long” (triangles) and “power too high” (circles). a) 

Logarithm of T
2
 as a function of time. Current curves in 

training set and outside it: black and grey points, 

respectively. Horizontal (red) solid line: T2
thre. Dashed 

vertical bars: reported failures. Solid vertical bars (barely 

noticeable): maintenance. b) Temperature at the time of 

current measurement as a function of time. c) Logarithm of 

T
2 
from alerts divided by T2

thre as a function of the 

difference between temperature at the time of movement (τ) 

and of reference curve (τref). Maintenance expert assessment 
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of alerts: true (solid symbols), undefined (open symbols), 

false (symbols with cross or dot inside). 

 

The maintenance expert found that 75% of 346 analyzed 

alerts were true, 23% were false and 2% undefined. The 

assessment results (see Table 2) are displayed through 

crossed or dotted, solid, and open symbols for false, true 

and undefined alerts, respectively (see Figure 2c, Figure 3c 

and Figure 5). The results for switches 3083 and 2604 

exemplify two extreme cases. In the first case 121 out of 

125 alerts detected by POSS® (all classified as true alerts 

by the expert) coincide with anomalies detected by the 

model. In the second case none of the 42 alerts (all 

classified as false by the expert) are detected as anomalies, 

see Figure 4.  

Switch 2604 provides evidence that the state-of-the-art 

system raises false alerts if a current curve is measured at a 

temperature that differs significantly from τref. The ultimate 

goal is to develop a reliable monitoring system that does not 

depend on manual selection and assessment due to the 

significant workload this represents, and which raises only 

true alerts automatically. To gain insight into the model 

performance to detect current curves that triggered POSS® 

alerts, we consider the model results and argue about the 

validity of the alerts in view of the difference in temperature 

at which they were triggered with respect to τref.  

As previously mentioned, current curves are influenced by 

temperature: the total power consumed by the engine, the 

maximal current value during switchblades movement and 

the total current curve duration, are quantities that decrease 

with increasing temperature until they reach their 

temperature-independent nominal value. For current curves 

under normal operation measured at a temperature τ < τref, 

these quantities are necessarily larger than the 

corresponding values of the reference curve. Thus under 

such circumstances, even if the switch is behaving normally, 

the thresholds (derived from the reference curve) can be 

exceeded, triggering “power too high”, “current too high” 

and “time too long” false alerts in POSS®. In this context, a 

negative enough τ - τref can lead to alerts purely caused by a 

non-valid reference curve. However not all “power too 

high”, “current too high” and “time too long” alerts with τ - 

τref < 0 are necessarily false; they too can point to 

compromised switch functionality, as confirmed by the 

expert findings (see left quarters in Figure 5).  

To quantitatively differentiate between a true and a false 

“power too high”, “current too high” or “time too long” alert 

with τ - τref < 0, one would have to consider by how much 

the threshold set in POSS® is exceeded. Moreover 

according to maintenance experts, the threshold value for a 

given switch is not necessarily constant (e.g. might vary 

from year to year); nevertheless there is no recording 

available of the thresholds. For current curves that triggered 

a “power too high”, “current too high” or “time too long”  

alert and that fulfill τ - τref  < 0, we can state that it is more 

likely that the alert is false the larger the difference between 

τ and  τref . Based on analogous arguments, a “power too 

low” alert triggered when τ < τref  points out to 

compromised switch functionality and is considered a true 

alert, coinciding with the expert’s assessment (see square in 

upper left quarter of Figure 5).  

a) 

 

b) 

 

c) 

 

Figure 3. Switch 2604, direction 1. See Figure 2 caption. 

 

On the other hand, for cases where τ > τref , “power too 

high”, “time too long” and “current too high” alerts are to be 

treated as serious warnings or true alerts (as corroborated by 

the expert assessment - see upper right quarter of Figure 5), 

while “power too low” alerts are likely false. 
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Figure 4. All current curves of switch 2604 in direction 1 

that triggered “power too high” alerts in POSS® (solid 

curves) and corresponding reference curve (dashed). These 

curves show no abnormal behavior but triggered false alerts 

due to τ − τref ⁡< ⁡−10⁡K. 

 

Switch 

ID 
Number of 

alerts with 

available 

temperature  

Number 

of true 

alerts 

Number 

of false 

alerts 

Number 

of 

undefined 

alerts 

2604 42  0 42 0 

2606 12  12 0 0 

3015 38  3 34 1 

3069 24  125 0 0 

3076 73  73 0 0 

3083 125 23 0 1 

3090 39  24 3 5 

Total 

number 

(%) 

346 (100%) 260 

(75%) 

79  

(23%) 

7  

(2%) 

Table 2. Results of POSS® alerts assessment by 

maintenance expert. 

 

The argumentation in the previous two paragraphs is applied 

to the POSS® alerts and, together with the expert’s 

assessment, used to verify the data-based model results. 

“Power too high”, “time too long” and “current too high” 

alerts found for τ > τref (top right quadrant in Figure 5) as 

well as the “power too low” alert with τ < τref (square in 

top left quadrant) are detected by the model as anomalous 

and, based on previous argumentation, considered to be true 

alerts, in full agreement with the expert’s assessment. 

“Power too high”, “time too long” and “current too high” 

alerts found for τ < τref  and detected as anomalies by the 

model (top left quadrant) were mostly assessed as true alerts 

by the expert in spite of the fact that the reference curves 

used to trigger alerts were doubtfully valid. In total the 

model identified 270 alerts as anomalies, out of which 253 

(or 94%) were assessed by the expert as true alerts, 15 (5%) 

as false and 2 (less than 1%) as undefined. From the 76 

“Power too high”, “time too long” and “current too high” 

alerts with τ < τref  detected by the model as normal 

(bottom left quadrant), 64 (or 84%) were identified as false, 

6 as uncertain (8%) and only 6 (8%) as true according to the 

expert assessment. These 6 alerts with contradictory 

findings (true alert and detected as normal by the model) are 

however very close to T2
thre (which is not to be considered 

a strict division between normal and abnormal, as argued in 

section 3.4). Based on the temperature argumentation, these 

alerts are more likely to be false the larger τ − τref  is which 

is in accordance with the findings in Figure 5, where less 

and less true alerts and anomalies are found the larger 

τ − τref  becomes.  

 

 

Figure 5. See caption of Figure 2c. POSS® alerts of seven 

switches in direction 1: “Time too long” (triangles), “power 

too high” (circles), “current too high” (diamonds), “power 

too low” (squares). Maintenance expert assessment of alerts: 

true (solid symbols), undefined (open symbols), false 

(symbols with cross or dot inside). 

 

The model potential to identify systematic abnormal 

behavior on an early stage of emerging failures is 

exemplified in Figure 6. Starting around December 15
th
 

2013 a systematic increase in the T2 parameter is detected 

(see data points inside the drawn ellipse). The subsequent 

failure reported on December 26
th

 was originated by a 

rusting gear box. The increasing and sustained abnormal 

behavior of the switch is a premise for failure forecast. 

 

Figure 6. Switch 3076 in direction 1. Logarithm of 𝐓𝟐 as a 

function of time (Nov. 2013 – Feb. 2014). Horizontal (red) 

solid line: 𝐓𝟐
𝐭𝐡𝐫𝐞. Vertical bars: reported incidents (dashed) 

and maintenance (solid); the different colors have no 
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meaning. Ellipse highlights data points with systematic 

increase. 

5. DISCUSSION AND OUTLOOK 

The four most common alert types triggered by (the current 

release of) POSS® can be differentiated between false and 

true (indicative of switch anomalies) based on their τ − τref 
value and alert type. This argumentation is in line with the 

maintenance expert findings about the alerts. “Power too 

low”, “time too long” and  “power too high” alerts in the 

upper-left quadrant, as well as “current too high” alerts in 

the upper right quadrant of Figure 5 certainly reflect 

compromised switch functionality and a real problem. The 

switch failure detection model detected them all as 

anomalies. Furthermore true and false alerts classified 

according to an expert’s knowledge and qualitative 

arguments showed a good agreement with the model results: 

of all true alerts 94% were detected as abnormal 

switchblades movements and of all false alerts 84% were 

detected as normal ones by the model. In spite of the 

assumptions regarding normal behavior, the model is found 

to be temperature robust and capable of detecting the 

majority of alerts without the need to manually select 

reference curves and corresponding thresholds for each 

switch and in each direction.  

Furthermore the model is designed in such a way that it can 

detect anomalies that are not necessarily reflected in 

deviations from expected total power (i.e. area under the 

curve), and that would be missed by state-of-the-art 

condition monitoring systems even if the reference curve is 

valid for the measurement. For example, if one considers a 

sinusoidal curve, its area under the curve over one period is 

equal to zero. If a current curve would show fluctuations 

described by a sinusoidal curve, this abnormal behavior 

would not be reflected in the total power and thus no alert 

would be triggered in systems like POSS®. However since 

the model considers current standard deviation during 

switchblades movement, this example current curve would 

in principle be detected by the model as abnormal.  

The pattern recognized for switch 3083 in Figure 2a for 

summer and winter T2  values could be due to differences 

between the air temperature at the relay house and the asset 

temperature, and also due to seasonal variations of weather 

variables other than temperature. For example precipitation 

evaporates faster in a warm sunny day than in a cold and 

cloudy one. Thus even when the model is temperature 

robust, this does not imply that other factors, which are 

temperature-correlated and that affect the switch behavior, 

are being accounted for. Additionally the model is trained 

with one-year data and applied over the next 4 years. The 

way a switch reacts to temperature (and other weather 

conditions) or load might change with time. Additionally 

maintenance actions performed on the switch can modify 

the normal relation between features (e.g. maintenance 

actions can cause step-changes in the median value of one 

or more features). Changes on the switch functioning 

induced by time or maintenance imply a modified normal 

behavior, and require re-training the model in order to keep 

it up-to-date. Model accuracy depends on its range of 

validity/applicability, which is a topic of major importance. 

Current research is dedicated to automatically identify this 

validity range considering the factors of influence. 

The method of training set selection requires more 

sophisticated methods in order to train the model with 

current curves of not only normal, but representative of 

well-functioning switch behavior. The current selection 

method has no way of differentiating between a functional 

switch with abnormal behavior from a functional switch 

with normal/healthy behavior. A good alternative for 

training set selection is clustering; with this approach one 

could e.g. consider the current curves belonging to the 

cluster, which according to maintenance experts shows the 

most normal /functional behavior. 

 

Results for switch 2604 (Figure 3a) are a good example to 

show the importance of normal switch behavior and its 

impact on the model output. In the training period T2 values 

have large deviations and there is much structure in the data 

points contained in it. This is also reflected in the T2 -

distribution of the training set and thus on the thresholds of 

normal switch behavior, ultimately affecting anomaly 

detection and leading to the detection of too many 

anomalies. The way to overcome this issue is by finding 

more and more adequate features representing switch 

behavior. Ideally, all parameters influencing the system or 

common causes of variation are accounted for in the model, 

such that normal switch behavior (represented by the 

training set) is a stable process. In this ideal situation the 

training set output parameters should not present structure.  

T2 and SPE values indicating an anomaly are of concern but 

further investigation is needed to categorize them and 

provide degrees of abnormal behavior and criticality of the 

anomaly. Moreover, for condition-based predictive 

maintenance support, detection anomaly needs to be 

accompanied by a diagnosis. The link between a switch 

functional model, which relates switch sub-functions (see 

Figure 1) to switch components, and the data-based model 

output are the features. Domain knowledge will further 

provide features that are directly linked to switch 

components. In this way, when an anomaly is detected, the 

features can be traced back to identify the components that 

are compromised.  

6. CONCLUSION 

The data-based switch failure detection model is verified 

against POSS® alerts from seven switches over more than 

five years; it identifies true alerts triggered by abnormal 

switch behavior as anomalies. The model does not rely on 
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manual reference and threshold selection, while it produces 

reliable detections. The implementation of the model for 

anomaly detection could improve the reliability of switch 

condition monitoring systems, such as POSS® current 

released version. Furthermore the model detects evolving 

abnormal behavior, setting the path towards failure forecast. 

Further research on feature engineering is necessary to 

enable more accurate modelling of switch behavior. This 

will increase model accuracy and reliability when anomalies 

are detected, and provide diagnostic information for more 

efficient switch interventions. Additionally, other weather 

variables and actions (e. g. scheduled preventive 

maintenance) performed on the switches which modify their 

normal behavior need to be accounted for. 
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NOMENCLATURE 

𝑇2 Hotelling’s parameter 

𝑇2
𝑡ℎ𝑟𝑒  Threshold of normal switch behavior T

2
 range 

SPE Squared prediction error 

𝜏 Temperature at the time current curve is measured 

𝜏𝑟𝑒𝑓  Temperature at the time of reference curve 
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