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ABSTRACT 

For advanced agile attitude control of the satellite, reaction 

wheels are used actuated by motor. In order to ensure reliable 

operation, fault detection and prediction of remaining useful 

life (RUL) of the motor is of great importance. In this study, 

multi-scale Extended Kalman Filter (EKF) is employed for 

this purpose using the data of input current and output 

velocity measured in the life test of the motor. The motor 

dynamic behavior is modeled by the ordinary differential 

equations (ODEs). Characteristic behavior of the reaction 

wheel that degrades as the motor is used over repeated cycles 

is taken as the health indicator. The degradation value is 

defined by damping coefficient by solving the micro EKF 

problem using the input and output measurements at each 

cycle. Then, the RUL is predicted by solving the macro EKF 

problem based on the regression model of damping 

coefficient, which enables proactive action before the motor 

failure is encountered. 

1. INTRODUCTION 

Methods of attitude controlling of satellites include passive 

control using torque generated by the cosmic environment 

and active control using a satellite mounted actuator. The 

reaction wheel is to use active control and a driver that 

controls the attitude of the satellite with the reaction torque 

generated when the wheel is attached to the motor shaft with 

a certain moment of inertia and the speed of the wheel is 

changed. The motor used to control reaction wheel is given 

in Figure 1. In order to ensure the reliable operation and 

prevent unwanted failure of the reaction wheel, the fault 

detection and life prediction of the actuating motor is of great 

importance. The motor is brushless direct current (BLDC) 

type, and torque is generated by Lorentz's force law (Boldea, 

1999). 

 

Figure 1. A motor from Korea Space Launch Vehicle-I 

The motor usually degrades its function due to the 

repeated use, which appears as the damping increase over 

time.  In this study, the prognosis of the motor is carried out 

in order to predict its life by employing the Extended Kalman 

Filter method.  The motor dynamics are used for this, which 

is given by the ordinary differential equations (ODEs). 

Damping is employed as the parameter for motor health 

indicator (Skormin, 1994). The damping parameter is 

estimated at each cycle using the micro EKF, from which the 

life against the threshold is predicted using the macro EKF 

(Xiong, 2014). The data are obtained from the life test of the 

actuating motor during the wheel speed control mode. It 

consists of time, current, and angular velocity, where the 

input and output data are the current and velocity respectively. 

2. MULTI-SCALE EKF  

The overall framework is given in Figure 2, in which the steps 

are summarized as follows. In Figure 2, multi-scale EKF 

consists of two steps; On-line damping estimation algorithm 

and Off-line trend monitoring algorithm. In damping 

estimation, parameters are updated every moment of time, 

while parameter estimation is performed only macro time 

step in trend monitoring algorithm. 
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2.1. On-line damping estimation 

The governing equation of the motor dynamics is given as 

follows as Eq. (1) 

𝑇𝑔𝑒𝑛 = J ∙ �̇�+c∙w+μMD/4 
(1) 

where 𝑇𝑔𝑒𝑛= KI is the input torque given by the input current 

𝐼  , K  is torque efficiency, J  is the motor inertia, �̇�  is an 

acceleration of the motor, c is the bearing friction coefficient, 

w is the velocity, μ is constant, 𝑀 is weight and D is diameter 

respectively. 

Using this equation in the KF framework(Hu,2012), 

the state and measurement model for the motor are given 

respectively as follows, Eq. (2). These equations are in 

recursive form as below. 

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝐼𝑘−1) + 𝑞𝑘−1 
𝑧𝑘 = h(𝑥𝑘) + 𝑣𝑘  

(2) 

or 

[
�̃�𝑘

�̃�𝑘
] = [𝑤𝑘−1 + (−𝑐𝑘−1𝑤𝑘−1 +

𝜇𝑀𝐷

4
− 𝐾𝐼𝑘−1)𝑑𝑡/𝐽

𝑐𝑘−1

] + 𝑞𝑘−1 

[
𝑤𝑘

�̇�𝑘
] = [

�̃�𝑘

(−𝑐𝑘�̃�𝑘 +
𝜇𝑀𝐷

4
− 𝐾𝐼𝑘−1)/𝐽

] + 𝑣𝑘 

where the state variable vector x includes w and c, and the 

measurement variable z includes w and its acceleration w. 

Here, c are the health. And q and v denote the noise for the 

system and measurement respectively. 

k is current time index. The symbol ~ means the 

time update at the next step k  from the previous 1k − . The 

equation can be further linearized into the form: Eq. (3), (4) 

�̃�𝑘 ≅  𝐹𝑥𝑘−1 + 𝐵𝐼𝑘−1 + 𝑞𝑘−1 

𝑧𝑘 ≅ H�̃�𝑘 + 𝑣𝑘  

(3) 

𝐹 =
𝜕𝑓

𝜕𝑥
= [

1 − 𝑐 ∙ 𝑑𝑡/𝐽 −𝑤 ∙ 𝑑𝑡/𝐽
0 1

] 

𝐵 =
𝜕𝑓

𝜕𝑢
= [

𝑑𝑡/𝐽
0

] 

𝐻 =
𝜕ℎ

𝜕𝑥
= [

1 0
−𝑐/𝐽 −𝑤/𝐽

] 

(4) 

As the measurement data are continually given one at a time 

over the time sampling period during a single cycle, the state 

is estimated based on the KF formula, in which the mean and 

the covariance of the state variable for the time update and 

measurement update are given as follows respectively, Eq (5) 

and Eq. (6): 

Time update: 
1

1 1

k k k

k k k k k

x F x

P Q F P F

−

− −

=

= +
 (5) 

Measurement 

update: 

( )

|

k k k k k k

k k k k k k

x x K z H x

P P K H P

= + −

= −
 (6) 

where 
1

k k k kK P H S −= , 
k k k k kS H P H R= + , and ,Q R  

are noise covariances of state and measurement models, 

respectively. 

As shown in Figure 2 and above equations, in the time 

update, the state variables are updated from the previous time 

step by the input torque T or input current 𝐼. Then they are 

corrected by the measured data z in the measurement update. 
In the Fig. 4, the trend curve shows w using in the measured data 

z. 

Fig. 2. Motor application algorithm 
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Figure 2. Reaction Wheel input Torque in Transient State 

 

Figure 3. Reaction Wheel Angular Velocity in Transient State 

 

Figure 4. Characteristic Curve of Reaction Wheel 

 
Figure 5. Short-term damping friction coef 

Using the input torque as given by Figure 3 over a cycle 

with duration of 2500 seconds, the KF calculation results in 

the output velocity as shown in Figure 4. Once the velocity is 

obtained, characteristic curve of the motor is also made by 

using the output torque as given by 𝑻𝒐𝒖𝒕𝒑𝒖𝒕 = 𝑱 ∙ �̇� and 

angular velocity 𝒘 as the y and x axis respectively. The result 

is given in Figure 5. It is known that the characteristic curve 

is used to evaluate the motor performance degradation in the 

satellite research community. 

2.2. Setting the threshold 

Figure 6 is a torque/speed curve graph of typical DC motor, 

which can be used to set the threshold. This shows how much 

motor transfer torque and how fast the output speed is. As 

shown in the Figure 6, the output speed is decreasing even 

though the motor transmits the same torque. When the motor 

was first designed as a design condition, the minimum 

requirement is over 300rad/s on 16mNm. So, it was deemed 

to be a failure if the minimum requirement is not fulfilled. We 

use this as a basis for threshold to estimate the remaining 

useful life. 

2.3. Off-line trend monitoring 

In the health assessment, the degradation of health parameter 

c is modeled by the linear equation over cycles as follows as 

Eq. (7). 

y = a ∙ 𝑡 
 

(7) 

where 𝑡 represent cycle, then the coefficients a is determined 

using the EKF by the estimated health parameters over cycles. 

The state and measurement model are then given respectively 

as follows, Eq (8). 

𝑥𝑛 = 𝑓(𝑥𝑛−1) + 𝑞𝑛 
𝑧𝑛 = h(𝑥𝑛) + 𝑣𝑛 

or 
[
�̃�𝑛

�̃�𝑛
] = [

𝑐𝑛−1 + 𝑎𝑛−1 ∙ 𝑑𝑡
𝑎𝑛−1

] + 𝑞𝑘−1 

𝑧𝑛 = �̃�𝑘 + 𝑣𝑛 
(8) 

where the state variable x includes the bearing friction coef c. 

and its degradation parameters, a. The measurement z  is the 

updated damping friction coefficient. In this case, the KF 

matrices are given by Eq (9).  

𝐹 =
𝜕𝑓

𝜕𝑥
= [

1 𝑑𝑡
0 1

] 

𝐻 =
𝜕ℎ

𝜕𝑥
= [1 0] 

(9) 

As the measurement data are continually given one at a cycle 

up to the current cycle, the state and unknown parameters are 

estimated based on the KF formula using the same formula 

as above. 
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3. PARAMETER ESTIMATION USING MICRO EKF 

3.1. Estimating damping coefficient 

It is well known that the damping friction coefficient of the 

bearing increases over cycles, which means that the bearing 

friction can be a good health parameter in the motor health 

management. In this section, the damping parameter is 

estimated at each cycle using the micro EKF as a short-term 

diagnosis. Then RUL is estimated for the purpose of the long-

term prognosis using the macro EKF, taking the parameter as 

the performance degradation indicator of the motor. The 

results are given in Figure 6 & Figure 7. Short-term 

estimation is obtained in the cycle as shown in Fig .6, short-

term can be define 1 cycle. However, in the test, the duration 

of one cycle varies from cycle to cycle, ranging between the 

minimum of 170 up to the maximum of 100,000 seconds. 

After progressing over the cycles, the long-term damping 

friction parameter is estimated using the macro EKF as 

shown in Figure 7. 

3.2. Setting the threshold 

The gradient of the points from Fig. 6 from 0 rad/s and 300 

rad/s is gradually increasing as shown in the direction of the 

arrow of the Fig. 8. The increase is checked if the gradient is 

less than the minimum re-quirement as the red dot line in the 

Fig. 8. As shown in Fig. 8, it was confirmed that the slope of 

the charac-teristic curve was represented as a point and was 

gradually increasing as the cycle was increased. The slope of 

the characteristic curve assumed to have reached the design 

conditions, which is the red line as a threshold. The gradient 

of characteristic curve of Fig 8 is shown in the Fig. 9. The 

failure value of the char-acteristic curve slope is 0.1428 in 

Fig. 9 and can be used to estimate the remaining useful life 

into damp-ing coefficient as shown as Fig. 10. 

In the Fig. 10, the threshold is set from the gradient of 

characteristic curve is applied to damping coeffi-cient. The 

axes are damping friction coefficient and gradient of the 

characteristic curve using Fig. 5. The failure value of 

damping coefficient is defined 0.147*10-5 using the 

threshold of the gradient of the characteristic curve in Fig. 10. 

4. HEALTH ASSESSMENT AND RUL PREDICTION OVER 

LONG-TERM DEGRADATION 

In this step, the friction coefficient is treated as the state 

variable. The state equation is the degradation model in this 

case, which varies linearly over the cycle. Measurement data 

are provided by estimating the coef. and averaging over the 

cycle. Then the data are given one at a cycle. RUL estimation 

has progressed as Kalman filter. During estimation, the 

parameter is estimated with RUL to get accurate results. 

4.1. Parameter estimation of motor using Extended 

Kalman filter 

The slope is set at constant but unknown in this study. Then 

the state variables are the damping friction coef. and its slope 

in the KF process. Figures 11, 12, 13 are the results of the 

estimation and RUL prediction. The Figure 11, Figure 12 and 

Figure 13 represent the estimation of the damping friction 

coef. using the data up to the 20th, 40th and 58th cycle and 

prediction based on that in the future. The two green curves 

are their predictive intervals. As can be found, the more 

measurement data are used, the more accurate prediction with 

narrower interval is achieved. 

 
Figure 6. Long-term friction coef 

 
Figure 8. changes of characteristic curve 

 
Figure 9. changes of characteristic curve gradient 
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Figure 10. characteristic curve vs damping coefficient 

 
Figure 11. estimating result by KF at 20th cycle 

 

Figure 12. estimating result by KF at 40th cycle 

 
Figure 13. estimating result by KF at 58th cycle 

 

Figure 14. parameter estimating 

 

Figure 15. RUL estimation 

After progressing over the cycles, the long-term gradient 

change is estimated as shown from Figure 11 to Figure 13, in 

which the long-term deterioration of gradient over the cycles 

is clearly observed. In order to predict the RUL based on this 

degradation data, the coefficient is modeled by 1st order 

polynomial as mentioned in the previous section. The macro 

EKF is used to estimate the model parameters. Then the RUL 

is predicted based on the estimated linear model. The results 

are given in Figure 14. 

4.2. RUL prediction 

After progressing over the cycles, the long-term damping 

friction parameter is estimated as shown in Figure 14, in 

which the long-term deterioration of the friction coefficient 

over the cycles is clearly observed. The Figure 14 represents 

the converged result of the slope of the degradation model, 

where the true value of 2.6715e-06. In order to predict the 

RUL based on this degradation data, the coefficient is 

modeled by a linear equation as mentioned in the previous 

section. The macro EKF is used to estimate the model 

parameters. The predictive bounds quickly narrow down as 

more data are introduced. Then the RUL is predicted based 

on the estimated a linear equation model. The Figure 15 

represents the RUL as a function of cycle, where the black 

line is the true value, and the red curves are the predictive 

bounds of RUL. 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

6 

5. CONCLUSION 

In this paper, process is developed and implemented to apply 

to real motor data for reaction wheel in satellite for off-board 

long term RUL prediction in a single KF framework. Thus, 

by solving the macro EKF problem based on the regression 

model of damping coefficient, it enables proactive action and 

estimates remaining useful life before the motor failure is 

encountered. 
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