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ABSTRACT 

The aim of this paper is to propose a comprehensive 

approach for predictive maintenance of complex equipment. 

The approach relies on a physics of failure model based on 

expert knowledge. The model can be represented as a multi-

state Petri Net where different failure mechanisms have 

been discretized using physical degradation states. Each 

state can be detected by a unique combination of symptoms 

that can be measured from diagnostic tools. Based on actual 

existing diagnostic information, a diagnostic algorithm 

enables the identification of active failure mechanisms and 

estimates their progression in the Petri Net. Specific 

maintenance actions and their potential effect on the system 

can be associated with targeted states. Thereafter, a 

prognostic algorithm using a coloured Petri Net propagation 

method spreads active failure mechanisms though their 

related remaining states towards the targeted states. This 

allows specific maintenance actions to be proposed in a 

timeframe and thus enables predictive maintenance. Case 

study is presented for a real hydro generator. Finally, model 

limits are discussed and potential areas of further research 

are identified. 

1. INTRODUCTION 

Predictive maintenance is a discipline that allows the 

planning of maintenance actions based on prognostic 

models. From an organization's perspective, it is an integral 

part of the asset management process defined as a set of 

coordinated activities of an organization to realize the value 

of assets (ISO, 2014). Unlike preventive maintenance or 

reliability-based maintenance approaches, predictive 

maintenance approaches take into account the dynamic and 

individual aspect of each asset's data. Prognostic models 

allows predicting the occurrence of equipment failure modes 

taking into account their condition, operation and 

environment loads and their related uncertainties (Goebel et 

al., 2017, Atamuradov et al., 2017). The predicted 

information is updated as new asset health information 

becomes available. Maintenance actions are then proposed 

in advance to avoid the predicted failure modes. In order to 

ensure strategic planning within the fleet, different aspects 

also need to be taken into account to optimize maintenance 

planning such as equipment’s criticality, operational 

resource constraints, organizational objectives to name a 

few (IAM, 2015). 

For the last decade, the development of prognostic models 

has been intensive research topic from both an academic and 

an operational point of view. In the literature, the vast 

majority of prognostics research to date have been focused 

on the prediction of remaining useful life (RUL) of 

individual components (Atamuradov et al., 2017, Chiachío 

et al., 2017). Moreover, much of this research focuses on the 

propagation of a single mechanism leading to a single 

failure mode.  

However, industrial complex equipment can have 

concurrent multi-failure modes and multi-failure 

mechanisms leading to them involving various components 

and sub-components (Blancke et al., 2015, Atamuradov et 

al., 2017). The propagation of failure mechanisms may also 

involve several components and various diagnostic tools can 

be used to detect and track them at different system scales. 

Once predetermined degradation thresholds are reached, 

specific maintenance actions should be taken to avoid a 

system failure. Depending on the types of active failure 
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mechanisms and their progression, maintenance actions may 

not have the same effect to stop or slow down their 

propagation towards their related failure modes. It is 

therefore important to understand how the mechanisms have 

and will propagate when we want to apply specific 

maintenance tasks to extend the remaining useful life of 

complex equipment. 

This paper will focus on how to suggest specific 

maintenance tasks based on prognostic models. The 

optimization of these tasks among the fleet will not be 

considered here. Thus, the aim of this paper is to propose a 

comprehensive approach for predictive maintenance of 

complex equipment. The approach relies on a Physics of 

Failure (PoF) model based on expert knowledge and is 

dynamic since it also uses diagnostic data. The main 

contributions of this paper are: (1) to propose  a system-

level prognostic model that enables to predict intermediate 

states of degradation; (2) to integrate expert knowledge and 

diagnostic data into a dynamic model; (3) to suggest specific 

maintenance tasks and to predict when they can be 

actionable depending on detected active failure mechanisms.  

The reminder of the paper is organized as follows. Section 2 

proposes a brief overview of prognostic models in the 

context of predictive maintenance. The proposed prognosis 

model identified as a failure mechanisms propagation model 

is presented in section 3 and its application to predictive 

maintenance is explained in section 4. Then, a case study is 

presented for a real hydrogenerator in section 5. Finally, 

model limits are discussed and potential areas of further 

research are identified in the last sections. 

2. PROGNOSTIC MODELS IN THE CONTEXT OF PREDICTIVE 

MAINTENANCE: AN OVERVIEW OF THE LITERATURE 

Several classifications of prognostic approaches are 

proposed in the literature. In this paper, we suggest using 

the classification proposed by Elattar et al. (Elattar et al., 

2016). Prognostics approaches can be classified into four 

types: 

 reliability based approach; 

 physics-based approach; 

 data-driven approach; 

 hybrid approach; 

As explained in the introduction, knowledge about the 

physics of degradation is needed to identify specific 

maintenance tasks which may have a positive effect on the 

system. That’s why this work will focus on the physics-

based approach.  

2.1. Physics of Failure (PoF) Prognostic Models 

Physics-based approaches focus on equipment degradation 

process. They aim to model the propagation of equipment 

failure mechanisms by taking into account knowledge of 

physics of degradation and feedback from domain experts 

(Gu and Pecht, 2008, Kulkarni et al., 2013). In such 

approach, diagnostic data are often used to update initial 

conditions and to fine tune model parameters (Javed et al., 

2017, Corbetta et al., 2014, Chiachío et al., 2015). One of 

the main advantages of the PoF approach is that it is 

applicable even if the data is scarce, taking advantage of the 

knowledge gained. A generic methodology has been 

proposed by Gu and Petch (Gu and Pecht, 2008) for PoF 

prognostic models. Figure 1 present an adapted illustration 

of the methodology proposed by Gu and Petch (Gu and 

Pecht, 2008). 

 
Figure 1. PoF-based PHM methodology (Kwon et al., 2016) 

 

The methodology is based on the identification of failure 

modes as in the case of the FMEA but it also identifies the 

failure mechanisms that can lead to them. Once identified, 

prognostic models can be applied on critical failure 

mechanisms. As mentioned previously, complex equipment 

may have different failure modes and many failure 

mechanisms. Different diagnostic tools can then be used to 

detect their state of evolution. For this purpose, Amyot et al 

(Amyot et al., 2014) proposed an extension of the FMMEA 

by discretizing the mechanisms using physical state of 

degradation. Each state can be detected by a unique 

combination of symptoms that can be obtained with 

diagnostic tools. The proposed model consists of a causal 

graph where the nodes are physical states and the edges 

represent all the identified failure mechanisms. Failure 

mechanisms propagate from a root cause to their related 

failure mode through a physical state succession as shown in 

Figure 2. A methodology has been proposed to discretize 

failure mechanisms (Blancke et al., 2015). As a physical 

state can be present in different failure mechanisms, the 

causal graph enable failure mechanism to share physical 

states. Thus, Amyot et al.(Amyot et al., 2014) have 

introduced an algorithm to detect active failure mechanisms 

based on combination of active and inactive physical states. 

These algorithms will be detailed in this paper and 

integrated into the proposed prognostic model. 

The dynamic causal graph model proposed by Amyot et al. 

(Amyot et al., 2014) enables to aggregate various diagnostic 

data from different diagnostic tools at a system level. In 
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order to make it evolve towards a predictive maintenance, it 

is necessary to introduce the temporal aspect of causalities. 

 
Figure 2. Causal graph model illustrating identified failure 

mechanisms 

Chemweno et al. (Chemweno et al., 2018) have proposed a 

review of dependability modelling approaches in the context 

of risk assessment. Based on this review, two main 

approaches seem to be applicable to causal graphs in a 

stochastic propagation process: Dynamic Bayesian 

Networks and Stochastic Petri Net (PN). In this paper, the 

formalism of Stochastic Petri Nets (SPN) has been chosen 

mainly because of the variety of extensions that it contains. 

2.2. Existing Petri-Net in Prognostic and Predictive 

Maintenance Model  

Petri Nets have been initially introduced by Carl Adam Petri 

in 1966 (Petri, 1966). PNs are bipartite direct graphs mainly 

used to model multi-state dynamic systems in various 

disciplines. Graphs of a PN consist of two types of nodes, 

transitions and places linked by arcs or edges. A place can 

be used to specify the current state of a system and are 

visited by tokens that propagate from place to place as 

defined by the PN. Transitions enable to represent the 

dynamic behavior of the system. They comprise time 

transitions from one place to another (Chiachío et al., 2017). 

For further information, several references present the 

formalism of PN (Peterson, 1981, Murata, 1989, Chiachío et 

al., 2017). 

In the literature, different works have used PN in the context 

of predictive maintenance (Chiachío et al., 2017, Zhouhang 

et al., 2014, Ammour et al., 2016). Zhouhang et al. 

(Zhouhang et al., 2014) have proposed an application of PN 

to model the reliability and maintenance analysis of multi-

state multi-unit systems. The approach takes into account 3 

degradation states: healthy, degraded and failed. The PN 

model enables to simulate transition between those states in 

different components. A fault tree model enables to 

assemble the different degraded or failed components into 

the system behavior. It also takes into account maintenance 

operator availability and the maintenance process. In this 

work, the model does not suggest specific maintenance but 

focus more on the operational aspects on predictive 

maintenance.  

Ammour et al. (Ammour et al., 2016) have proposed a fault 

prognosis approach of stochastic discrete event systems. 

The PN is used to model the system and its sensors. 

Measurement has been attached to some places of the PN 

and an incremental approach enables to identify sets of 

consistent trajectories based on historical measurement data. 

Then based on those time-measurement trajectories, the PN 

model estimates the current state of the system and the 

occurrence probability of future states. In this approach, 

historical data have been chosen to identify failure 

mechanism trajectories. This enables the on-line application. 

However, domains experts experience feedback has not 

been taken into account. The approach ends on fault 

prognosis and does not identified specific maintenance.  

Finally, Chiachío et al. (Chiachío et al., 2017) have 

proposed a mathematical framework for modelling 

prognostic at a system level based on Plausible Petri Net 

(PPN) formalism.  The model integrates maintenance 

actions, various prognostic information from different 

components, expert knowledge and resource availability.  

To do so, two interacting sub-net form are introduced: 

symbolic sub-net (integer moving unit) and numerical sub-

net (states of information). The model predicts the End Of 

Life (EOL) of different components by taking into account 

the overall process. In this approach, the model relies on 

expert knowledge and diagnostic data. Maintenance tasks 

can be suggested and component failure can be predicted. 

However, the approach cannot identify physical failure 

mechanisms that lead to the predicted failure of 

components. 

From the literature to date, it seems that no predictive 

maintenance approach using PN have been proposed so far 

to enable the prediction of specific maintenance actions 

according to the active failure mechanisms that have been 

detected in an equipment failure mechanism propagation 

model. 

The model presented in this paper is based on previous 

approach proposed by Amyot et al. (Amyot et al., 2014) 

based on Failure Mechanisms and Symptom Analysis 

(FMSA). Research work is currently underway on the 

development of the failure mechanisms propagation model 

to predict failure modes of complex equipment. Thus, this 

part aims to present only the main principles of the failure 

mechanisms propagation. 
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In this paper, the predictive maintenance approach aims at 

predicting the occurrence of some specific targeted physical 

degradation states where some specific maintenance actions 

can be implemented and will start to have an effect on the 

system. To do so this section presents the failure mechanism 

propagation model that predicts targeted degradation states. 

Then, the Section 4 will present how to apply predictive 

maintenance based on the propagation of these mechanisms. 

2.3. Model Assumptions: 

Before applying the formalism of PNs to the causal graphs 

introduced by Amyot et al. (Amyot et al., 2014), the 

propagation model assumptions were identified by an expert 

group based on their experience. No mathematical 

constraint was initially imposed. The proposed assumptions 

are defined for all types of complex equipment that have 

competing failure mechanisms leading to one or more 

failure modes. They are applied as stated for each prediction 

date chosen to update the model results. Assumptions have 

been split in categories presented below. 

 Assumptions of degradation states: 

Physical states are considered as discrete events constituting 

failure mechanisms. They are detected by a unique 

combination of symptoms acquired from diagnostic tools. 

When not detected, they are considered as unknown. When 

they become detectable by appropriate diagnostic tools, they 

can be active or inactive. 

 Assumptions on causal graph: 

The causal graph identifies all possible failure mechanisms 

that could occur within the system. A failure mechanism is 

considered as a possible path identified by experts and is a 

single sequence of physical states starting from a root cause 

and leading to a failure mode. If none of its physical states 

can be detected, the failure mechanism is defined as 

unknown (none of the diagnostic tools could detect the 

relevant symptoms identifying any physical states). If at 

least one of its physical states can be detected, the failure 

mechanism is identified as active or inactive depending on 

the relative symptoms threshold to meet. 

 Assumptions on failure mechanism propagation: 

Even if failure mechanisms are interrelated by propagating 

through some common degradation state, their propagation 

is considered independent. Thus, failure mechanisms are 

non-mutually exclusive (they can evolve in parallel to reach 

their corresponding failure modes) and they are independent 

(their progression is considered as uninfluenced by other 

mechanisms). In addition, failure mechanism propagation is 

considered as a stochastic process with memory. Thus 

transition times from one physical state to the other within a 

failure mechanism have a probability distribution that may 

be influenced by the failure mechanism history. 

The state of a failure mechanism at a specific prediction 

date is considered as its last active state within the sequence 

of physical states. 

For this paper, the influence of duty cycle, environment and 

regular maintenance actions has not been taken into account. 

 Assumptions on targeted state occurrence: 

Failure mechanisms are considered in competition. The first 

failure mechanism to reach a targeted state defines its 

occurrence probability (pessimistic assumption).  

 Assumptions on predictive maintenance: 

Maintenance is considered to have a positive effect on the 

system once a specific degradation threshold is reached. 

Based on those assumptions, the causal graph introduced by 

Amyot et al. (Amyot et al., 2014) could be considered as a 

PN where physical states are places identified by health data 

and transitions are the different stochastic transition times. 

A colored PN can be considered as a generic representation 

for the fleet. This type of PN makes it possible to represent 

all possible failure mechanisms in a graph.   

In the proposed approach, all visual representation of PN 

will not represent transition nodes as rectangles as defined 

in PN formalism. This will enable to simplify the graph. 

2.4. Diagnostic Algorithm 

2.4.1. Fault Detection: Active Physical States Detection 

Algorithms 

The fault detection consists in detecting active or inactive 

physical states. For each physical state a detection algorithm 

has been defined by experts using ruled based combination 

of symptoms. Result is binary: A physical state can be 

detected as inactive or active. If the physical state is 

detected as active, an activation interval is estimated based 

on the inspection interval that can detect the state. Figure 3 

presents the physical state detection algorithm. For each 

prediction date required the detection algorithm is 

performed. 

 

Figure 3. Physical states detection algorithms based on 

symptom analysis 

2.4.2. State Estimation: Active Failure Mechanism 

Detection Algorithm 

Following the fault detection, the state estimation consists of 

estimating the actual state of the system for a specific 
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prediction date. In our case, the state estimation consists of 

detecting active failure mechanisms based on detected 

active and inactive physical states and then estimate their 

propagation through the PN.  

The failure mechanism detection algorithm analyzes each 

failure mechanism physical state sequences. If at least one 

physical state is active, the failure mechanism is detected as 

active. However, in order to eliminate incoherent failure 

mechanisms, if inactive physical states are located before 

some active physical states in the sequences, the whole 

failure mechanism is detected as inactive. Figure 4 

illustrates the failure mechanism process for an asset on two 

different prediction dates. 

The state estimation relies on the assumption that the last 

active state of active failure mechanisms defines his state.  

 
Figure 4. Asset-specific state estimation process based on 

active failure mechanism detection algorithm 

 

In figure 4, the physical state and failure mechanism 

detection algorithms have been performed for the prediction 

dates 2015 and 2016. In 2015, based on available symptoms 

of asset X, one (1) physical state has been detected as active 

(orange node) and four (4) as inactive (green nodes). Thus, 

three failure mechanisms have been detected has active. In 

2016, three (3) physical states have been detected has active 

and four as inactive. Thus, nine (9) failure mechanisms have 

been detected has active. The state estimation can be 

visualized in figure 4. The path of the active failure 

mechanisms is represented in bold. From a visual point of 

view, this enables to see how far failure mechanisms have 

progressed for each prediction date. 

2.5. Failure Mechanism Propagation Algorithm 

In order to propagate active failure mechanisms, the 

formalism of PNs has been chosen. However, from the basic 

PN model including homogenous Markovian process to the 

customized model that fit with all experts assumption, 

different extensions and rules have been defined in the 

algorithm. Figure 5 illustrates the algorithm evolution. 

 

Figure 5. From basic Petri Net model to complex PN model 

satisfying expert assumption 

 

Transition times has been defined as Weibull distributions 

by experts. Thus the model has to move to semi-Markovian 

process. Then, as failure mechanisms are non-mutually 

exclusive, each failure mechanism has been propagated 

independently. Finally, as the propagation is a memory 

process, the extension of coloured PN has been 

implemented. As not every path from a root cause towards a 

failure mode constitutes a failure mechanism as defined by 

the experts, the coloured PN makes it possible to take into 

account only those paths that are real failure mechanisms in 

the graph representation. 

The resulting algorithm propagates any active failure 

mechanism independently. The initial state or the 

mechanism defined by the last active physical state in the 

sequence considers its activation interval as the starting date 

of the propagation. Then, the stochastic PN propagates 

through the remaining states of the failure mechanism to the 

targeted state. Some illustrated results are presented in 

figure 6 below. 
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Figure 6. Illustration of the failure mechanism propagation 

algorithm 

 

Figure 6 shows the propagation of each active failure 

mechanism to the targeted state e14. In 2016, even though 

nine (9) failure mechanisms were detected active, only two 

(2) of them lead to the e14 state. So only two failure 

mechanisms have been propagated. The Cumulative Density 

Function (CDF) of the two failure mechanisms propagated 

to state e14 is shown in figure 6. Those CDFs represent the 

probability predicted in 2016 that each failure mechanism 

reached the state e14. 

2.6. Targeted States Occurrence Prediction: 

Then the last step consists of aggregating failure 

mechanisms propagation in order to estimate the occurrence 

of targeted physical states. Based on the assumption that 

failure mechanisms are in competitions, the occurrence of 

the targeted states has been defined has the upper envelope 

of all CDF functions. The equation 1 presents the 

aggregated function. 

 

𝑃𝑟(𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑) = 𝑀𝑎𝑥(𝐶𝐷𝐹𝑎𝑐𝑡𝑖𝑣𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑠)       (1) 

3. FROM FAILURE MECHANISM PROPAGATION TO 

PREDICTIVE MAINTENANCE 

The algorithm allows us to estimate the state of our system 

for different prediction date and to propagate detected active 

failure mechanisms until targeted physical states. Predictive 

maintenance aims at predicting and suggesting maintenance 

actions based on prognosis algorithms. On the assumptions 

of experts, a maintenance action is considered to have a 

positive effect on the system once a specific degradation 

state is reached. From a PN point of view, it can be 

considered that once targeted physical states are reached, 

specific maintenance actions which can be related to their 

physical degradation will have a positive effect on the 

system. Thus maintenance actions can be attached to 

specific states of the PN. Moreover, for each proposed 

maintenance actions, experts may have knowledge of the 

impact of maintenance and may suggest a possible effect 

expected. As examples, those effects could be: 

 Inhibit associated failure mechanisms propagation 

 Reset associated failure mechanisms propagation 

 Slow down associated failure mechanism propagation 

Figure 7 illustrates an example of predictive maintenance 

that has been attached to a state. The predicted confidence 

interval of these states is between 2018 and 2022. Thus the 

lubrication of the shaft bearing task may be applicable until 

2022 if we want the action to have the expected impact on 

the equipment. 

 

Figure 7. Illustration of the failure mechanism propagation 

algorithm 

4. CASE STUDY: HYDRO-GENERATORS 

4.1. Industrial Context 

The proposed case study is based on real historical data of a 

hydrogenerator from Hydro-Quebec’s generating fleet. 

Hydrogenerators are heavy electro-mechanical machines. 

Figure 8 present a picture of a hydro generator. 

 

Figure 8. Hydro-Québec generating unit photography. 

A group of experts have been involved to identify possible 

failure mechanisms for the stator of hydrogenerators based 

on a literature review and their own experience. Three 

failure modes have been identified for the stator, as 

presented in Figure 9, and over than one hundred failure 

mechanisms have been identified as possibly occurring in 

the stator of hydrogenerators. Over seventy different 

physical states have been defined. The causal graph 

representing all failure mechanisms of the stator is presented 

in the figure 9 bellows. 
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Figure 9. Hydro generator stator causal graph representing 

identified failure mechanisms leading to three failure modes 

At Hydro-Québec, a web-based application has been 

implemented since 2008. It gathers symptoms from 

diagnostic tools. Thus, some historical data are available. 

The case study is proposed based on those historical data. 

4.2. Associated Maintenance Task 

For the case study of this paper, a brief analysis of available 

data has been carried out to identify targeted physical states 

that may have some validation data available. Moreover 

targeted physical states may have possible maintenance 

actions associated to them. Thus, four physical states have 

been targeted and are presented in table 1. 

Table 1. Targeted physical states 

ID Physical states 

t6 Thermal aging of ground wall insulation 

m31 Stator lamination insulation wear 

m21 Mechanical erosion of ground wall insulation inside the 

stator core 

e12 Erosion of the semiconducting coating 

 

Based on expert experience feedback, maintenance tasks 

have been associated to them and their potential effects on 

the system have been estimated. Results are presented in the 

table 2. 

 

Table 2. Associated maintenance tasks and their potential 

effect on the system. 

ID Associated Maintenance Task 
Potential effect on 

system 

t6 
Stator re-winding (replacement) Reset stator winding 

failure mechanisms 

m31 
Stator lamination epoxy 

injection 

Slow down associated 

failure mechanisms 

m21 
Replacement of few stator bars Reset local failure 

mechanisms (extend 

the average useful life 

of the entire winding) 

Stator re-winding (replacement) Reset stator winding 

failure mechanisms 

e12 

Stator semiconducting 

insulation painting 

Inhibit failure 

mechanisms associated 

for a period of time 

4.3. Hydro generator Case Study 

4.3.1. Application of Prognostic Model 

In order to illustrate the methodology, this case study is 

proposed on a hydro generator where several measurements 

and inspection data are available. In this paper, the selected 

hydro generator will be called a. Table 3 presents the list of 

historical measurement, inspections and maintenance 

actions that have been carried out on hydro generator a. 

Table 3. Historical measurements, inspections and 

maintenance actions on hydro generator a 

Hydro generator a 

Date Diagnostic tools/Intervention 

1932-09 COMMISSIONING 

1989-01 Rewinding_without_uprate_and_core_replace

ment 

1992-01 Partial Discharge Analysis (PDA) 

2008-01 DC Ramp test (DCRT) 

2009-06 Partial Discharge Analysis (PDA) 

2010-05 Polarization/Depolarization Current test (PDC) 

2010-05 DC Ramp test (DCRT) 

2010-05 Semiconductor assessment 

2010-05 Visual Inspection 

2011-04 Phase Resolved Partial Discharge (PRPD) 

… … 

2014-02 Phase Resolved Partial Discharge (PRPD) 

2014-04 Ozone detection test 

2015-10 Partial Discharge Analysis (PDA) 

2016-03 Polarization/Depolarization Current test (PDC) 

2016-06 Semiconductor assessment 

2016-07 DC Ramp test 

 

To apply the model, the different assumptions and resulting 

algorithms described in the methodology are applied for 

each date of prediction. Five dates of prediction have been 

chosen: one for each year between 2010 and 2015. As an 

example, the year of prediction 2012 is described in detail in 

this case study. The model aims at predicting the occurrence 

of targeted states and then predicts the date when their 

associated maintenance tasks will be applicable. 

 State estimation in 2012: 

Based on existing diagnostic data in 2012, the detected 

active physical states and their activation intervals are 

shown in table 4 below. 
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Table 4. Active physical state in 2012 on the hydro 

generator and their activation intervals 

Hydro generator a in 2012 

ID Active state appellation 
Activation 

interval 

a1 Conductive contamination on coil 

ends or end-winding 

[1996 ; 2010] 

a3 Presence of dust [2002 ; 2010] 

e21 Iron core hotspot due to Eddy 

currents 

[2002 ; 2010] 

t2 Thermal shield [2006 ; 2010] 

m34 Buckling of stator iron core [2009 ; 2010] 

 

For the activation intervals, the upper limit corresponds to 

the detection date and the lower limit to the last date on 

which the state was detected inactive. Based on those results 

the failure mechanisms detection algorithm has been 

performed and the result can be visualized using graph 

visualization of the PN in figure 10. 

In 2012, five (5) physical states have been detected as active 

and twenty eight (28) as inactive on hydro generator a. 

Based on this, a total of thirty (30) failure mechanisms have 

been detected as active. In the figure 10, targeted physical 

states have been identified with a cross in the middle of their 

nodes. As an example, fourteen (10) of the active failure 

mechanisms lead to the targeted state t6, six (6) to targeted 

state m31 and only three (3) to the targeted state e12 in 

2012. 

 

Figure 10. State estimation in 2012 of hydrogenerator a 

 

 Failure mechanism propagation in 2012: 

All active failure mechanisms leading to the targeted 

physical states have been propagated using the PN 

algorithm. Transition times have been estimated based on 

rigorous elicitation process.  Aggregation of different expert 

estimation has been performed for this purpose. Their level 

of confidence has been taken into account in the aggregation 

process. Results of the failure mechanisms propagation and 

the resulted occurrence probabilities of the targeted states 

are presented in figure 11. 

 

Figure 11. Failure mechanism propagation of hydro 

generator a in 2012 until targeted states 

 

The prediction for a confidence interval of 50% for each 

targeted physical states are presented in table 5. 

Table 5. Prediction confidence intervals for each targeted 

physical states in 2012. 

Hydro generator a 

ID State appellation 

Predicted 

confidence 

interval 

t6 Thermal aging of ground wall 

insulation 
[2015 ; 2019] 

m31 Stator lamination insulation wear [2012 ; 2015] 

m21 Mechanical erosion of ground wall 

insulation inside the stator core 
[2017 ; 2020] 

e12 Erosion of the semiconducting 

coating 
[2017 ; 2020] 

 

 Predictive maintenance suggested in 2012: 

Then based on the predicted occurrence of the targeted 

states, some predicted maintenance tasks and their predicted 

dates of application have been proposed in 2012 and are 

presented in table 6. 

Table 6. Predicted suggested maintenance actions and 

related dates of application 
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Predicted date 

for 

maintenance 

applicability 

Suggested  

Maintenance Task 

Potential effect on 

system 

2015 
Stator lamination epoxy 

injection 

Slow down 

associated failure 

mechanisms 

2019 
Stator re-winding 

(replacement) 

Reset stator winding 

failure mechanisms 

2020 

Replacement of few 

stator bars 

 

Reset local failure 

mechanisms (extend 

the average useful 

life of the entire 

winding) 

Stator re-winding 

(replacement) 

Reset stator winding 

failure mechanisms 

2020 
Stator semiconducting 

insulation painting 

Inhibit failure 

mechanisms 

associated for a 

period of time 

 

Those steps are performed for each chosen date of 

prediction. 

4.3.2. Validation of prognostic algorithm 

In order to validate the prognostic algorithm predictions, the 

activation date of the targeted physical states have been 

identified from historical diagnostic data. The historical 

detection state of the targeted physical state resulting from 

the symptom analysis for each measurement dates are 

presented in table 7. 

Table 7. Historical detection state of targeted physical states 

on hydro generators a 

Hydrogenerator a 

Symptom 

analysis date 
t6 m31 e12 m21 

2010-05 0 x x x 

2010-05 x 0 0 0 

2010-05 x 0 0 0 

2011-04 x x x x 

… … … … … 

2014-02 x x x x 

2014-02 x x x x 

2014-04 x x x x 

2015-10 x x x x 

2016-03 x x x x 

2016-03 x 1 x x 

2016-06 x x 1 1 

2016-07 1 x x x 

 

In table 7, the symbol 0 means that the targeted states were 

detected as inactive at this date. The symbol 1 means that it 

has been detected active and x means that the measurement 

or inspection at this date does not allow to detect the state. It 

can be considered as unknown. As an example, in 2016-03, 

the Polarization/Depolarization Current test (PDC) has 

detected m31 active but was unable to detect t6, e12 and 

m21. 

Then based on those results we can deduce the observed 

activation interval of the different targeted states. Results 

are presented in the table 8. 

Table 8. Observed detection dates of targeted states from 

historical data 

Hydro generator a 

ID State appellation 

Historical 

activation 

interval 

t6 Thermal aging of ground wall 

insulation 

[2010 ; 2016] 

m31 Stator lamination insulation wear [2010 ; 2016] 

m21 Mechanical erosion of ground wall 

insulation inside the stator core 

[2010 ; 2016] 

e12 Erosion of the semiconducting 

coating 

[2010 ; 2016] 

 

In this case study, all targeted physical states have been 

detected as active in 2016. The last date when they have 

been detected as inactive was 2010 for all of them. 

The validation of the prognostic algorithm for the date of 

prediction from 2010 to 2015 is presented in figure 12. 

Results show the evolution of the prediction for each time 

prediction (boxplot). As new diagnostic data becomes 

available, the algorithm updates predictions by computing 

again the diagnostic and prognostic algorithms. The dotted 

lines illustrate the observed detection date and the grey area 

the observed interval of possible activation. 
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Figure 12. Observed activation intervals VS predicted 

activation intervals for targeted states 

 

Results show that all predictions stay within the observed 

activation intervals for a confidence interval higher than 

80% (boxplot lines). The prediction with a confidence 

interval of 50% stay in the acceptable zone for the date of 

prediction from 2010 to 2015 for physical state m31 and 

until 2013 for physical state t6. From a general perspective, 

the prediction has been closer to the detection date from 

2010 to 2012. The uncertainty range of predictions goes 

approximately from 9 years to 6 years for a confidence 

interval of 80% and from 2 years to 4 years for a confidence 

interval of 50%. 

As this study is conducted in 2018, the hydro generator is 

still under operation and no failure mode has been reached 

so far. In addition, no maintenance actions have been carried 

out on the hydro generator so far from 2010. 

5. DISCUSSION 

From the point of view of the predicted maintenance, the 

results seem consistent with observed behavior of the hydro 

generator a from 2017 to 2018. Indeed, in 2012, the model 

has suggested the realization of a minor maintenance action 

from 2015 and major maintenance actions starting from 

2019. The generator has not experienced a failure to date in 

2018. In addition, according to records of interventions, no 

major maintenance has been carried out since 2010. Thanks 

to the proposed model, decision makers can move from a 

wide range of possible maintenance actions to a selection of 

specific maintenance actions that can have a positive effect 

on the system. As an example, the model could have 

extended the life of the equipment by suggesting an epoxy 

injection into the stator laminations from 2015. In cases 

where a suggested maintenance action is performed, the 

state of the system will be impacted. Thus, other suggested 

maintenance actions that follow may not be more relevant. 

Future work can be considered to estimate more accurately 

the effect of maintenance actions on the system in order to 

suggest successive scenarios of maintenance actions. 

Moreover, in this paper, the model enables to predict a 

minimum applicability date of a specific maintenance 

action.  Some further work could be conducted to predict a 

maximum date when the maintenance action must have 

been performed to avoid failure or to mitigate a high risk of 

failure. 

In terms of the results of the prognostic algorithm, the width 

of uncertainty ranges comes from two factors: the 

estimation of the state of the system (state activation 

intervals) and the propagation of the failure mechanisms 

(range of uncertainties of transition times). Firstly, in this 

study case, the intervals of inspections of the different 

diagnostic tools are significant and are carried out at the 

scale of one year or several years. Thus, the potential 

activation intervals of physical states are important. This 

induces large uncertainties in the state estimation of the 

system. For example, in table 4, based on 2012 data, state 

e21 has a potential activation interval of 8 years. 

Then, from the point of transition times, because they were 

estimated based on an elicitation process, it is possible that 

the lack of knowledge of the experts and various biases such 

as overconfidence may have induced transition times not 

completely representing the reality of the generation fleet. 

CONCLUSION 

In conclusion, a predictive maintenance approach for 

complex equipment has been proposed in this paper. The 

model is based on a causal graph that identifies and 

discretizes all possible failure mechanisms that can occur on 

the equipment. As diagnostic data are associated with the 

discretized degradation states, the graph is dynamic on data. 

In order to develop the prognostic model,  assumptions have 

been firstly defined based on expert knowledge. Thus, a 

customized PN model has been defined to propagate active 

failure mechanisms from their initial states to some targeted 

degradation states where maintenance tasks are associated.  

Once targeted states are predicted to be reached the 

application date of their maintenance tasks can thus be 

predicted. Results showed that the model makes it possible 

to predict specific maintenance actions according to failure 

mechanisms detected as active by the diagnostic tools. In 

addition, the model predicts a date when maintenance 

actions may be applicable in the sense that they will begin to 

have an effect on the system. The validation results 

presented in Figure 12 show that the prognostic model is 

dynamic on the diagnostic data. Moreover, it accounts for 

both the uncertainties contained in the state estimation and 

in the propagation of the mechanisms. 
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