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ABSTRACT 

A wind turbine is a representative machine with varying 
rotational speed because unpredictable natural wind is a 
locomotive force of the rotation. Major mechanical 
components of the drive train such as bearings encounter 
varying and irregular loadings in accordance with the 
variation of the rotational speed. Therefore, the varying and 
irregular loadings are a critical factor to be considered for the 
life prediction of the bearings. The degradation processes for 
constant and varying loadings are measured in order to 
evaluate the characteristics. An efficient index to stand for the 
state of bearing is also suggested in the combination of 
measured vibration, temperature and torque. Then, two 
methods, which can be used with and without model 
information respectively, are proposed to predict the life in 
the case of varying loading. The proposed methods are 
validated for the several experimental results and expected 
for the practical application of condition monitoring. 

1. INTRODUCTION 

An essential element to realize the rotational motion for most 
of machines is a lubricating element such as a bearing, which 
minimizes the friction. Bearings can be divided into fluid 
lubricated bearings that utilize the dynamic pressure of the 
fluid, and rolling element bearings with direct friction of the 
machine elements. Among these, a rolling element bearing 
used at a relatively small load reduces frictions through 
rolling motion between the inner and outer races. Then, the 
rolling element bearing is exposed to various failures or 
fatigue because of the direct contact between the rolling 
element and the inner/outer rings. Therefore, in order to 
improve the cost effectiveness of maintenance, the rolling 
element bearings have been the top priority for the failure 
diagnosis and the life prediction among the machine parts. 

In recent years, various studies have been proposed to predict 
the remaining useful life (RUL) in accordance with the results 
of real-time measurements. The first step in life prediction is 
to determine a state index that can quantitatively represent the 

state of the bearing (ISO, 2004). In recent researches, 
Boskoski (2015) used the root mean square (RMS) value of 
the bearing vibration as a state index. The well-known 
features such as kurtosis and fault frequency of bearing are 
also used for the prediction (Ali, 2015). 

The prediction of the state index, which is the last stage of 
bearing life prediction, can be performed by a simple curve-
fitting (Seo, 2017), using a filter (Xi, 2013), or obtaining a 
regression curve using various probability distribution 
models (Xi, 2011). Gebraeel (2005) proposed a method for 
predicting RUL, assuming model parameters of an 
exponential function as normal distributions. However, the 
above methods are only for the constant loading. Therefore, 
an additional method is necessary for the application of 
bearing in the wind turbine. 

In this paper, the analysis of degradation characteristics is 
carried out on the basis of actual degradation tests and the 
determination of a state index is suggested. Then, the concept 
of data acquisition to apply two prediction methods to a wind 
turbine is explained. In order to validate the performance of 
the proposed methods, RUL is predicted and the RMS errors 
are evaluated. 

2. CHARACTERIZATION OF DEGRADATION  

The most important information for the prediction of life is 
characteristics of degradation with respect to time. The shape 
of degradation signal with respect to time, and effect of 
various loading and environmental conditions are the 
required knowledge in order to predict life time perfectly. As 
the first step, degradation tests of bearings up to failure with 
constant loading and rotational speed are performed. Then, 
alternating loading is also applied on degradation tests for the 
same bearing model.  

2.1. Apparatus of Degradation Tests of Bearings 

Degradation tests of bearings are performed in the laboratory 
by the many research teams (CWRU, 2017; NASA, 2017; 
KSPHM, 2018). In general, radial force is applied into 
bearing with the rotation of a shaft. At that time, some 
physical parameters such as vibration and temperature are 
measured. In this research, vibration, temperature and torque 
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for the rotation are chosen as measured parameters. Radial 
and axial forces are made by feedback controlled hydraulic 
actuators. A pair of bearings as test specimens is located on 
the both ends of a rotating shaft. Another pair of bearings as 
support bearings is installed in the middle of the shaft so as 
to guarantee stable force exertion. If radial and axial actuators 
apply _r actF  and _a actF  in this layout, then each of test 
bearings is loaded by _1/ 2r r actF F=  and _a a actF F= , 
respectively. The vibrations of two testing bearings are 
measured by accelerometers with respect to axial direction, 
respectively. Temperatures on the surface of the outer race 
and torque to rotate the shaft are also acquired. Figure 1 
shows a conceptual diagram and locations of sensors for the 
degradation test. Detailed specifications of test bearing are 
summarized on the Table 1. 

 
Figure 1 Apparatus of Degradation Tests of Bearings 

 

Table 1 Specifications of test bearing 
Inner diameter 30 mm 
Outer diameter 72 mm 

Width 20.75 mm 
Static loading rate (ref. ISO 281) 60 kN 

Dynamic loading rate  (ref. ISO 281) 59.5 kN 
 

2.2. Determination of State Index 

Representative physical parameters, which show the state of 
bearing for prediction of life, are vibration, temperature, 
acoustic emission, ultrasonic, thermography and so on (Zhou, 
2016). If simple diagnosis and prognosis are carried out, only 
one of the above parameters might be used as a single state 
index. But a combination of the above parameters is more 
effective to represent the accurate state. The uncertainties (or 
hidden characteristics) are complicated phenomenon and 
they are not easy to be identified analytically and 
experimentally. Therefore, utilization of various measurable 
parameters can guarantee to reduce various uncertainties 
which are originated from environmental condition, loading 
and measurement equipment (Sankararaman, 2015). 

Figure 2 shows root mean square (RMS) of vibration with 
respect to time when constant forces are applied to bearings. 
As time goes by, magnitude of vibration becomes larger 
monotonically. However, the slope and change of increase 
are random and there are some peaks whose cause is not 
identified yet. Fault frequencies of bearing are good for 
diagnosis but RMS is simple and sufficient to represent 
amount of degradation. Figure 3 also shows operational data 
of bearing such as temperature and torque. In initial stage, the 
overshoots of temperature and torque exist before it becomes 
steady-state. After about 17 hours, temperature of bearing 
become increasing a little, and soar of temperature happens 
at the end of degradation test. Because vibration, temperature 
and torque show the degradation trend of a bearing, a 
combination of them can be used as a state index of the 
bearing. 

 
Figure 2 Root Mean Square (RMS) of Vibration 

 
Figure 3 Operational Data of Bearing Degradation 

 

An efficient method to consider all of vibration, temperature 
and torque is to use a weighted linear combination like below 

 a b cSI w V w T w Tor= × + × + ×  , (1) 
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where V , T  and Tor  are normalized RMS of vibration, 
temperature and torque, respectively. Since actual measured 
values have different units, it is necessary to normalize the 
measured value. If weighting factors ( aw , bw  and cw ) has, in 
addition, any values from 0 to 1, the state index (SI) can be 
assumed as less than 1. Then, a unity of SI can be defined as 
the end of life, which is a reference value to predict the life 
of bearing. 

Before determining weighting factors ( aw , bw  and cw ), a 
degradation model has to be chosen. The degradation model 
is a mathematical model of a state index for the prediction of 
life. In this paper, an exponential function with respect to 
time is selected among the various degradation models 
because the exponential function is easy to be manipulated 
and applied in the case of the normal distribution. The 
exponential function is defined by 

 ( ) ( ) btSI t f t ae cε+= = +  , (2) 

where a , b  and c  are model parameters which are 
expressed as probability distributions, and ε  stands for 
measurement noise. ε  is also defined as a probability 
distribution. 

When the state index is assumed to be an exponential 
function, the weighting factors are determined by 
optimization, in which the state index has the highest 
correlation coefficient with the exponential function. The 
number of degradation tests is N , the life time of ith test 
specimen is iLT , and a measured state index, which is made 
by a weighting factor, during the degradation test can be 
represented by a vector form as 

 ( ) ( ) ( ){ }0 1
T

i i i i iSI SI SI LT=SI  .  (3) 

Each element of the above state index vector can also be 
expressed like Eq.  (2) such as 

 ( ) ( ) ( ) ( ){ } ( )expSI SI SI SI
i i i if t a b t c= + .  (4) 

Vector form of Eq. (4) from 0 to iLT  is  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 1SI SI SI
i i i i if f f LT=SIf   . (5) 

The correlation coefficient between Eqs. (3) and (5) is 
calculated by 

 
( )

( ) ( )

T
i i

i T T
i i i i

r
⋅

=
⋅ ⋅

SI

SI SI

f SI

f f SI SI
.  (6) 

Optimization by the below equation for N  degradation test 
results can be performed by various combinations in terms of 

aw , bw  and cw , and weighting factors( aw , bw  and cw ) are 
determined. 

 
0 , , 1 1

arg max
a b c

N

i
w w w i

r
< < =

∑   (7) 

3. LIFE PREDICTION OF BEARING IN WIND TURBINE 

3.1. Concept of Bin for Condition Monitoring of Wind 
Turbine 

Because a wind turbine is forced by natural wind, the 
rotational speed of the wind turbine, which is determined by 
wind speed, continues to vary. As damage detection methods 
of a rotating machine were generally developed for constant 
speed, an additional procedure to the condition monitoring 
and diagnosis is needed in order to apply it to the wind 
turbine. In this paper, the concept of bin is chosen as a tool to 
consider the characteristic of varying rotational speed. The 
bin was proposed by IEC 61400-25-6 to implement the 
efficient triggering for storing data of condition monitoring 
system (CMS) as it is shown in Figure 4. 

Bin is a statistical term to represent a range of a variable. If a 
variable stays within a selected range, which is called as a 
bin, for a certain term, we can consider that the variable 
belongs to the bin. Similarly, if operational condition of a 
wind turbine stays within a range defined by operator for a 
certain term, the states of the wind turbine can be considered 
as being quasi-stationary although real operational conditions 
of the wind turbine continue to vary in accordance to the 
speed of wind. If the concept of bin is applied to the condition 
monitoring of a wind turbine, the condition monitoring is not 
always carried out for all the operational conditions. Instead, 
the condition monitoring is executed when an operational 
condition, which is exemplified by generated power of the 
wind turbine in Figure 4, stays in the bins for a certain term. 

 
Figure 4 Concept of Power Bin (IEC 61400-25-6) 

 

By using above the concept of bin, the prediction of life is 
realized as if wind turbine is a rotating machine with constant 
load and speed. Therefore, the techniques of life prediction in 
the case of constant load and speed are able to be applied to 
a rotational machine with variable speed.  
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3.2. Curve-fit Approach 

One of the simplest way to predict the life of bearing is to 
make a fitting function instantly with most recent data (Seo, 
2017). After a term of time for fitting is specified, curve-
fitting with an exponential function as Eq. (2) is carried out. 
The fitted function from the curve-fitting reveals a possible 
trajectory of state index (SI) from current time to infinite time. 
Therefore, SI at the current time can be estimated and 
remaining useful life (RUL) is predicted by calculating the 
time that the fitted function is equal to a unit, which means 
the end of life. 

In this method, the time term used in fitting should be 
specified. If the time duration is too short, prediction result 
becomes much sensitive to instant variation. If the time 
duration is too long, the prediction result do not change and 
measurements become meaningless. In this paper, the best 
time duration for fitting is chosen by trial and error. However, 
the development of a systematic method is needed for 
application of the proposed method in the future. 

3.3. Bayesian Approach 

There exist many methods to estimate a probabilistic variable 
( y ) statistically. One of effective methods is Bayesian 
estimation by considering current measured data and prior 
information. This method calculates a maximum point of 
conditioned probability distribution with respect to measured 
data such as 

 ( )arg max Pr |y y x= ,  (8) 

When prior distribution, ( )Pr y , of estimated variable exists, 
a posterior distribution, ( )Pr |y x , can be calculated by so-
called Baye’s rule like below 

 ( ) ( ) ( )
( )

Pr | Pr
Pr |

Pr
x y y

y x
x
×

=   (9) 

If the intercept c  in degradation model of Eq. (2) is assumed 
to be a known constant, logarithm of both sides of Eq. (2) can 
be written as (Gebraeel, 2005) 

 
( )
( ) ( )

ln ln

'

L y c a bt

n b n t c

ε

θ

= − = + +

= + +
  (10) 

where ( )' nθ  and ( )b n  are nth time step(current) degradation 
model variables. It is assumed that ( )' nθ  and ( )b n  have 
normal(Gaussian) distribution with mean values of ( )0 nµ  
and ( )1 nµ , and standard deviations of ( )0 nσ  and ( )1 nσ , 

respectively. In this paper, ( )0 nµ , ( )1 nµ , ( )0 nσ   and 

( )1 nσ  are expressed as 0µ , 1µ , 0σ  and 1σ  for simplicity, 
respectively. 

On the other hands, if ( )' nθ  and ( )b n  are partly dependent 
to each other, a joint probability density function is defined 
by 
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  (11) 

where 0ρ   is correlation coefficient of 'θ  and b . Similarly, 
it is assumed that ε  in Eq. (2) has a normal distribution with 
zero(0) mean and standard deviation of σ  like below 

 ( ) ( )2

2 2

'1 1| ', exp
22

L bt
l L b

θ
ε θ

πσ σ

  − −  = −  
    

  . (12) 

Eq. (11) is prior distribution of model parameters in Eq. (2), 
and then a posterior distribution can be obtained by 
manipulating Equation (12), which is a likelihood function, 
such as 

 ( ) ( ) ( )', | | ', ',p b L l L b bθ θ π θ∝ × .  (13) 

If the posterior distribution like Eq. (13) is also a normal 
distribution, model parameters of the posterior distribution 
such as mean and standard deviation values are written as 
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The new model parameters from Eqs. (14), (15), (16) and 
(17) are estimated and then predicted model variable 

( )' 1nθ +  and ( )1b n +  are obtained by determining mean 
values as predicted values.  

4. EXPERIMENTAL EXAMPLES 

4.1. Degradation Tests with Constant Load and Speed 

Degradation tests of 14 samples in the case of constant load 
and speed (Table 2) are performed and the life of each bearing 
is predicted by proposed methods in the previous sections. 
Although the conditions of constant load and rotating speed 
are not the same as those of a real wind turbine, the model 
parameters, which are acquired in the constant conditions, 
can be applied to the variable loading case if the monitoring 
for the wind turbine is executed by using the concept of bin.  

 
Terminal condition of degradation test, which is listed on 
Table 3, is set in order to protect the equipment and consider 
operational range of machine elements. Moreover, each of 
the terminal conditions is used as a reference value to 
normalize the measured value which are described in Eq. (1). 
Table 4 shows the weighting factors to consist of state index, 
which is determined by optimization in Eq. (7).  Figure 5 
shows state indexes of 14 samples with the weighting factors 
in Table 4. It is shown that each of state indexes has much 
difference because there are uncertainties (hidden 
characteristics) that originate from manufacturing tolerance, 
variation of environment, assembly error of test equipment 
and so on. Therefore, curve fitting and Bayesian approach are 
effective to predict the life of bearing.  

Figure 6 and Figure 7 show histograms and fitted probability 
distributions of model parameter in Eq. (1) for 14 degradation 
samples. Even if scattering exists, their distributions are 
assumed to be normal distribution, and identified model 
parameters are shown in Table 5. 

 

 

Figure 5 State Indexes with Constant Load and Speed 

 

Figure 6 Distribution of Model Parameter( 'θ  ) 

 

Figure 7 Distribution of Model Parameter( b ) 
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Table 2 Condition of Degradation Test with constant 
load and speed 

Axial load Radial load Rotating speed 
15 kN 10 kN 1,000 rpm 

 
Table 3 Terminal Condition of Degradation Test 

Vibration RMS Temperature Torque 
8 m/s2 200 °C 20 N-m 

 

Table 4 Weighting Factors of State Index 
aw  bw  cw  

1.0 0.1 0.1 
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Figure 8 shows prediction results of a sample among 14 
samples. In Figure 8, the results of curve-fitting approach is 
made when fitting term is 80 minutes (40 data points). 
Although the error of prediction is quite large, the error 
becomes smaller as operational time passes by. Since the 
curve–fitting approach is more sensitive to an instant 
variation, the prediction result has some rapid changes. If 
fitting term is elongated, the rapid changes would become 
smoother but insensitive to any external variation. If the 
external variation is an instantaneous fluctuation such as 
measurement noise, its influence on the life is insignificant, 
and the insensitivity (or robustness) of prediction method is 
better. On the other hands, if the variation causes a permanent 
effect, sensitive prediction is good for an accurate result. 
Therefore, the fitting term is a hyper parameter to be 
determined for the sake of proper prediction. But, any other 
information such as model parameters is not required for the 
curve-fitting approach. It is advantageous when a simple 
prediction method is needed or sufficient model information 
does not exist. 

Figure 8, in addition, shows a prediction result by Bayesian 
approach for the same sample. While the RUL are 
underestimated, the prediction error becomes smaller like the 
curve-fitting approach. However, root mean square error 
between true RUL and predicted one is much smaller than 
that of curve-fitting approach. Because Bayesian approach 
demands more statistical model parameters such as Table 5 
than curve-fitting approach, the accuracy is superior.  

 
Figure 8 Prediction Results for Constant Load and Speed 

 

4.2. Degradation tests with two-step variable load and 
speed 

Because condition monitoring of a wind turbine is performed 
by using the concept of bin, degradation tests with two-step 
variable loading and speed are executed. Test conditions are 
shown in Table 6 and alternate time is 60 minutes. 
Degradation tests of 19 samples are carried out and Figure 9 
shows one (sample No. 6) of 19 samples’ state indexes which 
are calculated with weighting factors of Table 4. Because 
state indexes in both bins show increasing trend by 
degradation, curve-fitting approach can be applied to the 
prediction of life. Similarly, since test conditions in Bin I are 
the same as the loading and speed in the previous constant 
condition, the state index of Bin I is possible to predict the 
life by using the Bayesian approach with the model 
information in Table 5. 

 

 
Figure 9 State Indexes of Degradation Tests with Two-step 

Load and Speed 
 

Figure 10 is prediction results of both curve-fitting and 
Bayesian approaches for two-step load and speed. The 
predictions are carried out only for Step I load, which is 
equivalent to Bin I, in order to use the model parameters in 
Table 5. Even if the conditions of loading and speed alternate, 
both predictions show reasonable results because the life is 
influenced by cumulative loading. That is similar to famous 
Miner’s rule in metal fatigue. Therefore, it is expected that 
the life prediction of a mechanical component for the random 
loading of a wind turbine is possible with the concept of bin 
in terms of data acquisition and analysis. 
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Table 5 Statistical Model Parameters for Bayesian 
Approach 

00µ  -3.3 10σ  0.02 

10µ  0.24 00ρ  -0.2 

00σ  2 'σ  0.5 
 

Table 6 Condition of Two-step Load and Speed 
 Axial load Radial load Rotating speed 

Step I 
(Bin I) 15 kN 10 kN 1,000 rpm 

Step II 
(Bin II) 1 kN 1 kN 750 rpm 

 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

7 

Life predictions of several samples for two-step loading 
condition are performed and their results are shown in Figure 
11. Generally, the Bayesian approach is more advantageous 
with respect to the accuracy of the prediction because prior 
information is important for the prediction. But the complete 
predictions of all the cases are not possible. If the prior 
information is used without any updating, it is difficult to 
predict in the case of a bizarre sample. Therefore, a further 
study such as an effective updating method is needed to 
manipulate an outlier of the model. 

 
Figure 10 Prediction Results for Two-step Load and Speed 

 

5. CONCLUSION 

A wind turbine suffers various loadings and rotational speeds 
due to unpredictable natural wind. The life prediction of a 
bearing under the variable loading condition is worthy for 
condition-based operation and maintenance. In this paper, 
degradation characteristics of bearings for constant loading 
and speed in terms of time are analyzed, and an exponential 
function is used as a degradation model. A weighted linear 
combination of measured values is suggested as a state index 
to express the degradation model. Two methods such as 
curve-fitting and Bayesian prediction with the concept of a 
bin are proposed. While the curve-fitting is a simple method 
without any model information, the Bayesian prediction with 
model information shows more accurate results. Because 
both proposed methods are complementary, It is expected 
that the two methods are useful to predict the life of a bearing 
practically.  

 

 
Figure 11 Performance of Prediction for Two-step Load and 

Speed 
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