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ABSTRACT 

Many articles have been published utilizing machine learning 

algorithms for condition-based maintenance through the 

analysis of vibration signals. One extensively researched 

topic is the classification of fault types in rolling bearings. 

There is a fairly widespread problem in the evaluation of 

these learning algorithms, where the separation of examples 

between the test and training sets is incorrect, leading to an 

optimistic conclusion about the algorithm's performance even 

when it is not the case. In this article, we will review this issue 

and explain how the data should be properly divided between 

the test and training sets to avoid this occurrence. 

1. INTRODUCTION 

Condition-based maintenance of rotating machinery, through 

the analysis of vibration signals, can significantly reduce 

maintenance costs and also help prevent catastrophic 

accidents (Matania et al., 2024; Randall, 2021). Over the 

years, a wide variety of machine learning algorithms have 

been developed to enhance traditional signal processing 

methods for vibration analysis (Lei, 2017) .  
 

One of the topics extensively explored in the field is the 

classification of fault types in bearings using machine 

learning algorithms (Lei et al., 2020). In this task, the 

algorithm is required to predict the fault type from four 

possibilities for a given input record: healthy condition (i.e., 

no fault), fault in the inner race, fault in the outer race, or fault 

in the rolling element. To achieve this, the algorithm is 

provided with examples of input records with various fault 

types during the training phase, and it predicts the fault type 

for new input records during the testing phase.  

 

A wide variety of machine learning algorithms have been 

applied to this task. The first type comprises classical 

machine learning algorithms, where a domain expert extracts 

correlated features related to the fault, and the learning 

algorithm learns the relationship between these features and 

the fault type (Shalev-Shwartz & Ben-David, 2014c). The 

second type, developed later during the third wave of deep 

learning, utilizes deep neural networks to address this 

problem. Unlike classical algorithms, the neural network 

autonomously learns features that connect the vibration 

signals to the fault type, essentially eliminating the need for 

a domain expert (Goodfellow et al., 2016). In both types of 

learning algorithms, many studies incorrectly split the 

training set and the test set, leading to significant test-training 

leakage (Kapoor & Narayanan, 2023) that results in 

inaccurate, overly optimistic performance evaluations of the 

examined algorithms (Hendriks et al., 2022). 

 

The first type of test-training leakage, which is also the more 

problematic of the two, involves splitting the same input 

record into different segments and randomly distributing 

them between the test set and the training set. Figure 1 

illustrates this type of splitting. This splitting is 

fundamentally flawed, as many features in the same input 

may be unrelated to the fault type, causing the learning 

algorithm to inadvertently learn them. Often, when 

disassembling the test rig to change the tested bearing, there 

is a change in the vibration signature unrelated to the fault 

type at all. For example, researchers from the SKF group 

found evidence of this phenomenon in a study on fault 

severity assessment (Liefstingh et al., 2021). They 

demonstrated that the learning algorithm learned features 

from the vibration signature related to the transfer function of 

the test rig instead of information related to the fault. In such 
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a case, when segments from the same record are divided 

between the training and test sets, the learning algorithm may 

seem to predict the fault type well, although it actually relates 

the segments from the same records based on the 

characteristics of the transfer function. 

 
Figure 1. Illustration of random split of segments between 

the training and test sets. 

The second type of test-training leakage involves the random 

separation of different records of the same fault type with the 

same fault shape precisely between the test and training sets. 

Figure 2 illustrates this type of improper separation. Each 

fault type can exhibit a wide variety of shapes. For example, 

a fault in the outer race can manifest in numerous different 

shapes and sizes, potentially even an infinite number. In 

practice, the likelihood that the exact shape of the fault in a 

real-world scenario matches one of the faults the algorithm 

learned from in the training set is very low. Many datasets 

record each fault multiple times. Randomly distributing these 

records between the test and training sets is incorrect and 

does not represent reality. In such a scenario, the algorithm 

may learn features related to the shape of the fault rather than 

its type, leading to overly optimistic evaluated performances. 

Furthermore, in some cases, the records of the same fault 

shape do not include the assembly of the test rig. 

Consequently, the algorithm may learn features from the 

vibration signature related to the transfer function of the test 

rig rather than information related to the fault, similar to the 

previous case of random segment split. 

 
Figure 2. Illustration of random split of records between the 

training and test sets. 

Figure 3 illustrates the correct splitting for evaluation 

learning algorithms: all records of each fault shape are either 

sent to the test set or to the training set. Following this 

separation, each record can be further divided into smaller 

segments if necessary. In this approach, to achieve an 

accurate estimation of performance, it is recommended to use 

K-fold testing. For example, in this study, performance 

evaluation in the test is implemented using the leave-one-out 

procedure, which is an extreme form of K-fold testing. 

 
Figure 3. Illustration of split by fault shape between the 

training and test sets. 

Section 2 will discuss the datasets analyzed in the article, and 

Section 3 will cover the learning algorithms. Section 4 will 

demonstrate that indeed, both segment split and record split 

lead to optimistic results compared to the correct way of fault 

shape split. Section 5 will summarize the article and present 

the conclusions. 

2. TESTED DATASETS 

Two datasets that are frequently used for evaluating machine 

learning algorithms for fault classification in rotating 
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machinery are discussed in the article. The first dataset, Case 

Western Reserve University dataset (CWRU), is accessible 

via the link (Case Western Reserve University Bearing Data 

Center Website, n.d.) and is extensively described in the work 

by Smith and Randall (Smith & Randall, 2015). It is 

important to note that this dataset has several issues, as 

explained by Smith and Randall, yet for unknown reasons it 

is still widely utilized. The CWRU test rig is illustrated in 

Figure 4. The CWRU dataset comprises a total of 416 distinct 

records, but in practice, only 12 truly different faults exist. 

 
Figure 4. CWRU dataset test rig. Reproduced from (Case 

Western Reserve University Bearing Data Center Website, 

n.d.). 

The Paderborn University (PU) dataset also serves for the 

evaluation of various learning algorithms and is extensively 

described in the study of Lessmeier et al. (Lessmeier et al., 

2016). Our review of this dataset led to the conclusion that it 

also has several issues, such as unclear sources of 

interferences in the spectrum. In total, the PU dataset contains 

2493 recordings, with 26 truly distinct faults in practice.  

Figure 5 depicts the experimental setup. 

 
Figure 5. PU dataset test rig. Reproduced from (Lessmeier 

et al., 2016). 

3. TESTED ALGORITHMS 

In the current section, two learning algorithms will be 

described, which are used to demonstrate the effect of test-

training leakage. The first is K-nearest neighbors (KNN) 

(Shalev-Shwartz & Ben-David, 2014a) and the second is 

Random Forest (Shalev-Shwartz & Ben-David, 2014b). All 

tested algorithms used the following features: mean, 

variance, kurtosis and absolute mean. 

 

KNN operates by determining the class of a data point based 

on the majority class among its k-nearest neighbors within 

the feature space. The algorithm computes the distance 

between the given data point and its neighbors. The 

parameter K, denoting the number of neighbors taken into 

account, is a crucial factor that can significantly influence the 

model's performance. Small K values may result in 

overfitting, while large K values may lead to inadequate 

fitting of the training data. In the current study, K was set to 

1 to prevent additional issues with training-validation 

splitting. Figure 6 provides a visualization of the KNN 

process for classification. 

 

 
Figure 6. Illustration of KNN. 

Random Forest stands out as a robust ensemble learning 

algorithm widely applied in machine learning for 

classification tasks. It generates numerous decision trees 

during training and outputs the mode of the classes. The key 

innovation of Random Forest lies in its incorporation of 

randomness—each tree is trained on a random subset of the 

data, and during each split, a random subset of features is 

taken into consideration. This randomness aids in mitigating 

overfitting and enhancing the model's generalization 

performance. Furthermore, for classification, the predictions 

from multiple trees are consolidated through majority voting, 

resulting in a resilient and accurate final prediction. In the 

current case, the number of trees was set to 300. This is a 

standard number of trees intended to prevent overfitting. 

Once again, this parameter was not set based on the validation 

set to avoid additional issues with training-validation 

splitting. Figure 7 provides a visualization of the random 

forest process for classification. 
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Figure 7. Illustration of random forest. 

4. RESULTS 

The results of KNN and random forest on the two tested 

datasets, CWRU and PU, are depicted in Figure 8 for the 

three types of splitting: segment split, record split, and fault 

shape split. The results of the segment and record splits were 

determined using a 10-fold cross-validation technique to 

calculate the average accuracy. The fault shape split results 

were obtained through a leave-one-out procedure. 

Furthermore, to compare the performance with a degenerated 

algorithm, two lines were added to the figure representing 

predictions of the test examples in the fault shape splitting for 

CWRU and PU, based on the most prevalent label in the 

training set. This degenerated algorithm disregards the 

features and, for any new unseen examples, returns the mode 

of the classes from the training set. 

As can be seen from the figure, for the CWRU dataset, when 

changing from segment split to record split, the accuracy 

significantly decreases. For both datasets, when the correct 

splitting method is utilized, namely the fault shape split, the 

results are significantly worse. In the case of CWRU, they are 

even lower than the accuracy of the degenerated algorithm, 

which predicts the training mode constantly. 

These results demonstrate that incorrect random splitting 

leads to overly optimistic conclusions. For the CWRU 

dataset, based on segment split, it seems that the very 

straightforward approach of using simple signal features and 

classic machine learning algorithms like KNN and random 

forest enable achieving good accuracy, close to 90%. 

However, when the record split is applied, the results are 

much less optimistic, and when the correct method is applied, 

the results are worser than constantly predicting the training 

mode, indicating that both algorithms probably learn nothing 

related to the fault type. For PU datasets, even when record 

split is utilized, the results are still optimistic, and only when 

the correct splitting of fault shape is utilized can we again 

conclude that the algorithm did not learn too much 

information related to the fault type. 

 

 
Figure 8. Accuracy score for bearing fault type classification 

on CWRU and PU datasets by KNN and random forest for 

different split approaches. 

5. CONCLUSION 

Many machine learning algorithms have been suggested for 

vibration analysis of rotating machinery for condition-based 

maintenance. As demonstrated in this paper, improper 

splitting of data between the training and test sets may lead 

to test-training leakage and, consequently, to an overly 

optimistic evaluation of the machine learning algorithm 

performances. 

In the current study, this problem was tested on the prevalent 

task of fault type classification in rolling bearings. It was 

shown that when improper segment splitting is utilized, 

overly optimistic conclusions can be drawn regarding a 

simple approach that combines straightforward signal 

features with basic machine learning algorithms, as they 

achieve accuracy close to 90%. However, when the right 

splitting is utilized, reflecting the real scenario in which 

records of the exact same fault shape should not be present in 

both the training and test sets, the results are very poor and, 

in some cases, worser than constantly predicting the training 

mode, indicating that the algorithms have not learned 

anything. 

Three further comments regarding machine learning studies 

in the vibration analysis field are worth discussing. First, 

most of the currently available datasets, such as CWRU and 

PU, contain many contaminated records. The research 

community would benefit greatly from newer datasets 

without contaminated records, which would also encompass 

a broader range of fault shapes. Second, it is not clear why so 

many papers attempt to solve the problem of fault type 

classification in bearings, as classic approaches in signal 

processing are adept at solving it (Randall & Antoni, 2011). 

We recommend that future papers focus on addressing fault 
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severity and estimating remaining useful life tasks (Matania 

et al., 2023), or alternatively, focus on fault classification of 

components that currently lack well-established classic 

approaches. Another option is to examine cases where the 

signal-to-noise ratio is so low that signal processing 

algorithms are unable to classify the fault type. The last 

comment worth noting is that a maintainer or operations 

manager doesn’t really care if a bearing has a ball, inner, or 

outer race fault – as they will probably replace the entire 

bearing regardless. The more important issue is fault 

detection, determining whether the bearing is healthy or not. 

Fault classification is more interesting if it helps to better 

estimate severity or remaining useful life. 
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