
Robust Remaining Useful Life Prediction Using Jacobian Feature
Regression-Based Model Adaptation

Prasham Sheth1 and Indranil Roychoudhury1

1 SLB, Menlo Park, California, 94025, USA
psheth2@slb.com

iroychoudhury@slb.com

ABSTRACT

The accurate and robust prediction of remaining useful life
(RUL) is critical for enabling the proactive mitigation of fault
effects rather than reacting to them. For RUL prediction, one
must model nominal and faulty system behaviors and how
different faults progress over time. Complex data-driven ma-
chine learning (ML) models may capture both nominal and
fault progression by updating the model parameters at dif-
ferent stages. As new data are observed, these model pa-
rameters can be updated to keep the system model always
accurate. However, complete retraining of these models is
both data- and computation-intensive and unsuitable for dy-
namic, fast-changing environments requiring quick recalibra-
tion. This calls for efficiently adapting the model to new oper-
ating conditions or the system’s current state. One such effi-
cient way to recalibrate model parameters to newly observed
data using Jacobian feature regression (JFR) is presented in
Forgione, Muni, Piga, and Gallieri (2023), where a recurrent
neural network (RNN) models the current behavior of the dy-
namic system. Then, any subsequent deviation of observed
measurements and the RNN model is attributed to an “un-
acceptable degradation of the nominal model performance.”
To update the RNN model, Forgione et al. (2023) propose
augmenting the current model with additive correction terms
learned by implementing JFR on observed “perturbed sys-
tem” data. In this paper, we propose an automated online
framework to adapt the model efficiently to always reflect the
system’s current state and use it for accurate RUL prediction
and select JFR as one such adaptation technique. We extend
the implementation of JFR-based model adaptation to hybrid
models and demonstrate JFR to be more sustainable than the
other retraining methods. Finally, we showcase the applica-
tion of this approach to the oil and gas industry. A testbed that
simulates a digital synthetic oilfield is used to show the effec-
tiveness of this adaptation-based RUL prediction technique.

Prasham Sheth et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

1.1. Motivation

The accurate and robust prediction of remaining useful life
(RUL) is one of the most critical functions of prognostics and
health monitoring for assets. RUL is the time before a sys-
tem can no longer function nominally. Knowing how much
useful time a system has can help prevent having to react to
such a failure and plan steps to mitigate its effects, e.g., plan-
ning maintenance and repair, thereby supporting the seamless
operation of the facility.

Predicting RUL is a well-explored problem and can be imple-
mented using (1) model-based or science-based approaches,
(2) data-driven approaches that use available data but com-
pletely agnostic of scientific domain knowledge, or (3) hybrid
approaches that combine scientific theory with available data.
For accurate RUL prediction, a model must capture the nom-
inal behavior of the system as well as the progressively de-
graded behavior. In model-based approaches, multiple mod-
els can be developed for nominal and degraded system behav-
ior for different possible faults. A single, sufficiently com-
plex data-driven or hybrid model may capture both nominal
and degraded system behavior. One approach to building a
single model is to periodically update or adapt the model to
new system observations so as to reflect reality accurately.
Many possible ways are available in the literature that enable
this updating or adaptation of the model, such as retraining
of machine learning (ML) models, recalibration of model pa-
rameters based on some initially collected field data, and so
on. However, many of these approaches are computationally
expensive, have intense data requirements, and are unsuitable
for dynamic, fast-changing environments that need quick re-
calibration requirements.

1.2. Related Work and Their Challenges

Wang, Zhao, and Addepalli (2020) provide a well-structured
summary of the increasing interest in using deep-learning ap-
proaches, such as autoencoders, deep belief networks, recur-

1

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 739

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

rent neural networks (RNNs), and convolutional neural net-
works for RUL prediction. The authors present conventional
model-based as well as hybrid RUL prediction approaches
and provide an excellent summary of the scope of the research
development undertaken regarding RUL prediction.

To highlight a few works that focus on predicting RUL, Lei
et al. (2016) propose an approach that contains two modules:
(1) indicator construction, which fuses the information from
multiple features and constructs a health indicator that they
referred to as weighted minimum quantization error to corre-
late the machinery degradation, and (2) RUL prediction block
that uses a particle-filtering-based algorithm. Ma and Mao
(2021) propose a convolution-based long short-term memory
(CLSTM) for predicting the RUL of bearings. By showcas-
ing the ability of the CLSTM architecture to predict RUL ef-
fectively, they validate the effectiveness of using the spatial
and temporal features. Y. Zhang, Xiong, He, and Liu (2017)
showcase the use of an LSTM-RNN based method for pre-
dicting the RUL of lithium-ion batteries, highlighting the ap-
proach’s capability to capture the long-term dependencies of
capacity degradation in batteries.

A major challenge of the existing RUL prediction approaches
is that they are system-state-dependent; i.e., their effective-
ness in predicting RUL accurately is hinged on the assump-
tion that the system model accurately reflects the current and
future (degraded) system states. However, collecting data
representing the system in all possible scenarios is impossible
for many systems in real life, especially when these systems
are never allowed to degrade sufficiently. The data collec-
tion process for such a wide range of possibilities is also ex-
tremely expensive. Therefore, the availability of training data
for such models is a big bottleneck, and as soon as the sys-
tem goes into a level of degradation that is not represented
in the data, the chances of the model effectively predicting
RUL degrades exponentially. In such scenarios, having a dy-
namic model that adapts based on the system’s state becomes
necessary. Researchers have focused on developing different
approaches by using techniques such as transfer learning, do-
main adaptation, and modeling the degradation process. This
does not represent the exhaustive list of techniques but just
highlights the major approaches being explored.

Transfer learning is one technique for adapting the model to
use the previous learnings to improve generalization about
the new task. In the case of the RUL prediction, the task
remains the same but differs as the underlying data distri-
bution changes; hence, the model has to be “transferred” to
this new set of data points that belong to the new distribu-
tion. The change in distribution, as mentioned earlier, could
result from different operating conditions or different states
of the system because of the degradation or upgrades to the
equipment of the system. Domain adaptation falls within the
umbrella of transfer learning, wherein the main focus is to

help the model adapt from one or more sources of domains
to a target domain. Ding, Ding, Zhao, Cao, and Jia (2022)
introduce a multisource domain adaptation network for RUL
prediction of bearing under varying conditions. Their domain
adaptation strategy functions in two stages where the domain-
specific distribution is integrated with regressor adaptation.
A fusion of LSTM and domain adversarial neural networks
(DANN) to extract temporal information from the time-series
data and learn the domain-invariant features, thereby success-
fully addressing the challenge of distribution shifts in data
domains resulting from the different states of the systems is
proposed in da Costa, Akçay, Zhang, and Kaymak (2020).
Si, Hu, Chen, and Wang (2011) present an approach to pre-
dict RUL using a Wiener process with a nonlinear and time-
dependant drift coefficient. It, in particular, involves design-
ing a state-space model and using Bayesian filtering to up-
date the drifting function parameter. The method is signifi-
cant because of its potential application in online prediction,
which is one of the critical requirements for such an RUL
prediction framework. With different dynamics of the under-
lying system, determining the frequency of the updates is a
critical task. L. Liu, Guo, Liu, and Peng (2019) introduce
a data-driven framework for RUL prediction that integrates
sensory anomaly detection and data recovery and improve
RUL prediction by detecting sensory anomalies, recovering
data, and using this recovered data for more accurate pre-
dictions. Huang, Xu, Wang, and Sun (2015) focus on ad-
dressing nonlinear degradation trajectories and heterogeneity
in practical systems. They combine a nonlinear Wiener pro-
cess with an adaptive drift feature. Y. Zhang, Yang, Xiu, Li,
and Liu (2021) present an integrated technique that combines
the Wiener process for degradation modeling and an LSTM
network for forecasting degradation increments by learning
the long-term dependencies of the offline degradation model
and online observed degradation. Cheng et al. (2023) focus
on predicting the RUL of the machinery under varying work-
ing conditions. Their proposed approach uses dynamic do-
main adaptation by integrating dynamic distribution and ad-
versarial adaptation networks to predict RUL effectively. Pan,
Li, and Wang (2022) propose combining LSTM and particle
filter to predict the RUL for lithium-ion batteries under dif-
ferent stress conditions. They particularly leveraged transfer
learning to update the LSTM model to ensure generalizability
and then particle filter to capture the uncertainty. Siahpour,
Li, and Lee (2022) introduce consistency-based regulariza-
tion into the DANN training process. Consistency-based reg-
ularization helps to remove the negative impact of missing
information. Sun et al. (2019) present a deep transfer learn-
ing network based on spare autoencoder. They incorporate
three strategies — weight transfer, feature transfer learning,
and weight update — to improve adaptability and prediction
accuracy. Also, they showcased the network’s capability to
be trained on one tool and then being transferred to another
tool under operation for online RUL prediction. The use of

2

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 740

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

bi-directional LSTM (BLSTM) neural networks and trans-
fer learning for RUL estimation is explored in A. Zhang et
al. (2018). They address the challenges of insufficient fail-
ure progression samples in data-driven prognostics by train-
ing the model on different but related datasets and then fine-
tuning it with the real target domain dataset. J. Liu, Saxena,
Goebel, Saha, and Wang (2010) present an adaptive recur-
rent neural network (ARNN) model for predicting the RUL
of lithium-ion batteries. The model employs a dynamic state
forecasting approach using a neural network architecture that
adapts by optimizing the model’s weights using the recursive
Levenberg-Marquardt method.

1.3. Proposed Solution and Contributions

A better way to recalibrate model parameters to match model
predictions to the newly observed data using Jacobian fea-
ture regression (JFR) is presented in Forgione et al. (2023).
An RNN is used to model the dynamic system using avail-
able measurements. Then, as the system dynamics change,
it causes the nominal model to be inaccurate for predicting
the observed measurements in the presence of the perturbed
system dynamics. The core idea of their approach is to adapt
an existing RNN model, which was trained on data from a
nominal system, to perturbed system dynamics, not by re-
training the model from scratch, but by including an additive
correction term to the nominal model’s output. This correc-
tion term is designed to account for the discrepancies between
the nominal system and the perturbed system. In other words,
as an “unacceptable degradation of the nominal model per-
formance” occurs, Forgione et al. (2023) propose a transfer
learning approach to improve the performance of the nom-
inal model in the presence of perturbed system dynamics,
where the nominal model is augmented with additive correc-
tion terms that are trained on observed perturbed system data.
These correction terms are learned through JFR “defined in
terms of the features spanned by the model’s Jacobian con-
cerning its nominal parameters.” Efficient model adaptation
is achieved by using the JFR in the feature space defined by
the Jacobian of the model with respect to its nominal param-
eters. Forgione et al. (2023) also propose a non-parametric
view that uses the Gaussian process. This could be useful to
provide flexibility and efficiency for very large networks or
when only a few data points are available.

The contributions of this work are significant because they
offer a more efficient and effective way to keep data-driven
and hybrid models accurate when applied to dynamical sys-
tems that experience changes over time. We address some of
the challenges described in Section 1.2 by building upon the
method introduced in Forgione et al. (2023) as follows:

1. We present an automated approach to use adaptation tech-
niques for predicting RUL while ensuring system-state-
dependency of the models. Although JFR is used as the
model-adaptation technique in this paper, JFR can be re-

placed by any other model-adaptation algorithm without
any loss of generalizability.

2. We extend the implementation of JFR-based model adap-
tation to hybrid models that combine physics and data-
driven models. This is important (and even necessary)
as the representation of systems using data-driven mod-
els can become a bottleneck if the training data are lim-
ited, and there could be no guarantee that the data-driven
models follows the physics of the system behaviors in all
possible scenarios.

3. We highlight the lower carbon footprint of the JFR-based
adaptation technique instead of retraining the model com-
pletely using the standard transfer learning.

4. We modify the offline adaptation approach into an online
adaptation approach, which becomes critical to the PHM
systems, especially in RUL prediction. To enable online
adaptation, we use the anomaly detection output in order
to trigger the model-adaptation.

5. Finally, we also discuss the application of our JFR-based
model adaptation approach to assets relevant to the oil
and gas industry. In particular, we discuss the results
of applying the technique to a testbed that simulates a
digital synthetic oilfield.

1.4. Organization

The remainder of this paper is organized as follows. Section 2
formulates the RUL prediction problem, and our approach to
solve this. Section 3 includes the experimental setup and re-
sults, and finally, Section 4 concludes the paper and provides
directions for future work.

2. PROBLEM SETUP AND APPROACH

To set up the problem, let us denote a system by S, that typ-
ically takes in some inputs from discrete timesteps 1 to k,
i.e., x1:k, and has measured outputs y1:k. Let us assume that
M denotes a model representing this system S that takes in
the same inputs x1:k and outputs simulated measurements de-
noted by ŷ1:k. Due to differences between a model and re-
ality, such as modeling error, and measurement noise, y1:k

and ŷ1:k are seldom exactly the same, but a “good” model M
would generate ŷ1:k that is very close to the real outputs y1:k.
We define a threshold function T : ŷκ → {true,false}
that partitions the operational state of the system into nonfail-
ure and failure states based on observed measurements, such
that T (yκ) returns true when the system is in a failure state,
and false otherwise. If the time of prediction is denoted by
kP , then typically, we define end-of-life (EOL) predicted at
time kp as EOL(kP) = inf{k′ : k′ ≥ kP and T (ŷk)}, and
RUL at time kP is defined as RUL(kP) = EOL(kP)− kP .
To make EOL and RUL predictions, the model M is fed hy-
pothesized future inputs xkP :∞, also denoted by xfuture.

The modelM can be defined/trained using model-based, data-

3

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 741

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Training
System Deployed

Model
Training

Yes
Degradation

Detected?

No

Replace deployed model Adapted Model

 collected
from before

and after deployment

RUL
Estimator

RUL

 Hypothesized

Start collecting data Model learned and deployed Degradation started Degradation detected Model adaptation
Time

Assumed
interval

Assumed
interval

System

Figure 1. The workflow describing how the adaptation technique could adapt the model trained in the controlled setting
(nominal model) to predict RUL after the degradation in the system is detected.

driven, or hybrid (model-based + data-driven) approaches.
We use standard techniques to train or build such a model M
and train it to the input-output signals using the M .fit()
algorithm. Typically nominal x and y combinations can be
used to build M . Once the model is trained, it is deployed,
and the M.predict() algorithm passes new x through M
to generate new predicted y. M.predict(), when fed with
hypothesized future inputs x̂future, can predict estimated fu-
ture outputs ŷfuture which is then fed to the RUL Estimator
which passes ŷfuture through a threshold function T to com-
pute the RUL of the system.

Now, ideally, if there is no degradation in the system, the M
model would forever be able to correctly predict the future
observations of the system. However, this is never the case
as all engineered systems eventually encounter some sort of
degradation or failure. Also, there is no guarantee that the
operating conditions will remain constant throughout the sys-
tem’s life. One way to adapt to this changing system dynam-
ics would be to retrain the model for every new pair of x and
y; however, that process is computationally wasteful. Hence,
to intelligently call the model update, we develop and de-
ploy an M.drift detector() algorithm that compares
the predictions from M , and the sensors obtained from the
real system to see if there is a statistically significant drift be-
tween the predicted and observed sensors. If yes, then while
there are many reasons for which this drift could occur, we
attribute this drift to degradations in the system that are not
captured by the deployed model M anymore, and the param-
eters of this model need to be re-calibrated or adapted to the
newly observed sensors. If that is the case, then we call the
M.adapt() that helps us adapt the model to the new dynam-
ics using the newly observed data. We denote this adapted
model as Madapted. In our case, the JFR-based model adap-
tation algorithm is used to adapt the model to new data ob-
served. Madapted now replaces the model M , and the pro-

cess continues until a significant deviation is again detected
in the sensor readings predicted by M and the observed sen-
sor readings from the system. Figure 1 presents an overview
of the overall workflow.

As established, the data from the controlled environments
could be used to configure and train different models that
represent the system. Over time, as the system’s behavior
changes, the model becomes stale and its predictions are in-
consistent with the system’s behavior. As the system operates
in real life, different measurements are collected and stored in
some database. Using the designed approach, there are two
choices for model adaptation.

Condition-Based Model Adaptation (CBMA): The data are
continuously collected from the deployment environment in
this setting. The model and the system are constantly moni-
tored, and any kind of deviations are detected and tagged. If
the deviation is above the threshold, all the past information
collected before the deviation happens is used for adapting
the model. It is an offline adaptation technique as not all the
incoming information is directly used for adaptation. Rather
the adaptation is triggered based on the output of anomaly de-
tection. From an implementation perspective, for condition-
based model adaptation, we use data from a window com-
prising of ∆t time steps before and after the time at which
degradation was detected, where ∆t is a design choice. The
timeline at the bottom of Figure 1 visually depicts this.

Continuous Model Adaptation (CMA): In this scheme of
adaptation, there is no dependency on the anomaly detection
process. As and when a new measurement is recorded it is
used for adapting the model. This helps in the continuous
utilization of the incoming information.

While both CBMA and CMA methods enable the efficient
use of the incoming data to update the model continuously,

4

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 742

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

these two model adaptation methods have their pros and cons.
Specifically, CMA requires high computing power as the mod-
els are continuously adapted. Furthermore, observing a sin-
gle outlier can result in a deviation from the model’s behav-
ior, whereas it is not a persistent thing for the physical sys-
tem. On the other hand, CBMA requires dependencies on
the anomaly detectors and the storage systems where the data
needed for model adaptation are stored. CBMA also enables
us to quantify the model’s behavior change which could be
reflected based on the differences between the predictions of
the nominal model that is trained using the data from a con-
trolled setting, and the predictions of the adapted model that
is adapted using incoming data predictions.

Our proposed adaptation approach can be used for either CMA
or CBMA. Further, we have extended the offline model adap-
tation approach presented in Forgione et al. (2023) to hybrid
models that represent the dynamics of a system by leverag-
ing both first-principles domain knowledge and data-driven
ML approaches. Karpatne, Watkins, Read, and Kumar (2017)
presents physics-guided neural networks (PGNN), one such
example of a hybrid modeling approach. PGNN uses the first
principles model parallel to the data-driven components (e.g.,
RNNs). It could be helpful to directly use the first princi-
ple model even if it is not tuned and calibrated to the best
quality. Such developed hybrid models for the specific sys-
tems could be further coupled with the adaptation technique
to help us have a model that is always in close alignment
with the physical system. A model that is always closely
aligned with the physical system enables seamless deploy-
ment of different applications such as optimization, control,
forecasting, prognostics and health management, automation,
and decision-making, among others.

3. EXPERIMENTAL SETUP AND RESULTS

Digital Synthetic Oilfield Testbed Setup: Our testbed’s de-
sign is particularly chosen to mimic real-life oilfields. The
test bed has three DC motor pumps attached to three flowme-
ters. Each DC motor pump pumps the water (used in place
of oil) from the well to the eventual storage. The flowme-
ters measure the flow exiting the pumps. We also attached
a fourth flowmeter to calculate the aggregated flow from the
three pumps. Single and persistent faults are injected into
each of the pumps to represent the loss of efficiency. The
EOL condition for each pump is defined as the state when any
pump’s output flow dips below 0.15 units. The controllable
input in the case of each pump is the pump speed, and the
output measurement from the flowmeter would be the flow
rate. Since the input voltage determines the pump speed, the
voltage is considered the equivalent input variable for each of
the pumps. Figure 2 represents the internal structure of the
DC motor pump1.

1https://ctms.engin.umich.edu/CTMS/?example=
MotorSpeed\§ion=SystemModeling

Figure 2. The electric equivalent circuit of a DC motor.

Based on the internal structure of each pump, the state-space
model was designed for the testbed, considering the rota-
tional speed and electric current as the state variables. Af-
ter defining the established conditions to represent the system
parameters, this state-space model for the testbed was used
to simulate the operation of the three pumps in the oilfield.
Equations (1a–1f) summarize the representation of this digi-
tal synthetic oilfield testbed. In this setup, (Vp for pump p ∈
[1, 2, 3]) represents the voltage and hence the controlled pump
speed for each pump respectively (controllable inputs); (yp =
ωp, p ∈ [1, 2, 3]) represents the flow rate of each pump re-
spectively (system measurements); and the hidden state vari-
ables include (ωp, p ∈ [1, 2, 3]) that represents the angular
momentum of each pump respectively, (ip, p ∈ [1, 2, 3]) that
represents the current drawn for each pump respectively. The
inductance Lp, resistance Rp, and back electromotive force
constant kp for pump p ∈ [1, 2, 3] are the system parameters.

dω1

dt
=

1

L1
(V1 −R1i1 − k1ω1) (1a)

di1
dt

=
1

J1
(k1i1 −B1ω1) (1b)

dω2

dt
=

1

L2
(V2 −R2i2 − k2ω2) (1c)

di2
dt

=
1

J2
(k2i2 −B2ω2) (1d)

dω3

dt
=

1

L3
(V3 −R3i3 − k3ω3) (1e)

di3
dt

=
1

J3
(k3i3 −B3ω3) (1f)

There are multiple ways to model such systems. Neural state-
space formulation is one such approach that could be used to
model the system. This approach uses a couple of neural net-
works (NNs) to model state-transition and state-observation
models. The same could be represented using Equations (2a–
2b) where the function f represents the state-transition model
and function g represents the state-observation model. In this
neural state space formulation, once the model is trained, we

5

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 743

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Observation ModelState Transition Model

Figure 3. Schematic representation of neural state space
model to model each component independently using just the
inputs and hidden variable that affect it.

Observation ModelState Transition Model

Figure 4. Schematic representation of neural state space
model to model each component independently using all the
inputs and hidden variables from the entire system.

utilize the forward Euler method to walk forward and make a
closed-loop prediction for the next steps. Also note we are de-
noting the controllable inputs to the system by x, the hidden
state variables by h, and the observed system measurements
by y. The subscript t represents the time step to which these
values correspond.

ht = f(xt−1,ht−1) (2a)
yt = g(xt,ht) (2b)

Based on the described system for the testbed, we have a sce-
nario where we have three pumps as the system’s core com-
ponents. For each of these three pumps, we have one con-
trollable input and one measurement (output), and then inter-
nally, we have two state variables. Three major combinations
were used for these different variables in our experiments.
The summary and the description of why the particular selec-
tion was considered are described below.

1. One controllable input, one measurement, and three state
variables: This setting enables us to represent each pump
independently. Figure 3 represents this setting.

2. Three controllable inputs, one measurement, and seven
state variables: In this setting, we model each pump’s
measurement independently but still consider all the in-
put and underlying state variables. Figure 4 represents
this setting. This enables us to consider all system dy-
namics together and learn the dependence of each pump’s
output on the entire system.

3. Three controllable inputs and three measurements: As
shown in Figure 5, in this setting, we model the entire
system using a single model that considers all the input
variables and tries to learn the entire system by itself.

Figure 5. Schematic representation of the model when the
entire system is modeled using the inputs and measurements.

In the first two settings, since we are able to use the avail-
able information for the state variables, the neural state space
approach is used to model the system. There are existing
approaches (e.g., Sheth, Roychoudhury, Chatar, and Celaya
(2022)) that model the state-transition and state-observation
function separately using two independent networks and in a
joint setting where two networks are connected to each other.
In this setting, these functions are represented using a NN. We
also consider the measurement to be an unknown hidden state
variable that needs to be estimated. In such a functional way,
the state observation model becomes a passthrough function
to select the state variable representing the measurement. He-
nce, the state-observation function could be omitted as repre-
sented in Equation 3. This particular method helps us condi-
tion the model in such a way that it has to produce the correct
combination of the state variables as well as the measurement.
By penalizing the wrong predictions, the model is regularized
to adhere to the internal relations between state variables and
the measurements. This could also be thought of as the state
variables providing the regularization to the original model
that is penalized for any sort of inconsistencies between the
state variables and the measurement.

ht ∪ yt = NN(xt,ht−1,yt−1) (3)

The first two settings differ in the variables used by the NN
to represent the state-space formulation. Equations 4 and 5
represent the two settings, respectively. The superscripted i
represents the pump number to which different values corre-
spond.

hi
t ∪ yi

t = NN(xi
t,h

i
t−1,y

i
t−1);

i ∈ {1, 2, 3} (4)

hi
t ∪ yi

t = NN(x1
t ,x

2
t ,x

3
t ,h

1
t−1,h

2
t−1,h

3
t−1,y

i
t−1);

i ∈ {1, 2, 3} (5)

In the third setting, since the system is modeled as a whole,
we utilize an LSTM network to model the system, and all the
time dependence is captured through the LSTM network and
can be represented as shown in Equation 6.

y1
t ,y

2
t ,y

3
t = LSTM(x1

t ,x
2
t ,x

3
t) (6)

For all three settings, online and offline adaptation techniques
have been integrated to adapt the model. Since the faults are
injected independently into the pumps of the testbed, the sum-
mary table for the experimental results has four rows, one for
the nominal setting and the remaining three for settings cor-

6

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 744

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Table 1. Summary of experimental results (data-driven models). The metrics for all three pumps are shown separately under
the columns for RMSE and R2.

Scenario Fault Number of RMSE before RMSE after R2 before R2 after
Number Setting Models Adaptation Adaptation Adaptation Adaptation

1

Nominal 3 [0.01, 0.01, 0.05] - [0.99, 0.99, 0.50] -
Fault in Pump 1 3 [0.06, 0.01, 0.05] [0.01, 0.00, 0.01] [-0.54, 0.99, 0.50] [0.98, 0.99, 0.99]
Fault in Pump 2 3 [0.01, 0.06, 0.05] [0.00, 0.01, 0.01] [0.99, -0.60, 0.50] [0.99, 0.98, 0.99]
Fault in Pump 3 3 [0.01, 0.01, 0.02] [0.00, 0.00, 0.00] [0.99, 0.99, 0.78] [0.99, 0.99, 0.99]

2

Nominal 3 [0.01, 0.01, 0.02] - [0.98, 0.96, 0.92] -
Fault in Pump 1 3 [0.07, 0.01, 0.02] [0.00, 0.00, 0.01] [-0.98, 0.96, 0.92] [0.99, 0.99, 0.98]
Fault in Pump 2 3 [0.01, 0.07, 0.02] [0.00, 0.01, 0.01] [0.98, -1.22, 0.92] [0.99, 0.99, 0.98]
Fault in Pump 3 3 [0.01, 0.01, 0.05] [0.00, 0.00, 0.01] [0.99, 0.99, -0.04] [0.99, 0.99, 0.98]

3

Nominal 1 [0.01, 0.02, 0.04] - [0.96, 0.95, 0.7] -
Fault in Pump 1 1 [0.06, 0.02, 0.04] [0.01, 0.01, 0.01] [-0.49, 0.95, 0.7] [0.96, 0.99, 0.97]
Fault in Pump 2 1 [0.01, 0.05, 0.01] [0.01, 0.01, 0.01] [0.96, -0.14, 0.7] [0.99, 0.96, 0.97]
Fault in Pump 3 1 [0.01, 0.02, 0.03] [0.01, 0.01, 0.01] [0.97, 0.95, 0.53] [0.99, 0.99, 0.95]

Table 2. Summary of performance of physics-based model.
The metrics for all three pumps are shown separately under
the columns for RMSE and R2.

System Setting RMSE R2

Nominal [0.04, 0.04, 0.01] [0.81, 0.83, 0.99]

responding to the faults in three pumps, respectively.

Table 1 summarizes the results from the experiments to model
the system, where each model’s performance is evaluated us-
ing the root mean square error (RMSE) andR2 metrics, where

RMSE =

√∑N−1
i=0 (yi − ŷi)2

N
,

and
R2 = 1− sum squared regression (SSR)

total sum of squares (SST)
.

For the sake of simplicity, the aggregated results from the on-
line experiments are shown. Figure 6 shows the plots de-
picting the nominal model’s prediction, predictions from the
adapted model, and the actual system behavior when the fault
was present in Pump 1. It also shows the threshold value,
which could be used to predict RUL. Essentially, the time
when the flow value for any pump goes below the threshold
could be considered as the RUL for the system.

(Karpatne et al., 2017) introduced PGNN that enables us to
couple the physics-based model with an NN. The core idea
behind the coupling is to allow the NN to overcome the re-
gions where the physics-based model might make errors be-
cause of the lack of generalizability introduced by the poorly
estimated parameters. (Sheth et al., 2022) have successfully
demonstrated the advantages of integrating the PGNN with
neural state-space models. Figure 7 represents the original

structure of the PGNN and Figure 8 represents the modified
structure of PGNN for the neural state-space model as de-
signed in (Sheth et al., 2022)

Inspired by these works and the ensuring need for the gener-
alizability and scientific accuracy of the models representing
the system, we have implemented all three scenarios using
hybrid models that combine physics-based models with data-
driven models. Since we designed the testbed, we can access
the actual physics model used to collect the data. However,
to mimic the scenarios we have in real life where the exact
physics model is unavailable, we decided to use the functional
form of the original physics model. We estimated the parame-
ters after introducing some random noise to the recorded mea-
surements. In doing so, we estimated the parameters of the
physics model, which were not completely aligned with the
underlying system model. This mimics the scenario of hav-
ing a physics-based model that is not well-calibrated. Table
2 summarizes the performance of the physics-based model in
the nominal setting.

Based on the description of our neural state-space model and
the PGNN architecture, there are two major ways in which
the output from the physics model could be used:

1. Using the output estimate from the physics model as an
input to the data-driven model. This strictly represents
the PGNN architecture described in Figure 7. Figure 9
represents the same in our scenario.

2. Treating the output estimate from the physics model as
one of the state-transition variables in the neural state-
space formulation. This way, the output estimate from
the physics model is integrated into the state-transition
part of the neural state-space model. The output esti-
mate from the physics model from the previous timestep
is considered while predicting the actual output for the
current timestep. Also, the model is penalized for pre-

7

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 745

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Table 3. Summary of experimental results (physics-regularized data-driven models). The metrics for all three pumps are shown
separately under the columns for RMSE and R2.

System Setting RMSE RMSE after Adaptation R2 R2 after adaptation
Nominal [0.01, 0.02, 0.02] - [0.99, 0.94, 0.90] -

Fault in Pump 1 [0.06, 0.02, 0.02] [0.01, 0.01, 0.01] [-0.71, 0.94, 0.90] [0.98, 0.99, 0.99]
Fault in Pump 2 [0.01, 0.08, 0.02] [0.01, 0.01, 0.01] [0.99, -1.46, 0.90] [0.99, 0.99, 0.99]
Fault in Pump 3 [0.01, 0.02, 0.06] [0.01, 0.01, 0.02] [0.99, 0.94, 0.38] [0.99, 0.99, 0.90]

0 50 100 150 200
Time (s)

0.0

0.1

0.2

0.3

Flo
w

(un
its

)

Pump 1

0 50 100 150 200
Time (s)

0.0

0.1

0.2

0.3

Flo
w

(un
its

)

Pump 2

0 50 100 150 200
Time (s)

0.0

0.1

0.2

0.3

Flo
w

(un
its

)

Pump 3

True Nominal Model Adapted Model RUL Threshold Prediction Time
(a) Prediction done at time 102. The data before time 102 is used to adapt the models.

0 50 100 150 200
Time (s)

0.0

0.1

0.2

0.3

Flo
w

(un
its

)

Pump 1

0 50 100 150 200
Time (s)

0.0

0.1

0.2

0.3

Flo
w

(un
its

)

Pump 2

0 50 100 150 200
Time (s)

0.0

0.1

0.2

0.3

Flo
w

(un
its

)

Pump 3

True Nominal Model Adapted Model RUL Threshold Prediction Time
(b) Prediction done at time 152. The data before time 152 is used to adapt the models.

0 50 100 150 200
Time (s)

0.0

0.1

0.2

0.3

Flo
w

(un
its

)

Pump 1

0 50 100 150 200
Time (s)

0.0

0.1

0.2

0.3

Flo
w

(un
its

)

Pump 2

0 50 100 150 200
Time (s)

0.0

0.1

0.2

0.3

Flo
w

(un
its

)

Pump 3

True Nominal Model Adapted Model RUL Threshold Prediction Time

(c) Prediction done at time 221 (End of the simulation). The data before time 221 is used to adapt the models.

Figure 6. Flow estimates for the three pumps of the system representing the oilfield using the data from different timesteps
to adapt the model. The blue dotted line represents the estimates from the nominal model, the red dashed line represents the
estimates from the model after adaptation, and the black solid line represents the actual system behavior when the fault has
been introduced in Pump 1. The green dashdot horizontal line represents the threshold that could be used to determine the RUL
of the system. The vertical gray dashed line represents the present time till which the data from the system are observed.

dicting the wrong value for the output estimate from the
physics model. Thus, the output estimate for the physics
model works both as a signal for predicting the system’s

output from the model and provides a regularization ef-
fect for the model to be grounded to the physical relation-
ships captured by the physics model. We refer to this set-

8

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 746

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Figure 7. Structure of PGNN (Karpatne et al., 2017).

Figure 8. Schematic representation of PGNN for neural state-
space model as shown in (Sheth et al., 2022).

ting as physics-regularized neural network (PRNN) and
is shown in Figure 10. The predicted physics model esti-
mate is compared with the actual physics model estimate.
It is added to the loss function for training, and in the in-
ference phase, we can ignore this output.

In our experiments, we evaluated both techniques and we
coupled the physics model with the neural state-space mod-
els that we have for the second scenario. Table 3 summa-
rizes the results from the experiments for the PRNN model
corresponding to the second setup where the output of the
physics model is used as a regularization condition. Figure
11 showcases the prediction estimates when the nominal ver-
sion of the PRNN model is used for forward Euler simulation
to generate the predictions for all timesteps in the closed loop
setting and the prediction estimate for the same system state
with the adapted PRNN model. Conducting experiments with
PRNNs in this particular setting validates how the adapta-
tion technique has been integrated into the neural state-space
model, thus enabling the adaptation of hybrid models repre-
senting the system. Similar to the neural state-space model,
the estimates of the physics-based model could be integrated
into the list of controllable inputs for the LSTM model. When
experiments for this particular setting were conducted, simi-
lar to the neural state-space model, positive results were ob-
tained.

Based on the presented results in Table 1 and Figure 6, it is ev-
ident that the adaptation technique helps robustly adapt to the
fault scenario. Further, it helps slightly reduce the errors due
to the noise in measurements for the components without any
faults, thus improving the overall prediction. Comparing the
performance of the nominal model learned using the physics
with the PRNN (first row of Table 2 and Table 3), it could
be seen that the PRNN helps improve the performance over

Figure 9. Schematic representation of PGNN for neural state-
space model for our testbed.

Figure 10. Schematic representation of PRNN for neural
state-space model for our testbed.

the model learned just using the physics by eliminating the
error resulting from the suboptimally estimated parameters
from the physics-based model. Comparing the performance
of the data-driven model and PRNN from Table 1 and Table
3, it could be observed that the PRNN model helps ensure
the model follows the underlying physics and, hence, could
help improve the performance of the data-driven model. The
difference in the performance of nominal models for Pumps
1 and 2 between the data-driven model and PRNN is not sig-
nificant due to the simplicity of the components. However,
the improvement is evident in the case of Pump 3, which
was set slightly differently to drop its performance instanta-
neously after 3 minutes and then behave normally again. In
this case, the data-driven model’s performance degrades as
this noisy instance hurts the model’s training. However, since
the PRNN obtained the signal from the physics model, it was
able to stay on track with the training process. Further, based
on Table 3, and Figure 11, it is clear that the adaptation tech-
nique successfully adapts the learned PRNN model to faulty
scenarios.

To estimate the amount of Carbon Dioxide (CO2) produced
by the cloud or personal computing resources used to execute
the code, one may use the Code Carbon2 library. It helps
us track the carbon emissions for any computational process
by considering the region where the machine is located, the
amount of CPU and GPU consumed, the power used to run
the particular process, and the overall machine’s power con-
sumption. By tracking all of this, the library can compute an
estimate of the carbon intensity and energy consumption, thus
resulting in the final number representing the CO2 emissions.

Based on this library, Table 4 summarizes the power used as
well as the CO2 emissions in the process to train the model,
retrain it using the standard transfer learning approach, and
the adaptation of the model using the JFR method. For con-
ducting this study, experiments were hosted to the Google
Cloud Platform so as to have an accurate track of the com-
pute resources as well as the carbon intensity. Using the local
computer, the variables such as the particular power source

2https://codecarbon.io/

9

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 747

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

0 50 100 150 200
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

Flo
w

(un
its

)
Pump 1

0 50 100 150 200
Time (s)

0.0

0.1

0.2

Flo
w

(un
its

)

Pump 2

0 50 100 150 200
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

Flo
w

(un
its

)

Pump 3

True Nominal Model Adapted Model RUL Threshold

Figure 11. Flow estimates for the three pumps of the system representing the oilfield. The estimates are derived after running
the forward Euler simulation on the PRNN model. The blue dotted line depicts the estimates derived using the model before
adaptation (i.e.) in the nominal state. The red dashed line represents the estimates from the model after adaptation, and the black
solid line represents the actual system behavior when the fault has been introduced in Pump 1. The green dashdot horizontal
line represents the threshold that could be used to determine the RUL of the system.

being used and other local factors can skew the results.

Table 4. Summary of carbon emissions and power usage.

Phase Carbon Emissions Energy Consumed
Training 1.70× 10−4 2.84× 10−3

Retraining 1.70× 10−4 2.8× 10−3

Adaptation 1.37× 10−6 2.28× 10−5

From the results in Table 4, it is evident that the process of
adaptation results in far lower levels of carbon emissions as
well as less power usage. This is a clear advantage of using
the adaptation technique instead of the standard retraining-
based transfer learning as the carbon emissions are reduced,
improving the sustainability aspects of the developed solu-
tion; the duration for which both processes are run is also
much different where adaptation is approximately 10 times
faster and uses far less computational resources.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an automated online model adap-
tation framework for robust RUL prediction. We showcased
the JFR-based adaptation technique to adapt the models rep-
resenting the system for online RUL prediction and also ex-
tended this technique to adapt the hybrid ML approaches that
provide robust system representation. The results indicate
that this approach is much more computationally efficient than
retraining a data-driven model based on standard transfer learn-
ing methods. In the future, we would like to continue mod-
ifying the algorithms to relax some of the assumptions. We
would also like to extend this approach to switched hybrid
systems that combine discrete modes along with continuous
system dynamics in each discrete mode.

REFERENCES

Cheng, H., Kong, X., Wang, Q., Ma, H., Yang, S., & Chen,
G. (2023). Deep Transfer Learning Based on Dynamic
Domain Adaptation for Remaining Useful Life Predic-
tion Under Different Working Conditions. Journal of
Intelligent Manufacturing, 34(2), 587-613.

da Costa, P. R. d. O., Akçay, A., Zhang, Y., & Kaymak,
U. (2020). Remaining Useful Lifetime Prediction via
Deep Domain Adaptation. Reliability Engineering &
System Safety, 195, 106682.

Ding, Y., Ding, P., Zhao, X., Cao, Y., & Jia, M. (2022).
Transfer Learning for Remaining Useful Life Predic-
tion Across Operating Conditions Based on Multi-
source Domain Adaptation. IEEE/ASME Transactions
on Mechatronics, 27(5), 4143-4152.

Forgione, M., Muni, A., Piga, D., & Gallieri, M. (2023).
On the Adaptation of Recurrent Neural Networks for
System Identification. Automatica, 155, 111092.

Huang, Z., Xu, Z., Wang, W., & Sun, Y. (2015). Remaining
Useful Life Prediction for a Nonlinear Heterogeneous
Wiener Process Model With an Adaptive Drift. IEEE
Transactions on Reliability, 64(2), 687-700.

Karpatne, A., Watkins, W., Read, J., & Kumar, V. (2017).
Physics-Guided Neural Networks (PGNN): An Appli-
cation in Lake Temperature Modeling. arXiv preprint
arXiv:1710.11431, 2.

Lei, Y., Li, N., Gontarz, S., Lin, J., Radkowski, S., & Dybala,
J. (2016). A Model-Based Method for Remaining Use-
ful Life Prediction of Machinery. IEEE Transactions
on Reliability, 65(3), 1314-1326.

Liu, J., Saxena, A., Goebel, K., Saha, B., & Wang, W. (2010).
An Adaptive Recurrent Neural Network for Remaining
Useful Life Prediction of Lithium-ion Batteries. In An-
nual conference of the PHM Society (Vol. 2).

Liu, L., Guo, Q., Liu, D., & Peng, Y. (2019). Data-Driven

10

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 748

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Remaining Useful Life Prediction Considering Sensor
Anomaly Detection and Data Recovery. IEEE Access,
7, 58336-58345.

Ma, M., & Mao, Z. (2021). Deep-Convolution-Based LSTM
Network for Remaining Useful Life Prediction. IEEE
Transactions on Industrial Informatics, 17(3), 1658-
1667.

Pan, D., Li, H., & Wang, S. (2022). Transfer Learning-Based
Hybrid Remaining Useful Life Prediction for Lithium-
Ion Batteries Under Different Stresses. IEEE Transac-
tions on Instrumentation and Measurement, 71, 1-10.

Sheth, P., Roychoudhury, I., Chatar, C., & Celaya, J. (2022).
A Hybrid Physics-Based and Machine-Learning Ap-
proach for Stick/Slip Prediction. In SPE/IADC Drilling
Conference and Exhibition.

Si, X.-S., Hu, C.-H., Chen, M.-Y., & Wang, W. (2011). An
Adaptive and Nonlinear Drift-based Wiener Process for
Remaining Useful Life Estimation. In 2011 Prognos-
tics and System Health Management Conference (p. 1-
5).

Siahpour, S., Li, X., & Lee, J. (2022). A Novel Transfer
Learning Approach in Remaining Useful Life Predic-
tion for Incomplete Dataset. IEEE Transactions on In-
strumentation and Measurement, 71, 1-11.

Sun, C., Ma, M., Zhao, Z., Tian, S., Yan, R., & Chen,
X. (2019). Deep Transfer Learning Based on Sparse
Autoencoder for Remaining Useful Life Prediction of
Tool in Manufacturing. IEEE Transactions on Indus-
trial Informatics, 15(4), 2416-2425.

Wang, Y., Zhao, Y., & Addepalli, S. (2020). Remaining Use-
ful Life Prediction using Deep Learning Approaches:
A Review. Procedia Manufacturing, 49, 81-88.

Zhang, A., Wang, H., Li, S., Cui, Y., Liu, Z., Yang, G., &
Hu, J. (2018). Transfer Learning with Deep Recurrent

Neural Networks for Remaining Useful Life Estima-
tion. Applied Sciences, 8(12).

Zhang, Y., Xiong, R., He, H., & Liu, Z. (2017). A LSTM-
RNN Method for the Lithuim-ion Battery Remaining
Useful Life Prediction. In 2017 Prognostics and Sys-
tem Health Management Conference (PHM-Harbin)
(p. 1-4).

Zhang, Y., Yang, Y., Xiu, X., Li, H., & Liu, R. (2021). A
Remaining Useful Life Prediction Method in the Early
Stage of Stochastic Degradation Process. IEEE Trans-
actions on Circuits and Systems II: Express Briefs,
68(6), 2027-2031.

BIOGRAPHIES

Prasham Sheth is a Data Scientist at SLB Software Tech-
nology Innovation Center. His research interests include the
application of machine learning, deep learning, and hybrid
modeling-based approaches to solving complex problems in
computer vision and time-series analysis. He received a Mas-
ter of Science in Data Science from Columbia University,
New York, New York, USA, and a Bachelor of Technology in
Computer Engineering from Nirma University, Ahmedabad,
Gujarat, India.

Indranil Roychoudhury is a Principal AI Scientist at SLB
Software Technology Innovation Center, and his primary area
of research is time-series analysis by combining physics-based
approaches with machine learning approaches. He holds his
Ph.D. and M.S. in Computer Science from Vanderbilt Uni-
versity and was a Senior Research Scientist at NASA Ames
Research Center before joining SLB. He is a Fellow of the
Prognostics and Health Management Society and a Senior
Member of IEEE.

11

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 749

