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ABSTRACT 

In aviation industry, unscheduled maintenance costs may 

vary in a large range depending on several factors, such as 

specific aircraft system, operational environment, aircraft 

usage and maintenance policy. These costs will become more 

noteworthy in the next decade, due to the positive growing of 

worldwide fleet and the introduction of more technologically 

advanced aircraft. New implemented technologies will bring 

new challenges in the Maintenance, Repair and Overhaul 

(MRO) companies, both because of the rising number of new 

technologies and high volume of well-established devices, 

such as Electro-Hydraulic Servo Actuators for primary flight 

control. Failures in aircraft hydraulic systems deeply 

influence the overall failure rate and so the relative 

maintenance costs. For this reason, overhaul procedures for 

these components still represents a profitable market share 

for all MRO stakeholders. Innovative solutions able to 

facilitate maintenance operations can lead to large cost 

savings. 

This paper proposes new methodologies and features of the 

Intelligent Diagnostic system which is being developed in 

partnership with Lufthansa Technik (LHT). The 

implementation of this innovative procedure is built on a set 

of failure detection algorithms, based on Machine Learning 

techniques. This development requires first to bring together 

the results from different parallel research activities: 

1. Identification of critical components from historical data 

2. Designing and testing automatic and adaptable 

procedure for first faults detection; 

3. High-fidelity mathematical modeling of considered test 

units, for deeper physics analysis of possible failures; 

4. Implementation of Machine Learning reasoner, able to 

process experimental and simulated data. 

1. CRITICAL ISSUES IN MAINTENANCE OF AIRCRAFT 

EQUIPMENT 

Cooper, Smiley, Porter, & Precourt (2017) predict an 

optimistic growth of commercial airline fleet. According to 

their report, in the next decade, the number of units will 

increase 3.4% net annually, rising the number of commercial 

aircraft more than 35000. This growing demand in both cargo 

and commercial fleets will be fulfilled on one hand 

introducing about 20000 new-generation aircraft and, on the 

other hand, replacing older units to about 10000 during this 

period (Figure 1). These numbers indicate that about 58% of 

the global aircraft fleet will include new-generation units and 

will radically influence many different technological issues. 

The presence of technologically advanced aircraft implies 

also considerable investments in MRO market. Cooper et al. 

(2017) report that “commercial airline MRO growth will be 

Figure 1: Global Aircraft Demand  
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healthy at 3.8% Compound Annual Growth Rate (CAGR) 

over the 10-year period, growing from the current demand of 

$ 75.6 billion to just over $ 109 billion by 2027”. This rising 

investment expectation takes into account four main 

segments of MRO market: Airframe, Engines, Components 

and Line Maintenance. By the way, in order to improve the 

maintenance capability of these four sections, it is necessary 

to shift the paradigm at the base of the maintenance approach: 

from a reactive to a condition-based strategy. Both OEM 

players and MRO providers are dealing with new challenges 

related to new-generation fleet:  

1. More sophisticated avionics components will require 

advanced health monitoring systems, which will be able 

to identify faults of the units; 

2. The number of collected health-monitoring parameters 

will considerably rise, and all the MRO stakeholders 

have to find out what is the best way to take advantage 

from this amount of valuable data; 

3. Line maintenance providers need to invest new capitals 

on both modern testing equipment and trainings about 

new health monitoring and fault isolation systems. 

As reported by Groenenboom (2017), health-monitoring 

systems for aircraft were already regulated during the 1970s, 

when MSG-2 introduced the “Condition Monitoring” 

maintenance concept. During the last years, to improve their 

competitiveness in this field, also large MRO providers like 

Lufthansa Technik (LHT), Airfrance Industries and KLM 

Engineering & Maintenance have introduced their own health 

management and prognostic services. Today both OEMs and 

MRO providers aim to introduce health-monitoring 

innovative solutions able to facilitate maintenance operations 

that can lead to large cost savings. Mornacchi, Vachtsevanos 

and Jacazio (2015) indicated two areas that can benefit from 

an efficient health-monitoring system: 

1. Improvement of aircraft operation reliability and 

dispatch-ability by avoiding on ground immobilization 

time and flight delays or re-routing or cancellations; 

2. Reduction of direct maintenance costs by rescheduling 

maintenance operations, improving failures 

troubleshooting and performing maintenance tasks of 

anticipated failures; 

Two main critical issues that negatively influence both cost 

areas are: 

1. No Fault Found (NFF) cases: high number of equipment 

are removed from the aircraft because of a wrong fault 

indication, even though they result fully serviceable. The 

NFF rate is on average about 1/6 of the total number of 

signaled faults, nevertheless some equipment can reach 

a NFF rate above 25%; 

2. Difficulty in identifying the actual faulty component 

which are classified as Line Replaceable Units (LRU). 

These units are complex assembly consisting of several 

sub-assemblies, and the identification of the failed part 

is a task that often requires large effort and time 

(Byington, Watson, & Edwards, 2004). Furthermore, 

many of these LRUs are installed in parallel for 

redundancy (for example the Flight Primary Control 

Systems), so usually for safety reason both the devices 

are removed though only one is failed. 

The goal of this paper is to describe the actual development 

of fault diagnosis system for a given class of aircraft 

equipment, to obtain a high-quality, faster and cost-effective 

maintenance procedure. The presented case study is focused 

on the flight control actuators. These units can still be 

considered a key point for cost saving of maintenance 

procedures for three main reasons: 

1. The components of the hydraulic system give a 

significant contribution to the overall failure rate and 

hence to the total associated maintenance cost; 

2. Large passenger aircraft in service are equipped with two 

or three hydraulic systems for safety reasons; 

3. Hydraulic systems are predestinated to be equipped with 

more sensors or are already equipped with a huge variety 

of sensors that are very good usable for prognostic 

algorithms and methods; 

4. Hydraulic technology is projected to be the most 

common solution in the next future for flight controls 

and landing gear of the new versions of these large 

passenger aircraft (Mornacchi et al., 2015). Moreover, 

the benefits gained from more efficient maintenance 

procedures will thus not be limited to legacy aircraft but 

could be applied to new platforms. 

2. PROJECT OBJECTIVES, METHODOLOGY AND USE CASE 

The contents of this article summarize one year of 

collaboration between Polytechnic of Turin and LHT, which 

is aimed to investigate and design new suitable health-

monitoring procedures for primary flight control actuators. 

This task constitutes a key cost saving factor for two main 

reasons: 

1. Considerable numbers of Shop Load Event (SLE); 

2. OEM-built test procedures for fault detection and 

isolation are not cost-effective in terms of maintenance 

time. 

On this basis, the definition of a new automatic procedure 

could represent a remarkable advantage. An automatic 

procedure combined with an algorithm capable of detecting 

failures can really improve the overall maintenance quality.  

Marino (2017) reports that it is worthy to choose components 

that are widely installed on today and next-generation 

aircraft, to obtain a significant impact on future savings. The 

choice of the prototyping unit is based on both technical and 

economic criteria: 

1. Number of subcomponent of the unit and overall 

complexity of the assembly; 
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2. Number of records and unique SLE; 

3. Maintenance Total Costs (Overhauling Costs); 

4. Time Since Installation (TSI); 

During this cooperation with LHT, the first important 

research goal is the development of a new condition detection 

algorithm.  

Several different approaches for fault detection and 

identification have been already adopted by Karpenko, 

Sepehri and Scuse (2003) who have identified three possible 

families of algorithms: the first one is a model-based 

approach (Isermann, 2005), while the second and the third 

use Machine Learning techniques in two different ways. 

Bernieri, D’Apuzzo, Sansone and Savastano (1994) have 

trained a neural network to reproduce the dynamic behaviour 

of the system, while different other approaches have used 

Machine Learning algorithms as pattern classifiers in order to 

recognise failure modes directly from the data of the dynamic 

system (Byington et al., 2004; Crowther, Edge, Burrows, 

Atkinson, & Woollons, 1998; Garimella & Yao, 2004; Le, 

Watton, & Pham, 1998; Mornacchi et al., 2015).  

To make the last approach efficient, it is necessary to collect 

results from different engineering areas: 

1. Techniques of data manipulation, state detection and 

identification of degradation; 

2. Measurement campaigns of in-service components, both 

in healthy and degraded conditions; 

3. High fidelity mathematical modeling of physical systems 

and mathematical description of fault propagation 

physics; 

4. Data Mining and Data Fusion of historical, simulated 

and experimental results; 

5. Implementation of Machine Learning Algorithms for 

processing data with the knowledge of physics of failure. 

3. ANALYSIS OF MOST RECURRENT FAILURES  

Once the reference unit has been identified, a further 

investigation is needed to recognize which sub-assemblies of 

are the most critical. This kind of analysis is also crucial for 

the implementation of an excitation signal that can be used to 

detect the most recurrent failures. The scheme in Figure 2 

displays all the sub-assemblies of the reference Electro 

Hydraulic Servo-Actuator (EHSA). In the hydraulic part of 

the scheme, it is possible to distinguish: 

1. Electro-Hydraulic-Servo-Valve (EHSV): jet-deflector 

kind where the first stage receives the current command 

by the external controller as input and it moves the 

deflector according to the rotation of the torque motor. 

This movement creates a pressure drop at the end of the 

second stage spool, which drives the correct flow to the 

cylinder chambers; 

2. Symmetrical actuator: the position of the ram is 

determined by the difference of pressure between its two 

control chambers; 

3. Mode Switching Valve (MSV): central valve controlled 

by two normally opened Electro-valves (EVs), which are 

placed in series, constituting a logic NOR function. This 

component is used to deactivate the unit and to set its 

function in damping mode. When both the two EVs are 

not activated, the spool of the MSV is directly connected 

with the supply line: in this way, the pressure force 

pushes the spool against its contrasting spring and the oil 

flows to the cylinder. If at least one of the EVs is turned 

on, the MSV spool is connected to the return line, and 

the EHSV is then bypassed (bypass-mode). The cylinder 

chambers are connected through a calibrated orifice 

which is responsible of damping action. 

4. Accumulator: this component supplies flow to avoid 

pressure to drop below the cavitation value and, in case 

of hydraulic supply interruption, it allows the actuator 

rod to come back in its neutral position. 

The control part of the scheme includes a position sensor for 

closed loop position and a Mechanical Recentering Device 

which mechanically connects the linear ram with the spool of 

the EHSV. This security component moves the main ram in 

its null position in case of electrical failure of the current 

supply in the first stage of the EHSV. All these main sub-

assemblies contain several other components that can be 

substituted in case of failures. The information about the 

replaced parts are recorded during each SLE. These records 

constitute an historical database of all the replaced 

components of each adjusted sub-assembly which represents 

a valuable tool for the analysis of the most recurrent 

exchanged parts during repairing operations.  

Figure 2: EHSA reference configuration 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

4 

The results of this investigation have shown that some sub-

assemblies like the electro-valves or the mechanical feedback 

are less critical than others, like the EHSV, that is the most 

exchanged component. This classification can be considered 

a first guideline for the definition of the excitation signal, first 

step of the Intelligent Diagnostic procedure. 

4. IMPLEMENTATION OF INTELLIGENT DIAGNOSTIC 

As first step of the implementation of an Intelligent 

Diagnostic, the definition of an automatic failure-recognition 

procedure has an important impact in terms of cost saving of 

standard maintenance procedure. The base of this 

development is a specific command sequence that can 

identify in a short time the most recurrent failures in the 

critical subcomponents. In this way, it would be possible to 

substitute the standard maintenance procedure with a fast and 

efficient self-designed Entry Test. Indeed, standard test 

procedures contain specific commands to assess the 

performance of the subassemblies in the EHSA, but these 

procedures can last hours, and they must be performed at least 

two times (one for the Entry and one for the Certification 

Test). This approach is not considered time and cost-effective 

anymore. The main advantages of an automatic command 

sequence can be synthetized: 

1. Automation: Entry Test can run automatically without 

any human-interaction during the measurements in a 

short period of time, while all the needed Health Features 

(HF) can be collected; 

2. Standardization: since there are no interactions with the 

operator during the duration of the test, the measured 

time responses are always the same. This means that is 

possible to compare the responses and increase the 

knowledge about similar cases; 

3. Continuous measurement: it is possible to collect data 

about physical parameters during the entire command 

sequence; 

4. Scalability of the test procedure: since the main 

components of several primary flight control actuators 

are the same, the designed automatic procedure for the 

reference unit can be adapted to other kind of actuators. 

During the design of this automatic entry test, both the 

classification the most critical sub-assemblies and the 

historical data of the most recurrent failed certification tests 

have been considered. With this automatic procedure, it will 

be possible to collect a large number of data. This database 

with all the possible historical collected measurements of 

degraded and healthy units will considerably enlarge the 

knowledge of all the single degradations in the EHSA, 

constituting the base for the development of a Machine 

Learning algorithm for fault detection. By the way, this 

database would require long-lasting measurement and data 

collection campaigns. This issue can be overcome increasing 

the number of samples with simulated data through a high 

fidelity mathematical model. This development strategy can 

be classified as a combination of Model Based and Data-

Driven approaches, similarly as the Hybrid Diagnosis 

Approach for Electro-mechanic Actuators (Narasimhan, 

Roychoudhury, Balaban, & Saxena, 2010). 

5. MATHEMATICAL MODELING AND SIMULATIONS 

The most important advantage of a model-based approach is 

its flexibility: in a highly-detailed physical model, it is 

possible to set a wide range of possible degradations, with 

any kind of severity. The more complex and detailed the 

model is, the more number of possible case studies increases. 

Using the same approach of Bertolino, Jacazio, Mauro and 

Sorli (2017), the final goal of high-fidelity model is to create 

a virtual bench that can replicate the nominal behavior of the 

physical unit and to “evaluate its behavior correlating it with 

small variations” of some parameters, corresponding to 

physical characteristic of the unit. This strategy allows to 

have a greater flexibility on studying the effects of several 

flaws injection combinations, due to the absence of hardware. 

Although it speeds up the failure physics investigation, it 

represents an issue as well: indeed, the model has first to be 

validated and tuned on real measurements. 

5.1. Model Structure 

The high fidelity dynamic non-linear model has been 

developed in Matlab - Simulink® environment and it is the 

evolution of the model developed by Mornacchi (2016). Its 

structure can be divided in three conceptual layers (Figure 3): 

1. First Layer contains all the necessary data to introduce 

different degradations in terms of severity and starting 

time; 

2. Second Layer includes three sub-files with not only 

physical characteristics of EHSA itself, but also the ones 

of its seals and used fluid; 

3. Third Layer contains all the files concerning the real 

physical modeling of the unit.  Inside the cardinal EHSA 

blocks in Figure 3 all the physical components in Figure 

2 are modelled with a white-box approach. 

The entire model is physically meaningful and each 

component motion is determined by the resolution of 

d’Alambert differential dynamic equations, as in Bertolino et 

al., 2017. The behavior of these inner EHSA parts are 

influenced by all the other blocks in Layer 3. Command block 

contains the same excitation-signal that has been adopted for 

the experimental campaign, and it interacts with Oil 

Properties and Test Bench blocks. In particular, the latter is 

the only component that has not been modelled in a physical 

way, in order to not considerably increase the overall 

complexity. A Discrete- time Autoregressive Exogenous 

model (ARX) has been adopted because it results particularly 

suitable for modelling “dynamic process driven by and input 

in presence of uncertainties” (Diversi, Guidorzi, & Soverini, 
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2010). The connection between EHSA and external 

environment is controlled by the blocks Environmental Data 

and External Load, which is deactivated at the moment 

because any load test has been carried out so far. When a 

simulation is completed, the Data Storage block collects all 

the useful data for post-processing and further analysis. In the 

next paragraphs, the models of the EHSA sub-assemblies will 

be briefly described, and at the end a comparison between 

experimental and simulation results will be shown. 

5.2. EHSA Main Ram 

The hydraulic main ram is a 2DOF (Figure 4) model where: 

1. 𝑥𝑅 , �̇�R and �̈�𝑅 are position, velocity and acceleration of 

the ram; 

2. 𝑥𝐶 , �̇�C and �̈�𝐶  are position, velocity and acceleration of 

the external sleeve structure; 

The external damper 𝐶𝑒𝑥𝑡  corresponds to the external eye-end 

of the ram, and it results particularly useful in case of external 

load 𝐹𝑒𝑥𝑡 . As mentioned in the previous paragraph, all the 

simulations have been performed without any external acting 

force. 𝐶𝑠𝑎 and 𝐾𝑠𝑎 represent the damping coefficient and the 

stiffness of the external connection between the sleeve and 

the fixed frame. Both in these points and in the ram end, it is 

possible to include the effect of backlash, following the 

approach of  Bertolino (2016); Bertolino et al. (2017); Martin, 

Jacazio and Vachtsevanos (2017) and Nordin, Galic and 

Gutman (1997). The main ram receives as input the control 

flows from the EHSV, through the MSV (𝑄1 and 𝑄2) and it 

returns as output both its position and the external sleeve one 

(𝑥𝑅  and 𝑥𝐶 ). The difference between them is the relative 

displacement of the ram and it is used to close the position 

control loop. The pressures in both the chambers 𝑝1 and 𝑝2 

are calculated as function of the volumetric flow rates, the 

fluid properties and the geometric characteristics. In order to 

simulate also the seals failures, 𝑄1 and 𝑄2 are affected by two 

different types of leakages: internal between the chambers 

(𝑄𝑙𝑖) and external between the chambers and outside (𝑄𝑙𝑒𝑖). 
Continuity equations in both the chambers can be written as: 

𝜕𝑝1

𝜕𝑡
= 𝛽

𝑄1 − 𝑄𝑙𝑒1 − 𝑄𝑙𝑖 − ( 𝑥�̇� −  𝑥�̇�)𝐴

𝑉0 + 𝑥𝑅𝐴
 (1) 

𝜕𝑝2

𝜕𝑡
= 𝛽

𝑄2 − 𝑄𝑙𝑒2 + 𝑄𝑙𝑖 + ( 𝑥�̇� −  𝑥𝐶)̇ 𝐴

𝑉0 − 𝑥𝑅𝐴
 (2) 

where 𝛽 is the oil bulk module,  𝑉0 is the initial volume of the 

chambers when the ram is centered and 𝐴  represents the 

surface of the head of the piston. The results of Eq. (1) and 

Eq. (2) are then used to determine the position of ram and 

sleeve according to the following dynamic equations: 

𝑚𝑅�̈�𝑅 = (𝑝1 − 𝑝2)𝐴 − 𝛾(�̇�𝑅 − �̇�𝐶) − 𝐹𝑓𝑟𝑖𝑐 − 𝐶𝑒𝑥𝑡�̇�𝑅 (3) 

𝑚𝐶�̈�𝐶 = (𝑝2 − 𝑝1)𝐴 + 𝛾(�̇�𝑅 − �̇�𝐶) + 𝐹𝑓𝑟𝑖𝑐 − 𝐶𝑠𝑎�̇�𝐶 − 𝐾𝑠𝑎𝑥𝐶 (4) 

where 𝑚𝑅 and 𝑚𝐶 are the masses of the ram and the sleeve 

respectively, γ  is the viscous friction coefficient and 𝐹𝑓𝑟𝑖𝑐 

stands for the Coulomb friction force. In particular, the model 

of friction allows both the static and dynamic conditions and 

the switching between them to be considered. Static friction 

value is evaluated according to the pressure in both the 

chambers and the geometrical and physical data of the seals 

(Martini, 1984). The dynamic value instead and the condition 

of commutation are modeled as described in  Bertolino 

(2016) and Bertolino et al. (2017). 

5.3. Servo-valve EHSV 

The EHSV is the most critical and complex component of 

both the model and real unit. It represents the interface 

component between the control logic and the hydraulic part 

and its behavior influences the entire dynamic response of the 

actuator. The real installed servo-valve in the unit is a jet-

deflector, whereas the simulated one is flapper-nozzles type. 

This difference is only in the first stage of the EHSV and it 

does not influence the dynamic response or the reliability of 

the global physical model of the actuator. The inner structure 

of both the types can be divided in:  

1. First stage: it transforms the electrical input into a low 

power hydraulic signal. It includes the torque motor and 

flapper dynamics. The torque motor block receives as 

input the current 𝑖𝑐𝑜𝑚  coming from the controller, 

Figure 3: Simulink Model Conceptual Structure 

Figure 4: Actuator Model Scheme 
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whereas the flapper dynamic gives as output the position 

of the flapper 𝑥𝑓  ; 

2. Second Stage: it transforms the low power hydraulic 

command signal into a high power hydraulic flow. It 

contains the blocks of the hydraulic amplifier and spool 

dynamics. According to the flapper position, the 

hydraulic amplifier block evaluates the difference of 

pressure between the command chambers of the sleeve 

𝛥𝑝𝑠𝑝𝑜𝑜𝑙 , that controls the final position of the spool 𝑥𝑠. 

The model of the torque motor is based on the magnetic 

circuit analyzed by Urata (2007), where the sources of 

magnetic forces are the permanent magnets 𝑉𝑝  and solenoid 

magnetic force 𝑛𝑖𝑐𝑜𝑚 (Figure 5). Each reluctance in the 

circuit is calculated taking into account the air-gap thickness, 

and eventual misalignment of the armature. The generated 

torque is expressed considering the magnetic fluxes through 

the air-gaps: 

𝑇 =
𝐿𝑎𝐴𝑔

4µ𝑎

∑ 𝐵𝑖

4

𝑖=1

 (5) 

where 𝐵𝑖  is the flux density between the four air gaps between 

magnet and solenoids, 𝐿𝑎  is the distance between the left and 

right pole, 𝐴𝑔  is the cross-sectional area of the air-gap and 

µ𝑎  is magnetic permeability of the air. At the end of the first 

stage of the EHSV; 𝑥𝑓  is calculated combining the Eq. (5) 

with the dynamic rotation equation of the torque motor 

anchor. The position of the flapper determines the difference 

of pressure between the chambers of the sleeve, regulating 

the flow through the nozzle channels. These pressures are 

function of both 𝑥𝑓   and spool velocity: 

𝑝𝐴 = 𝐺𝑃 (𝑥𝑓 −
𝐴𝑠𝑝𝑜𝑜𝑙

𝐺𝑄

𝑥�̇�)  (6)  

𝑝𝐵 = −𝐺𝑃 (𝑥𝑓 −
𝐴𝑠𝑝𝑜𝑜𝑙

𝐺𝑄

𝑥�̇�)  (7)  

where GP and GQ are respectively pressure and flow gain. The 

imbalanced pressure 𝛥𝑝𝑠𝑝𝑜𝑜𝑙 = 𝑝𝐴 − 𝑝𝐵  on the two-side 

spool creates a displacement that allows the flows to run 

through the actuator chambers. The equation of the free body 

diagram in Figure 6 takes into account the force of the 

feedback spring 𝐹𝑓𝑏 , which connects the flapper with the 

spool, the Recentering Device equivalent force 𝐹𝑟𝑑 (section 

5.5), Coulomb and viscous friction forces and structural 

damping.  Since there are not seals, the dynamic friction is a 

constant value and does not follow the laws proposed by 

Martini (1984). Once 𝑥𝑠  is determined, it is necessary to 

evaluate the flow through each port of the EHSV, considering 

both supply and return contributes. This issue is modelled 

with an equivalent Weathstone circuit (Merritt, 1967), where 

each port is represented as a variable resistance with two 

components in series: a laminar term 𝑅𝐶 and a turbulent one 

𝑅𝐴 (Mornacchi et al., 2015). Once these values are evaluated 

for all the control ports, the model calculates the flow through 

each control port through Eq. (8). 

𝑄𝑆𝑉 =
−𝑅𝐶 + √𝑅𝐶

2 − 4𝑅𝐴|∆𝑝𝑠𝑝𝑜𝑜𝑙|

2𝑅𝐴

∗ 𝑠𝑔𝑛(∆𝑝𝑠𝑝𝑜𝑜𝑙) 
(8) 

5.4. Mode Switching Valve MSV 

Physically the dynamic of the spool of the MSV is similar to 

the second stage of the EHSV, without any feedback force 

𝐹𝑓𝑏 but with an elastic force from its contrasting spring. It is 

connected not only to the EHSV, but also with the 

accumulator and the orifice between the chambers in case of 

damping mode. It can reach just two discrete positions 

(opened or closed) and it can be commanded by just one of 

the two installed EVs. Once the position of the MSV is 

determined, the flows through its ports can be determined 

considering both laminar and turbulent flow resistances, as 

for the EHSV. 

5.5. Recentering Device RD 

Particularly relevant component in both normal and 

unexpected working conditions of the unit. It consists of a 

complex mechanical device which moves the main ram to its 

null position in case of failure of the current supply to the 

EHSV. It is both connected to the main ram and to the jet 

deflector system of the EHSV (equivalent to the flapper of 

the flapper-nozzles valve), as shown in the diagram of Figure 

Figure 5: Magnetic Torque Motor Circuit (Urata, 2007) 

Figure 6: EHSV Spool Free Body Diagram 
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7. One side of the main ram is linked to the RD rotating shaft 

hinge on which is mounted the RVDT transducer. The 

rotation of this component moves a small eccentric cam that 

directly controls the motion of the jet deflector system inside 

the EHSV, thanks to two contrasting springs. This 

mechanical effect is compensated directly by the external 

controller, which provides to the EHSV an additional offset 

current both in extension and retraction.  By the way, this 

offset is not constant for the entire stroke, but the RD works 

as nonlinear force that depends on the position of the main 

ram. Since its geometry is complex, the effect of this 

component is considered inside the model through its zero 

order characteristic curve. Its offset effect has been 

considered with an equivalent force 𝐹𝑟𝑑 on the EHSV spool 

(Figure 7). 

5.6. Test Bench TB 

As already mentioned in 5.1, the dynamic model of the TB is 

built with an ARX Model, because most of the physical 

parameters are unknown and in order to reduce the 

complexity of the model. Model tuning is performed using 

two different sets of measured data: supply pressure and 

outlet flow. Part of these two time-series (70% of the time-

span of the command) is used for the model identification, 

while the remaining part for its validation. The equation at 

the base of an ARX model is: 

𝐴(𝑞)𝑦(𝑡) = 𝐵(𝑞)𝑢(𝑡 − 𝑛𝑘) + 𝑒(𝑡) (9) 

where 𝑞(𝑡)  is a delay operator, 𝑒(𝑡)  is a white noise, 𝑛𝑘 

represents delay from input to output in terms of number of 

samples and 𝐴(𝑞) and 𝐵(𝑞) are two linear functions defined 

as follow: 

𝐴(𝑞) = 1 + 𝑎1𝑞−1 + ⋯ +𝑎𝑛𝑎
𝑞−𝑛𝑎   

(10) 

𝐵(𝑞) = 𝑏1 + 𝑏2𝑞−1 + ⋯ +𝑏𝑛𝑏
𝑞−𝑛𝑏+1   

(11) 

where: 

1. 𝑦(𝑡): model output at instant t; 

2. 𝑛𝑎: number of poles, so the number of past output terms 

to predict the current output; 

3. 𝑛𝑏: number of zeros plus one, so the number of past input 

terms to predict the current output; 

In this case, the best fitting is obtained fixing 𝑛𝑎 = 𝑛𝑏 =  4 

and 𝑛𝑘  =  0, with a reached accuracy of more than 95%. The  

 

plots in Figure 8 displays a comparison between measured 

and simulated supply pressure commanding the unit with a 

Pseudorandom Binary Sequence (PRBS) in closed loop, with 

reference to the input extracted flow. 

5.7. Model Validation 

The model validation is performed using data acquired during 

the experimental campaign at Lufthansa Technik facilities. 

The plots in Figure 9-left) displays a comparison between 

measured and simulated position and EHSV current during 

the PRBS sequence. A closer look in the 30th second in Figure 

9-right)  shows that the outputs of the model are very close to 

the actual behavior, concerning both the current of EHSV and 

the main ram position. Both the plots show that the model is 

able to represent in an accurate way the system behavior and 

that it can be used to study the performance degradation when 

the parameter values move away from the baseline condition.  

6. DATA ANALYSIS AND EARLY STAGE  DEVELOPMENT OF 

MACHINE LEARNING ALGORITHM 

As previously anticipated, a crucial point within the 

Intelligent Diagnostic frame is the development of a Machine 

Learning Algorithm for fault classification. The idea is to 

develop an algorithm which provides a unique and accurate 

indication of where the failure is located in the EHSA, by 

using the features extracted from the raw signals acquired 

during the initial automatic Entry Test. The development of 

this specific part of the Intelligent Diagnostic presents some 

critical issues: 

1. Number of entries reported inside historical database; 

2. Some reports could not present all the needed 

information for this investigation; 

Figure 7: Recentering Device Block Scheme 

Figure 8: Pressure drop comparison between simulated and 

experimental results 
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3. Difficulties in disambiguation of some physical 

degradations that affect the EHSA response in similar 

ways. 

As already mentioned in paragraph 3, the analysis of 

historical data of repairing reports indicates the EHSV as 

most recurrent exchanged sub-assembly. Furthermore, this 

part can be considered as the most complex and crucial 

element for the correct behavior of the EHSA. From data-

mining perspective, the large number of entries in the 

database (70% of the recorded SLEs) guaranties a good 

starting database for fault identification. Despite the large 

number of events, the information related to the health status 

of the EHSV are just two since the EHSV can be entirely 

replaced or not. As consequence, an initial binary 

classification can be easily achieved as first step to prove the 

feasibility of the ML development. According to what 

reported above, the historical information regarding the 

EHSV were classified in two classes, marked with a binary 

label: zero if the sub-assembly needs to be replaced, or one 

otherwise.  

6.1. Database Generation  

In order to increase the number of entries, the historical 

database has been combined with simulated results, created 

including EHSV degradations. The first step for building this 

database is to evaluate how many HF are directly related to 

the EHSV behavior. From this result, the historical database 

of SLE has been “cleaned” from useless data: 

1. Data loss due to missing information; 

2. All the features not directly linked to the EHSV. 

In order to increase the database size, several hundred 

simulated responses have been performed with different 

combinations of EHSV degradation. Five different possible 

physical degradations were considered with different levels 

of severity and considered in pair: 

1. Excessive roundness of control ports orifice due to local 

wears, which can have important impact on the control 

flows; 

2. High hysteresis current in the first-stage torque motor; 

3. Increase of radial clearance between spool and sleeve; 

4. Stiffness variation of the feedback spring between first 

and second stage; 

5. Excessive backlash between feedback spring and spool; 

 These simulated degradations can be directly detected 

extracting the health-features directly from the EHSA 

response of six specific portions of the complete excitation 

signal. In particular, these parts of the signal include all the 

standard certification tests that are strictly influenced by the 

EHSV behavior. These six signals have been used as input of 

the Simulink Model and, from the analysis of its responses, 

eighteen Health Features (HF) have been extracted as output. 

If either one of them results out of standard test limits, the 

troubleshooting of the related test would be to substitute the 

failed EHSV, and the entire entry-simulated test would be not 

passed. An example of the structure of the built database is 

shown in Table 1: the first eighteen columns represent the 

extracted health features from the signal. The last column 

“Label” reveals the final result of the entry test: one if all the 

health features are within their limits, and zero if at least one 

test is not passed. Finally the historical and simulated results 

were merged together in one database. The database 

structure, as reported in  Table 1 constitutes the training 

dataset used to implement the supervised ML algorithm for 

binary classification between those unserviceable sub-

components and the serviceable ones. 

 

 

 

 

 

Figure 9: Left) Model and Experimental Results – PRBS Test; Right) Particular of previous graph on the left side 
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Table 1: Database Structure of the Simulated Extracted 

Health Features 

6.2. Implementation of Neural Network for Failure 

Classification 

The implemented ML algorithm for this binary classification 

is a supervised Neural Network (NN), which has to be trained 

in order to detect data representing failure modes of the 

dynamic system. Chen and Burrell (2001) have already 

highlighted how NN can be particularly suitable for “pattern 

matching and classification problem”. In this first stage of 

design, the Multilayer Perceptron (MLP) structure has been 

developed in order to perform a logistic classification 

between Failed and Passed units, as reported in the last 

columns of  Table 1. This initial step of the ML algorithm has 

been fundamental for two main reasons: 

1. It has demonstrated ability to recognize anomalous 

behaviors by learning from the provided data during the 

training stage; 

2. It constitutes the first step for a more specific 

identification of the failure component inside the EHSV, 

while nowadays the entire servo-valve is completely 

removed without any further investigation. 

The architecture of the proposed fault diagnostic algorithm is 

similar to the one in Figure 10: in this case, the NN presents 

eighteen input nodes, corresponding to the extracted HF, and 

two full dense hidden layers with forty nodes each. The final 

output layer contains just one node, which can assume binary 

values as reported in the Label column of Table 1.  

Both the hidden layers employ a Rectifier Linear function 

(ReLu) as activation, whereas the last output layer adopts a 

sigmoid function because of its two possible binary states. 

During the training phase of the NN, to improve the way it 

learns, it is necessary to choose wisely: 

 The Training Set of Data from the original database, 

where two balanced classes of passed and failed tests are 

represented equally; 

 Its Loss Function ℒ  to better cope with NN learning 

slowdown; 

 A Regularization Method, “which make our network 

better at generalizing beyond the training data” (Nielsen, 

2017); 

 The Network hyper-parameters, like the learning rate or 

the optimization parameters. 

The Training Set has been extracted from the HF database in 

Table 1. However, these features are of different type and 

scale, so before feeding them inside the input layer, they have 

been regularized with the standard scaler. The standard scaler 

regularization assumes that the data are normally distributed 

and scale the result in a way that the distribution would be 

centered on zero, with a standard deviation of one:  

 

�̃�𝑖 =
𝑥𝑖 − 𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑𝑒𝑣(𝑥)
 (12) 

where 𝑥  represents a feature and 𝑖  indexes the 𝑖𝑡ℎ  training 

sample. Once the dataset is normalized it is possible to split 

randomly the entire database into: training set and test set, 

with a ratio of 4:1. This sub-set of data for training has to be 

as much balanced as possible, in order to prevent the 

algorithm from overfitting the dataset, which would then 

affect in a negative way the classification performance. The 

loss function used (ℒ) is a particular case of the multinomial 

cross-entropy loss where each example belongs to a single 

class, particularly suitable for binary classification:

  

 HF n.1 HF n.2 … HF n.18 Label 

Actuator 1 … … … … 1 

Actuator 2 … … … … 0 

… … … … …  

Actuator n-th … … … … 1 

Figure 10: Neural Network Structure 
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ℒ = −
1

𝑛
 ∑[𝑦𝑖 𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑝𝑖)]

𝑛

𝑖=1 

 (13) 

where 𝑖 indexes the samples, 𝑦 is the sample label and 𝑝 is 

the prediction for a sample. Once the structure of the 

algorithm is defined it is required to tune all the hyper-

parameters of the NN. Large NN requires a considerable 

number of free parameters, which need to be accurately 

selected and evaluated during the training to maximize the 

metric score considered but also to make the NN generalize 

and properly working with a new set of inputs. Dropout is a 

regularization technique for addressing this overfitting 

problem. The key idea is to randomly drop neurons (along 

with their connections) from the NN during training to 

prevent units from co-adapting too much. In this way, every 

time that a new training input is set as input, the NN presents 

a different shape, but at the end “all these architectures shares 

weights” (Krizhevsky, Sutskever, & Hinton, 2012). At test 

time, the drop of the unit is not performed and predictions of 

all these sub-structures compose a NN that has smaller 

weights. In our specific case, the dropout parameter has been 

settled to 0.6 (likelihood of keeping a specific neuron active).  

The training of the NN has been performed with the 

backpropagation approach with the Adaptive Moment 

Estimation optimization algorithm (Kingma & Ba, 2015). 

This optimization method computes the adaptive learning 

rates for each parameter and stores the exponential decaying 

average of the past squared gradients. Finally, the metric used 

to score the algorithm was the accuracy. The Accuracy 

achieved by using the algorithm is about 80%  of correct 

classification (Figure 11): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + ∑ 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑ 𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 (14) 

 

This level of accuracy proves the feasibility of this method 

that can be extended starting from the EHSV to many other 

subcomponents of the actuator. To improve the accuracy is 

then possible both to increase the number of samples with 

simulated data and improve the quality of the features used to 

perform the classification. Furthermore, as already 

mentioned in the beginning of the paragraph, this algorithm 

constitutes the first base for a more complex NN architecture 

for the localization of the failure inside the EHSV. These 

further steps will be achieved in the next future to improve 

the accuracy level and ensure a better diagnostic level. 

7. CONCLUSION 

This paper summarizes the current development for a new 

and Intelligent Diagnostic methodology for primary flight 

control systems. The combination between an automatic 

failure-recognition procedures, simulated results with High-

Fidelity Mathematical Model and Machine Learning 

algorithm for failure localization are already providing 

excellent results in terms of time and cost savings. 

Further improvements of this research will involve all three 

main topics of the research: 

1. Extension of the automatic procedure to other different 

primary flight control systems, following the same 

methodology used for the reference EHSA; 

2. Starting from the current results with failures in the 

EHSV, the simulation campaign will be widened, 

including more induced local faults in other sub-

assemblies. An interesting study will include the analysis 

of the unit behavior combining faults in different sub-

assemblies; 

3. Accurate management of all the collected data from real 

and simulated results, in order ensure a reliable and high 

diagnostic level from the Machine Learning algorithm. 

The final goal will be to provide a tool which is able not 

only to classify if the tested unit is serviceable or not, but 

also to localize the defected component inside the 

affected sub-assembly of the EHSA. 

ACKNOWLEDGEMENT  

This work was supported by Lufthansa Technick AG. We 

appreciate their contribution to the development and 

validation of the mathematical model by providing to the 

research team important data, actuators and technology 

applied to test bench.  

NOMENCLATURE 

𝐴 Surface of the Head of the Piston 

𝐴𝑔  Cross-Sectional Area Air-Gap 

𝐴𝑠𝑝𝑜𝑜𝑙   Spool Section Area 

𝐵𝑖   Flux Density in i-th Air Gap 

𝐶𝑒𝑥𝑡1 Damping Coefficient of Ball-eye of the Actuator 

𝐶𝑠𝑎 Damping Coefficient of External Sleeve Structure 

CAGR Compound Annual Growth Rate 

Figure 11: Normalized Confusion Matrix 
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EHSA Electro- Hydraulic Servo Actuator 

EHSV Electro- Hydraulic Servo Valve 

𝐹𝑓𝑏  Feedback-spring Force 

𝐹𝑓𝑟𝑖𝑐 Coulomb Friction Force 

𝐹𝑟𝑑 Recentering Device Force on the EHSV spool 

𝐺𝑃  EHSV Pressure Gain 

𝐺𝑄  EHSV Flow Gain 

HF Health – Features 

𝐾𝑠𝑎 Stiffness of External Sleeve Structure 

𝐿𝑎   Distance between Magnetic Poles 

LHT  Lufthansa Technik 

LRU  Line Replaceable Unit 

MRO Maintenance Repair and Overhaul 

MSV Mode Switching Valve 

NARX Nonlinear Autoregressive Exogenous Model 

NFF No Fault Founds 

NN Neural Network 

OEM Original Equipment Manufacturer 

𝑄1, 𝑄2 Control Flows in the Actuator Chambers 

𝑄𝑙𝑖  Internal Leakage Flow between Actuator Chambers 

𝑄𝑙𝑒  External Leakage Flow of i-th Chamber 

𝑅𝐶 , 𝑅𝐴  Laminar and Turbulent Resistance in EHSV ports  

RD Recentering Device 

SLE Shop Load Event 

𝑇 Torque applied by the EHSV Torque Motor 

TSI Time Since Installation 

𝑉0 Initial Volume of both Actuator Chambers 

𝑖𝑐𝑜𝑚  Command Current 

𝑚𝑅  Mass of the Actuator Ram 

𝑚𝐶  Mass of the Actuator Sleeve 

𝑝1, 𝑝2 Pressures in the Actuator Chambers 

𝑝𝐴, 𝑝𝐵 Pressures in the EHSV Spool Chambers 

𝑥𝐶  Displacement of the Actuator Sleeve 

𝑥𝑓   Flapper Position 

𝑥𝑅 Position of the Actuator Ram 

𝑥𝑠  Spool Position 

𝛥𝑝𝑠𝑝𝑜𝑜𝑙  Pressure Drop between EHSV Sleeve Chambers 

β Oil Bulk Module 

γ Viscous Friction Coefficient 

µa Air Magnetic Permeability 
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