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ABSTRACT

The recent advances on utilizing Generative Artificial
Intelligence (GenAl) and Knowledge Graphs (KG) enforce a
significant paradigm shift in data-driven maintenance
management. GenAl and semantic technologies enable
comprehensive analysis and exploitation of textual data sets,
such as tabular data in maintenance databases, maintenance
and inspection reports, and especially machine
documentation. Traditional approaches to maintenance
planning and execution rely primarily on static, non-adaptive
simulation models. These models have inherent limitations in
accounting for dynamic environmental changes and
effectively responding to unanticipated, ad hoc events.

This paper introduces a maintenance chatbot that enhances
planning and operations, offering empathetic support to
technicians and engineers, boosting efficiency, decision-
making, and on-the-job satisfaction. It optimizes shift
scheduling and task allocation by considering technicians'
skills, physical stress, and psychological state, thus reducing
cognitive stress. The approach ultimately improves human
performance and reliability, embodying a human-centricity
in the domain of maintenance and health management.

The practical impact of the maintenance chatbot is illustrated
through its application in maintenance of railway cooling
systems. The presented use case demonstrates the chatbot's
potential as a transformative tool in maintenance
management. Finally, the paper discusses the theoretical and
practical considerations, in particular in the light of regulative
frameworks such as EU Al ACT, highlighting the future
pathways for complying with responsible Al requirements.

1. INTRODUCTION

The industrial landscape is currently facing a significant
challenge due to the shortage of skilled labors, exacerbated
by the increasing complexity of machinery and technological
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systems, as well as green transition, leading to limiting
production by 28% in the European Union (EU) (European
Commission 2023). This shortage poses a critical threat to the
operational efficiency and sustainability of maintenance
operations within various sectors. The complexity of modern
machines requires a high level of expertise, yet industries
often find themselves compelled to hire workers who may not
fully meet these competency requirements (Shin et al. 2021).
The European Union estimates the investment needed to
reskill and upskill in manufacturing to 4.1 billion EUR up to
2030 (European Commission 2023). This gap between the
required and available skill sets leads to inefficiencies,
increasing human failure, thus reducing reliability and
increasing downtime, and a greater potential for errors in
maintenance operations.

Simultaneously, advancements in GenAl and semantic
technologies have opened new avenues for capturing and
leveraging the domain knowledge of experienced
professionals (Abu-Rasheed et al. 2024), and at the same time
assisting them on improving their problem-solving
capabilities, e.g. through query-answers with chatbots (Kohl
und Ansari 2023b). These technologies, particularly Large
Language Models (LLMs), demonstrate an unparalleled
capacity to analyze and interpret complex datasets, including
technical documentation, maintenance logs, and operational
reports (Birhane et al. 2023). Their ability to generate
contextually relevant, accurate responses based on vast
amounts of textual information marks a significant step
forward in the development of cognitive assistants for
maintenance tasks.

The intersection of skilled labor shortages (as a problem
space) and GenAl technologies (as a solution space)
underscores a critical need for tools that can bridge the gap
between the complexity of modern machinery and the
competencies of the available workforce. Cognitive
assistance in maintenance, facilitated by Al-driven solutions,
offers a promising approach to address this challenge (Kohl
und Ansari 2023a). By providing real-time, tailored
information and support, such tools can enhance decision-
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making, reduce cognitive load, and improve the efficiency of
maintenance technicians who may not possess the full
spectrum of required competencies and experiences.
Furthermore, the integration of GenAl and semantic
technologies in maintenance operations enables the
preservation and dissemination of expert knowledge,
mitigating the risk of knowledge loss due to workforce
turnover or the retirement of seasoned professionals (Alavi et
al. 2024). This capability is particularly valuable in light of
the increasing complexity and specificity of modern
industrial systems, where the loss of domain-specific
knowledge can have significant operational impacts (Ansari
2019).

The need for cognitive assistance in maintenance is not only
a response to the skilled labor shortage but also a strategic
investment in the quality and reliability of maintenance
operations. By enhancing the capabilities of maintenance
technicians, engineers and planners, Al-driven tools can
contribute to more resilient, efficient, and effective
maintenance practices. The development and implementation
of such tools, as exemplified by the LLM-based maintenance
chatbot presented in this paper, represent a forward-looking
approach to addressing the challenges of the contemporary
industrial maintenance landscape (Romero und Stahre 2021).
The following paper addresses the challenge of improving the
workflow of maintenance operations and planning by
leveraging LLM and semantic information.

The rest of the paper is structured as follows: In Section 2,
the state-of-the-art is described, focusing on cognitive
assistance system, Generative Al, especially Large Language
Models. Thus, the research gap is identified. Section 3
introduces the system architecture and modular chatbot
design, and Section 4 elaborates on its use case. Finally,
Section 5 discusses the key findings and identifies the
pathways for future research.

2. STATE OF THE ART

This section explores the capabilities and applications of
cognitive assistance systems within industrial manufacturing,
emphasizing their role in augmenting human capabilities. It
highlights how these systems utilize advanced technologies
such as LLMs and KGs to optimize task execution.
Additionally, it addresses the implications of the EU Al Act,
which mandates transparency and safety in the deployment
of such Al-driven systems, ensuring their responsible
application in industrial environments.

2.1. Cognitive assistance system

Digital assistance systems (DAS) support workers in
production, assembly and logistics to carry out their tasks
efficiently in line with the situation and context (Ansari et al.
2020). These systems facilitate tasks ranging from scheduling
and information retrieval to more complex operations,
leveraging user inputs to deliver relevant outcomes and

insights (Pokorni und Constantinescu 2021). Cognitive
assistance systems (CAS), particularly within the
manufacturing sector, extend this concept by focusing on
augmenting human capabilities in intricate tasks rather than
substituting human efforts (Kernan Freire et al. 2023), which
can draw conclusions from its experience on the basis of
significant portions of suitably presented knowledge so that
it provides more appropriate, accurate or up-to-date
information in its next use. These systems are engineered to
support complex activities, including lifelong learning
(Freire et al. 2023), machine operation, and task execution,
through advanced methods of human-machine interaction
(Listl et al. 2021). Employing a broad spectrum of techniques
such as natural language processing (NLP) (Ansari et al.
2021), pose estimation for ergonomic risk identification
(Kostolani et al. 2022), perception, and augmented reality
(Zigart und Schlund 2020), CAS are designed to foster an
intuitive and efficient interface for users.

CAS, utilizing NLP for natural language understanding,
generation, and dialogue management, represent the most
widespread interaction modality within CAS (Kang et al.
2020). These CAS are capable of engaging users in
meaningful conversations, thereby facilitating labor-
intensive tasks across multiple sectors, including customer
service, healthcare, education, and manufacturing, through
efficient and reliable communication (Eloundou et al. 2023).

In the industrial context, the application of CAS is an
evolving research domain with significant potential benefits
(Mark et al. 2021). These include providing centralized
access to diverse information systems, decision making
(RozZanec et al. 2022), delegating tasks (Burggréf et al. 2021),
and enabling hands-free and gaze-free interactions (Romero
und Stahre 2021), thereby enhancing operational efficiency
and safety. Additionally, CAS in manufacturing can serve as
valuable tools for on-the-job training (Wang et al. 2022) and
real-time machine parameter adjustments, thereby
contributing to the flexibility and adaptability of
manufacturing processes (Zheng et al. 2022). Such
applications highlight the transformative potential of
cognitive assistants in augmenting human work, optimizing
task execution, and facilitating continuous learning and
adaptation in complex industrial environments.

2.2. Generative Al and Large Language Models

According to the OECD, GenAl “creates new content in
response to prompts, offering transformative potential across
multiple sectors such as education, entertainment, healthcare
and scientific research”(OECD Artificial Intelligence Papers
2024). 1t, therefore, significantly broadens Al's application
spectrum (Gozalo-Brizuela und Garrido-Merchan 2023). At
the heart of GenAl's advancements are LLMs like Generative
Pre-trained Transformers (GPT), which have dramatically
enhanced Al's language processing and generating
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capabilities, offering applications from automating
documentation to improving decision-making in industries.

Retrieval-Augmented Generation (RAG) (Jing et al. 2024)
extends LLMs by integrating them with information retrieval
systems, enabling real-time access to extensive databases for
more precise, context-specific causal outputs (Zhou et al.
2024). This is particularly valuable in manufacturing and
maintenance, where accessing up-to-date technical and
diagnostic information is crucial (Kernan Freire et al. 2023).

Al agents represent a further advancement, capable of
autonomous decision-making based on environmental
learning and adaptation (Zhao et al. 2023). In the context of
manufacturing and maintenance, these agents can
autonomously monitor system health (Han und Tao 2024),
predict (Saboo und Shekhawat 2024) and automate
maintenance tasks (Sun et al. 2024), thereby reducing
downtime and maintenance costs. It can therefore be said that
current approaches can achieve relevant results through their
purely probabilistic transformer architecture by using
attention with classical RAG, but cannot use factual, linked
knowledge.

2.3. Knowledge Graph

Knowledge Graphs (KGs) structure knowledge in graphs,
connecting entities and their relationships, thereby
facilitating semantic searches and data integration (Fensel et
al. 2020). In GenAl applications, KGs enhance RAG (Zhu et
al. 2024) by providing structured, semantically linked
domain information to improve response accuracy and
contextual relevance (Agarwal et al. 2020), particularly
valuable in domain-specific applications like manufacturing
(Yu 2022). KG therefore enhance capabilities of chatbots by
providing them with structured context information on
specific user requests (Li et al. 2021). By leveraging the rich
semantic relationships within KGs, chatbots are able to
understand and process user queries more effectively,
navigating through complex information networks to retrieve
or infer accurate answers (Yu 2021).

Within manufacturing, KGs encapsulate domain knowledge
and causal relationships between failure modes and solutions,
informed by Failure Modes and Effects Analysis (FMEA)
(Razouk et al. 2023). This structured knowledge aids RAG
systems in querying precise information for predictive
maintenance and decision support, thereby streamlining
maintenance protocols and diagnosing machinery issues
through an understanding of causal links.

The synergy between KGs and RAG significantly enhances
manufacturing operations' efficiency by enabling access to
detailed domain knowledge, reducing downtime, and guiding
accurate maintenance decisions, thus enhancing operational
reliability and performance (Ansari et al. 2023).

2.4. EU Al Act

In response to the rapid developments in the field of Al in
recent years, the European Union has implemented a
regulatory framework for development, market introduction
and deployment of Al-driven products, services, and systems.
The framework is designed to guarantee transparency,
accountability, and safety for both current and forthcoming
Al technologies within the EU. Especially in the area of
manufacturing a responsible application of Al is essential to
mitigate risks and deliver business benefits (Besinger et al.
2024).

Since current pre-trained LLMs like the GPT-models (Brown
et al. 2020) or Metas Llama-Series (Touvron et al. 2023) are
trained outside of the European Union, the EU Al Act
addresses this issue by extending its scope to include
providers operating within the EU as well as those in third
countries, particularly when the output of their Al systems is
utilized within the Union. The EU Al Act defines different
categories from no risk to high-risk. The use of Al in human
interaction, emotion recognition, and content generation is
categorizes as low risk (second category). Article 52
(European Commission 2024) addresses the regulatory
requirements for providers and users (excluding end-users) of
Al systems categorized as low risk. There are three critical
areas pertinent to the case presented in this paper:
Transparency in Al interactions, the Marking of synthetic
content, and the Disclosure requirements for emotion
recognition and biometric categorization.

Firstly, concerning Transparency in Al interactions, the
legislation mandates that Al systems engaging in human
interaction must inform users of their non-human nature,
except in contexts where such interaction is inherently
apparent. Secondly, the requirement for marking synthetic
content, such as audio, images, videos, or text, created or
significantly altered by Al there must be machine-readable
marks signifying its artificially generated or manipulated
status, except for minor edits. Lastly, concerning emotion
recognition and biometric categorization, users must be
informed about these processes, with data handling needing
to comply with EU regulations (European Commission
2024).

2.5. Research Gap

In industrial maintenance, the accessibility and quality of
critical data is a crucial issue. Despite the increasing
availability of information from maintenance reports,
personnel documents, and enterprise resource planning
(ERP) systems, the effective use of this data remains largely
untapped. Therefore, to the best of the authors' knowledge,
current research has not sufficiently explored the use of LLM
in chatbots in industrial applications, especially the use of
linked data and documents in an agent network. This paper
presents a novel way to combine LLM with RAG and KG in
an intent-driven agent framework, providing a flexible,
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generalizable and scalable industrial

maintenance.

approach for

3. METHODOLOGY

In the following the design of the system architecture, which
enables an LLM-based maintenance chatbot is described.
Further, we propose a modular agent layout for the chatbot.
The architecture is based on by RAMI 4.0 (DIN 91345) and
inspired by (Margaria und Schieweck 2019).

3.1. System Architecture

The system architecture for the application of an LLM-based
maintenance chatbot, see Figure 1. is structured into three
distinct tiers, namely data tier, analytics tier and presentation
tier, each with specific components, capabilities and
information flows designed to interact seamlessly within the
broader ecosystem of the industrial application.

Data Tier: The Event Broker facilitates communication
between the analytics components and the data sources. It
manages the flow of real-time data to the Data Analytics
(Stream) and routes information to and from the Prescriptive
Analytics. The Database stores historical data, such as CAD-
models, maintenance reports or technical data, which is
subsequently used for trend analysis and informing predictive
models. It also serves as a repository for collected data over
time and connects them through semantic similarities, which
leverages the suitability of natural language interaction.

Vectorized data schemas in the Data Tier allow for efficient
data retrieval. Edge Devices are directly connected to the
database and serve as intermediaries between the physical
sensors and the system's core data infrastructure. They
perform preliminary data processing, filtering, and
aggregation tasks.

Sensors, either attached to machines or environmental
sensors, collect data about the operational status, health, and
performance of the machinery and environmental status. This
data is crucial for monitoring and maintenance purposes. It
incorporates different database structures. For processing
natural language, the core components are a vector database
and a KG, which serve as the foundation for an efficient RAG
pipeline. While vector databases enable efficient data
retrieval through vectorized representation of domain
specific data (Jing et al. 2024), KGs provide structured
representation of the data (Pan et al. 2024). A combination of
these components is leveraged to reduce hallucination and
utilize information which is not inherent to the LLM. The
KG, see Figure 1, enables the connection of ERP data with
task and competence relevant information. This data model
allows a holistic view on the maintenance process as well as
the possibility for downstream agents for interconnected
reasoning. Machines are the physical hardware being
monitored and maintained. Connected to sensors, they are the
source of the operational data fed into the system for analysis.
Assistance Systems, such as smart tools and tablets, are
connected to sensors. They serve as an interface for workers
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Figure 1: System Architecture Layout for empathetic assistance systems
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on the ground, providing them with real-time guidance
derived from the system’s analysis.
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Figure 2: Data model of the KG based extended from
(Kohl und Ansari 2023a)

Analytics Tier: The Prescriptive Analytics component is
directly linked to the User Interaction Application. It
processes the user's input, utilizing the Rasa conversational
Al framework (Introduction to Rasa Open Source & Rasa Pro
2024), to generate actionable advice or maintenance
recommendations. It uses advanced algorithms such as
anomaly detection to suggest specific actions based on the
analyzed data. The System Definition , powered by the
Llama-2-70b-model (Touvron et al. 2023), functions as a
reasoning framework that defines and orchestrates data
analytic processes. It incorporates a multi-agent layer
structure to process user input and determine the most
appropriate action to take (Jiang et al. 2023). Therefore,
necessary parameters and fitting data sources are determined
to resemble the scope for aspired data analytics. The Data
Analytics (Historical Data) component uses batch processing
to analyze historical data to identify trends, patterns and
potential issues based on past events. In contrast to the
historical data analytics, the Data Analytics (Stream)
component processes simulated real-time sensor data to offer
immediate insights and detect current or impending issues,

which is essential for real-time decision-making and alerts.
The Data Analytics component utilizes multiple regression to
forecast outcomes and incorporates K-means clustering to
discover trends in historical data, as well as an Isolation
Forest algorithm for anomaly detection. The foundational
understanding of the Data Analytics (Historical Data)
additionally augments the predictive real-time models to
ensure a maximum of information for analysis.

Presentation Tier: The User Interaction Application
component serves as the interface between the end-user and
the chatbot system. It is where users interact with the chatbot,
inputting queries and receiving responses. In this context, a
simplistic User Interface featuring a Chatbot window was
implemented, as illustrated in Figure 4.

Each tier in this architecture is intricately connected, allowing
data to flow from the machines up through the system to
enable real-time and predictive maintenance decision-
making. The architecture is designed to maximize efficiency,
reduce mean time to repair, and provide actionable insights
through a user-friendly interface.

3.2. Modular Chatbot Layout

This chatbot layout is aligned with existing frameworks for
developing multi-agent dialogue systems (Engelmann et al.
2023; Xi et al. 2023). It is depicted in Figure 3 and features a
central User Agent linked to three specialized agents
(Scheduling, Competency, Analyzer), all interfacing with an
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Figure 3: Interconnected Agent Layout for a modular
maintenance chatbot architecture

Page 597



Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN — 978-1-936263-40-0

LLM acting as a classification engine to determine which
agent is triggered for a certain query. This User Agent
represents the System Definition within the System
Architecture, see Figure 1 and therefore determines which
specialized agent is triggered subsequently. These
specialized agents comprise of several tools and determine
the correct tool usage for task-specific challenges. Moreover,
the agents can interface with each other if the task requires
agent collaboration. The proposed modular design allows for
seamless integration of further agents and tools within agents
to encounter novel challenges over time.

e User Agent: Channels user inputs to the appropriate
specialized agents and consolidates their outputs for user
communication. It is the link between Presentation and
Analytics Tier.

e Scheduling Agent: Selects the production planning and
shift planning tools based on user agent task instructions
and operational needs. The optimization algorithm
leverages provided data sources within the Data Tier and
interacts with the Competency and Analyzer Agent to
ensure fairness and efficiency while allocating shifts and
schedule production.

e Competency Agent: Decides whether to analyze skill
factors or physical profiles, aligning workforce tasks
with individual skills and physical capabilities for
optimal job assignment. Through its empathetic
capability it continuously checks for physical and ethical
alignment of worker tasks.

e Analyzer Agent: Chooses between MTTR calculation
and KPI report analysis tools to assess maintenance
effectiveness and identify areas for operational
improvement. It provides recommendations such as
prioritization or suggestions for automations.

¢ Recommender Agent: Has access to both historical and
real-time data. When an anomaly is detected, it becomes
operational. It offers similar historical failures, spare
parts, and can store documentation in the KG.

Contrary to the User Agent the specialized agents interact
with the Data Tier and leverage aforementioned RAG

Search for main-  Determining the

System fails
oot cause

tenance technician

Maintenance
logs

Search for spare
parts the repair

pipelines with KGs and vector databases to process dynamic
and real-time information (Huang et al. 2024). This layout
serves as an illustration of how agents can be utilized to allow
dynamic maintenance strategies. The system architecture, see
Figure 1, provides a high-level reference structure for the
integration of new agents, such as a failure mode and effects
analysis (FMEA) agent using the cause entity from the KG.

The architecture of this modular system integrates prompts as
follows: The overarching system prompt guides the Chatbot,
setting its function within a maintenance environment. This
structure includes more specific prompts at subordinate
levels. The User-Agent prompt functions analogously to a
supervisory agent, tasked with identifying the most
appropriate agent response to a user query. Each specialized
agent operates under its own prompt; for example, the
Analyzer Agent is responsible for generating reports based
on historical or real-time data. This necessitates determining
whether to initiate tools such as MTTR or KPI reports.
Subsequently, this agent classifies the tool required for the
task, parsing input parameters — such as the specific machine
and time span — from the LLM. These parameters, where
descriptions are also provided, are then employed within
Python functions, with the resulting outputs fed back to the
LLM, which then crafts responses based on these function
outputs.

3.3. Regulative Considerations

In the context of implementing a maintenance chatbot,
aligning with the EU Al Act's transparency obligations is
essential for fostering trust and ensuring responsible use. The
EU Al Act mandates that users are explicitly informed when
they are interacting with Al systems, like chatbots. This
requirement is critical in maintenance environments, where
decisions can impact operational safety and efficiency. By
disclosing the chatbot's Al nature, users are empowered to
make informed choices about their engagement,
understanding that they are consulting a machine for
assistance. This transparency not only builds trust in the
technology's capabilities and limitations but also reinforces
the importance of human oversight in decision-making
processes. Ensuring users are aware they are interacting with
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Figure 4: Maintenance process and its triggered agents as well as information flow
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an Al helps maintain a balance between leveraging
technological advancements and preserving human
judgement and accountability in maintenance operations.

4, Use-CASE

The use case discusses a maintenance workflow in the
railway industry, utilizing a chatbot for maintaining a cooling
system., see Figure 4. The used cooling system provides
sensor data about machine states as well as extensive
manufacturer information. As it is one of the most frequently
installed systems in Vienna's tramways and subways,
extensive data on maintenance incidents in form of logs and
spare parts is available. The data tier and the used
maintenance data set consists of text-based, tabular industrial
maintenance logs (Ansari 2020). The dataset was
transformed in order to fit the structure of the Sequential QA
(SQA) format by Microsoft (lyyer et al. 2016) in order the be
ideally processed by LLMs. In the use case scenario, the KG
is constructed from maintenance logs exported from an ERP
system, detailing machine failures and corrective actions,
also integrates information on the equipment and spare parts
used for repairs. The association of actions with required
competence and the frequency of these actions by
maintenance technicians serve to depict their competence
levels (Ansari et al. 2023). Further, a vector database houses
segments, specifically text excerpts, from work instructions
and machinery documentation. For real-time data, the system
monitors the current production schedule along with a
simulated data stream of sensor readings from the machines.
Additional stress levels of maintenance technicians are
recorded for evaluation purpose.

v

cobot

C D] -

Figure 5: Maintenance of a railway cooling system using
a chatbot

4.1. Application of the Chatbot

The chatbot's supportive capability is discussed based on the
standard end-to-end maintenance process see Figure 4. It
consists of equipment failure, search for maintainer,
identification of fault cause, search for spare parts, repair

action, documentation of the maintenance process,
reintegration of the machine. The following shows points of
human interaction as well as autonomous chatbot within this
process.

1. Equipment failure: The recommender agent is
activated by an error notification, triggered by an
anomaly in the real time data flow of the machine. Based
on the error notification similar historical failures and
corresponding actions are determined by semantic
search of the task recommendation agent (Ansari et al.
2021).

2. Search for maintainer: The scheduling agent,
competency agent and task recommendation agent
exchange information about the production schedule,
available maintenance personnel, their corresponding
competencies, and the necessary tasks for failure
resolution. According to that an allocation of the most
fitting maintainer for the task is deducted.

3. ldentification of fault cause: This stage marks the
initial interaction between the maintainer and the
chatbot. Utilizing the chatbot's knowledge, sourced from
documents within the vector database, it can pose
inquiries related to specific domains or machinery.
Throughout this process, the human evaluates the tasks
recommended by the chatbot for accuracy and
corroborates them based on personal experience and the
information furnished by the chatbot.

4. Search for spare parts: Once the tasks required for
resolving the failure are identified, the task
recommendation agent traverses through historical data
in the KG to propose necessary spare parts.

5. Repair action: During the physical repair, the chatbot
acts as an accessible source of pertinent information,
offering guidance through machine documents or other
necessary data from the vector database. Additionally, it
can process requests for more detailed machine
information, which are then thoroughly examined by the
analyzer agent, e.g. asking for the mean time of repair.

6. Documentation of maintenance process: Building on
prior interactions, the chatbot can autonomously create
new connections within the KG and carry out the
documentation process upon request from the
maintenance personnel.

7. Reintegration of the machine: Finally, the chatbot
guides through standard tasks to reintegrate the machine
levering information from diverse work instructions.

The proposed integration of a chatbot within the standard
end-to-end maintenance process, see Figure 4, represents a
significant advancement in operational efficiency and
precision. By embedding intelligent, autonomous capabilities
at critical junctures of the maintenance workflow, from initial
equipment failure detection to the reintegration of repaired
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machinery, this model showcases a transformative shift
towards more resilient and adaptive maintenance operations.
The synergy between human expertise and artificial
intelligence not only enhances the decision-making process
but also optimizes resource allocation, reduces downtime,
and enables empathic human-machine collaboration (Sorin et
al. 2023).

4.2. Example: Analyzer Agent

To illustrate a potential maintenance workflow, we present
an example of a chat where a user activates the Analyzer
Agent. The dialogue demonstrates the triggered process
chains, including the reasoning (highlighted in italics) and the
tools employed. Due to space constraints, a detailed
description of the various prompts is largely omitted. The
chatbot is referred to as “Al” Users can also follow the
thought process through a collapsible dropdown segment in
the interface, see Figure 6.

( )
é o “Provide me with a KPI Report for the
=] machine ES12 over the last 12 fiscal
weeks.”

7\

suitable..

User Agent

I need to provide a KPI Report for the
machine ES12 over the last 12 fiscal weeks..
Generating the report now. This involves
collecting data for the specified machine
and time frame, analyzing the performance
metrics, and creating visualizations for
easier understanding. [Arguments parsed:
machine="ES12”, timespan=12] call
kpi_report (“ES12”, 12)

.
)
é For a KPI Report the Analyzer Agent is
\

Analyzer Agent

é Here is the completed KPI Report for
machine ES12 covering the last 12 fiscal
weeks: [Placeholder: KPI Report & Figures].

User Agent

Figure 6: Example prompt of the Analyzer Agent

This example highlights how the chatbot, in its current state,
bases its decisions, extending to the collaboration of multiple
agents to optimize outcomes, such as in production planning.

4.3. Evaluation of the maintenance-chatbot

The evaluation is based on two types of maintenance tasks
performed in TU Wien’s pilot factory: a simple task for
changing and cleaning a filter and a more complex task for
changing the rotor, where the root cause is not clear. The
depicted tasks require different competence levels in
different areas. In the test scenarios, the maintenance chatbot
demonstrated promising results for guiding the maintenance
technicians through the root cause identification and for

offering more detailed answers when needed, thereby
reducing MTTR by 25% in comparison to the control group.
In the case of the more challenging problem setting, the
possibility of creating KPIs in natural language for deeper
analysis reduced the MTTR by approximately 30% leading
to an even higher impact. Furthermore, the dialogues are
tailored to the individual competence levels, which permit
queries and elucidations of (partial) steps, diminish the stress
level and cognitive load, and facilitate a more empathetic
conversational style. In addition, a ground truth dataset was
constructed. Based on the logs, the appropriate agent or tool
was triggered, and that the response was satisfactory in 83%
of all cases. Specific tools, such as LangSmith (Ito et al.
2020), are currently under evaluation concerning integration
for even better agent handling. Given the implementation of
the LLaMA2 model within this chatbot, the Do-Not-Answer
dataset (Wang et al. 2023) establishes a framework for
safeguarding LLMs against potential risks. The efficacy of
this dataset in mitigating harms will be further assessed in
forthcoming studies through an adapted version tailored to
evaluate the specific vulnerabilities and challenges posed by
this chatbot.

5. CONCLUSION AND OUTLOOK

In summary, this investigation highlights a maintenance
chatbot's significant efficiency over traditional systems in
minimizing Mean Time to Repair (MTTR), thereby boosting
operational efficiency and equipment effectiveness in
manufacturing. Traditional NLP based systems show an
improvement in MTTR of at least 20% in production
environments, which is confirmed by preliminary
investigations by (Ansari et al. 2023). Additionally
independent studies on LLM based assistance systems (Noy
und Zhang 2023) show even higher potentials in operational
efficiency, well in line with the first tests of the detailed
maintenance chatbot in the pilot factory use cases.
Leveraging advanced NLP and machine learning, the chatbot
surpasses conventional systems by integrating ERP data and
identifying relationships for enhanced maintenance insights,
significantly reducing cognitive load and stress.

Looking ahead, the scalability and generalizability of the
maintenance chatbot are poised for improvement with the
multi-agent systems, and causal Al. AutoGen frameworks
(Wu et al. 2023) are anticipated to refine the chatbot's content
generation and adaptation capabilities, enabling reciprocal
learning. Multi-agent systems promise to distribute problem-
solving tasks effectively, improving maintenance operations'
efficiency. Meanwhile, causal Al could provide a deeper
understanding of the complex causal relationships within
maintenance data systems, offering more accurate step-by-
step solutions.

Future directions indicate that maintenance chatbots could
overcome current limitations and adapt across various
manufacturing settings. This flexibility is key to meeting the
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sector's varied needs, marking a significant advancement in
CAS for maintenance. Driven by improvements in data
integration, natural language processing, and causality
understanding, this represents a crucial step in
manufacturing's digital transformation.
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