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ABSTRACT 

The degradation of a system is a time bound phenomenon, 

which leads to the deterioration of turbomachinery, in terms 

of performance and reliability. If undetected and not acted 

upon in time, this could also lead to sudden system failure, 

resulting in unplanned unit downtime and maintenance. 

Unplanned downtime of a turbomachine leads to severe 

production loss for the end customer and consequent 

economic damages. Early detection of a degradation pattern 

would provide the customer with the opportunity to timely 

carry out corrective actions, preventing an unscheduled down 

time. The paper evaluates degradation identification 

methodology currently known from literature and finds them 

not accurate enough for general purpose application required 

by the solution. The paper discusses a novel methodology 

which can accurately detect degradation patterns of 

timeseries data. Critical features of this methodology are 

novel time-based correlation enabled regression model with 

variable observation window, autonomous training, and 

automatic adjusting capability to incorporate operating 

behavior change or physical system replacement. This leads 

to high accuracy, high generalization, and domain agnostic 

application capability. Moreover, particular focus is given to 

achieving high probability of detection and a low probability 

of false alarm. The paper demonstrates the performance 

achieved by the methodology when applied to the field of 

prognostics and diagnostics of IoT connected turbomachines 

through 50+ real application cases.  

1. INTRODUCTION 

Rotating Turbomachines play a critical role in Industrial 

domain in Oil & Gas / Energy Plants serving various 

applications, such as Liquified Natural Gas (LNG), pipeline, 

fertilizers, refineries and power generation units. One of the 

most important aspects for the operators of these 

turbomachines are continuous availability and reduced 

downtime covering the entire life cycle. Iannitelli et al. 

(2018) highlighted that unscheduled shutdown of the 

turbomachines can have impact on the whole plant downtime 

with associated significant loss of production.  

Baker Hughes is a leading Original Equipment Manufacturer 

of Rotating Turbomachines with a wide Product Range of 

Gas Turbines, Centrifugal Compressors, Pumps, Steam 

Turbines, Electric Motors, Axial Compressors, etc. These 

products have been operating in various Oil & Gas and Power 

Generation facilities around the globe covering all the 

segments of the entire value chain of Oil & Gas industry and 

have an unparallel operating history.  

Baker Hughes has developed monitoring capabilities which 

are offered as a service, applied to a broad installed fleet of 

rotating equipment including gas turbines. Baker Hughes’ 

iCenter ecosystem continuously acquires different sensor 

parameters of its deployed assets at customer premises. These 

large number of operational data from the everyday operation 

of turbomachines is usually collected and analyzed by means 
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of analytics, component models and rules implemented by 

subject matter experts, as soon as new data is transferred to 

the monitoring center. Allegorico & Mantini (2014) indicated 

that anomaly detection rules and models are designed to scan 

through the data and notify the monitoring and diagnostic 

engineers, if any anomalies or emerging problems are 

detected. All alerts are analyzed by diagnostic engineers 

along with trouble shooting analysis and useful insights are 

sent to customers comprising set of recommendations.  

With turbomachinery covering various applications and 

operating in different operational scenarios, Baker Hughes 

follows a hybrid approach consisting of physics and data 

driven methods, where strong OEM knowledge is further 

enhanced by state-of-the-art data science methodologies to 

create robust solutions. This approach can be applied to the 

entire fleet of operating machines, to bring economies of 

scale and help maximize the availability and uptime of the 

monitored units. 

1.1. Degradation phenomena 

In Turbomachines, degradation phenomena accumulate over 

a period of time. Zagorowska, et al. (2019) indicated that 

degradation in turbomachine is an unwarranted phenomenon 

which deviates from the expected behavior and that changes 

the behavior of the affected system. Few examples of 

degradation include clogging of filters, performance 

degradation of compressors, increase spread of exhaust 

temperature measurement of gas turbines, etc. If degradation 

is not detected early, this may lead to a gradual build up above 

the mechanical integrity of the system which can cause 

sudden failures, break down and consequent downtime of the 

turbomachine with production loss for the end customer. A 

typical example of degradation in turbomachinery systems 

concerns filters. A filter acts as a mechanical stop for 

contaminants, to make sure they do not pass through the 

downstream systems. Due to their nature, filters have a 

tendency to get clogged or choked after a period of operation 

with gradual buildup of contaminants, creating a higher 

resistance to the flow. To detect abnormal operating 

conditions, analytics could be built to observe the behavior of 

the component by monitoring physical quantities, such as the 

pressure drop on the filter. This can be analyzed to infer 

information on its actual defect state. The ability to promptly 

detect these deteriorating conditions could be useful for 

implementing corrective actions.   

Generally, degradation phenomena cannot always be directly 

measured, however it is possible to make use of indirect 

information or calculated parameters to verify the level of 

degradation of a system (for example the level of fouling of 

an axial compressor can be determined indirectly through the 

analysis of its compression efficiency). In general, the 

presence of a degradation phenomenon is signaled by the fact 

that the timeseries of interest shows a drift over time. If the 

timeseries has an upward trend, it is considered a positive 

degradation, otherwise it is considered a negative 

degradation.  

In the current study, authors have focused on univariate time 

series with a stationary behavior in the normal operating 

range of the system. In these cases, a monotonic signal trend 

is considered anomalous and possibly linked to an ongoing 

degradation phenomenon. In the event that this monotonic 

trend is accompanied by a similar behavior of other signals 

related to it, the event is considered non-independent and 

therefore not anomalous.  

Figure 1 shows a typical behavior of a sensor going through 

a degradation trend. As the sensor value increases over a 

period, this is considered a positive degradation phenomena.  

 

Figure 1. Example of a degradation pattern in a generic 

signal 

In the analysis of degradation phenomena, another factor to 

consider is the observation time window. Figure 2 highlights 

the behavior of the same signal over a longer observation 

time.  

 

Figure 2. Example of multiple degradation patterns for the 

same signal 
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In this case, two different degradation profiles can be noted 

that evolve with two different time scales. The first 

degradation profile is quite sudden, while the subsequent one 

is rather slow and it build up over a longer period of time. 

The sudden drop down of the signal after the first degradation 

pattern is currently excluded from the current analysis. 

2. EXISTING METHODS FOR TREND IDENTIFICATION 

2.1. Monotonicity Trend – Mann-Kendall Test 

The purpose of the Mann-Kendall (MK) test (Mann 1945, 

Kendall 1975, Gilbert 1987) is to statistically assess if there 

is a monotonic upward or downward trend of the variable of 

interest over time. A monotonic upward or downward trend 

means that the variable consistently increases or decreases 

through time.  

The MK method calculates test statistics as the count of 

positive and negative deltas in the dataset. 

 𝑺 =  ∑ ∑ 𝒔𝒈𝒏(𝒙𝒊 − 𝒙𝒋)

𝒏

𝒊−𝒋+𝟏

𝒏−𝟏

𝒋−𝟏

          (1) 

 

Where x is the observation value, i and j are time indices.  

If number of observations, 𝑛 ≥ 10, Variance of S is 

calculated as follows. 

 

                                             𝑉𝐴𝑅(𝑆)𝑀𝐾

=
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5) −  ∑ 𝑡𝑝 (𝑡𝑝 − 1)(2𝑡𝑝 + 5)

𝑔

𝑝−1

] (2) 

 

where g is the number of clusters of data points having the 

same data value and 𝑡𝑝 is the number of observations in the p 

th group. 

For example, in the sequence of observation in time 
{28, 32, 34, 2, 29, 32, 2, 34, 32} there are 𝑔 = 3 tied groups. 

Tied group 𝑡1 = 2 for tied value of 2, tied group 𝑡2 = 3 for 

tied value of 32 and tied group 𝑡3 = 2 for tied value of 34 

 

MK Test statistics is calculated as follows: 

 

𝑍𝑀𝐾 =  
𝑆−1

√𝑉𝐴𝑅(𝑆)𝑀𝐾
 𝑖𝑓 𝑆 > 0  

𝑍𝑀𝐾 =  0 𝑖𝑓 𝑆 = 0 

𝑍𝑀𝐾 =  
𝑆+1

√𝑉𝐴𝑅(𝑆)𝑀𝐾
 𝑖𝑓 𝑆 < 0  

 

(3) 

A positive value of 𝑍𝑀𝐾 indicates an increasing trend, while 

a negative value of 𝑍𝑀𝐾 indicates a decreasing trend. 

The MK test was applied on the generic signal in Figure 3, 

which shows a clear degradation trend in different periods of 

time. The points where the increasing trend is detected are 

highlighted in orange. 

 

Figure 3. MK Test results 

As observed from the Figure 3 for the given data set, the 

method was promising in terms of detecting the slope region, 

however it produced many false positives. To improve this 

manual threshold tuning is required, however this is not a 

practical and most effective solution for more general and 

scalable applicability of the methodology.  

2.2. Theil Sen Slope Method 

Theil (1950) proposed the median of pairwise slopes as an 

estimator of the slope parameters. Sen (1968) extended this 

estimator to handle ties. Sprent et al, (1993) indicated that 

Theil-Sen estimator is a regression method, robust to outliers.  

Thiel-Sen estimator calculates the slope by taking the median 

of the slopes between each pair of points in the data. For a 

pair of points, (𝑥𝑖 , 𝑦𝑖), 𝑡ℎ𝑒 𝑠𝑙𝑜𝑝𝑒 𝑖𝑠 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑠 

 𝑠𝑙𝑜𝑝𝑒 =  
(𝑦𝑗 – 𝑦𝑖  )

(𝑥𝑗 – 𝑥𝑖  )
 (4) 

 

An intercept between each pair of points, can be calculated as  

                𝑏𝑖 =  𝑦𝑖 −  𝑚 ∗ 𝑥𝑖  (5) 

where m is the Thiel-Sen slope. Following the similar 

methodology of finding the median of each slope between 

each pair of points, median of intercept is calculated.  

Theil-Sen Slope method was applied on the same signal of 

Figure 3 after setting an appropriate threshold to detect the 

degradation pattern. Figure 4 shows the results of the Thiel 

Sen slope method. 
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Figure 4. TS Test results 

 

As observed from Figure 4 for given data set, Thiel-Sen 

method identifies trending patterns, however it still generates 

many false positives and is strongly dependent on the 

threshold value, which need to be manually adjusted based 

on the profile of the signal. This limits the general purpose 

and scalable applicability of the methodology.  

3. NOVEL METHODOLOGY 

Abernathy et al. (1973) indicated that sensor measurement 

are affected by noise and noise increase over a period of time 

as the sensor ages. Noise of the sensor measurement impacts 

the method development and it’s ability to identify the 

degradation patterns. Furthermore, the degradation detection 

method must be easily scalable to other use cases and be able 

to work with different degradation patterns such as slow and 

fast degradations and presence of noise. 

De Giorgi et al. (2023) have done an exhaustive literature 

review on detecting degradation phenomena as part of 

prognostic and diagnostics for jet engine health monitoring 

and have found that current literature degradation health 

monitoring techniques have certain gaps in terms of lack of 

standardization, lack of real world testing/comparative 

studies and limited consideration of multiple degradations.  

Following the above analysis, it was concluded that current 

methods available in the literature may not effectively 

provide a generalized and robust solution. Furthermore, the 

existing methods are quite difficult to be fine-tuned in real 

application scenarios and are prone to generate a high rate of 

false positives.  

As seen in Figure 3 & Figure 4, the degradation profile of a 

signal is a function of time. This could be caused by various 

factors, such as the intrinsic structure of the system, external 

interferences, natural aging and so on. In order to effectively 

capture degradation phenomena which evolves over a 

different time scale, authors had decided to distinguish 2 

types of degradation profiles: 

• Fast Degradation – These degradation profiles are 

quick with respect to typical behavior of the given 

signal/system. 

• Slow Degradation – These degradation profiles 

slowly build over a period of time and may not show 

an obvious degradation behavior when the 

observation window is small. 

Authors have then devised a novel methodology by filtering 

the signal into a High Frequency component and a Low 

Frequency component.  

The High Frequency component of the signal is calculated as: 

       𝐻𝑖𝑔ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑡 =  𝐻𝑖𝑔ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑡−1 ∗  𝛼𝑡 +
                                     𝑆𝑖𝑔𝑛𝑎𝑙𝑡 ∗  (1 − 𝛼𝑡)                                     (6) 

 

Where 𝛼 is the exponential smoothing average constant. As 

degradation phenomena are function of time and depends on 

past values, this constant has been selected to keep a balance 

between past observations and current values. After a careful 

analysis and various tests on real cases, this value was kept at 

0.35. 

The low frequency component of the signal is then calculated 

as  

   𝐿𝑜𝑤 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑡 =  𝑆𝑖𝑔𝑛𝑎𝑙𝑡 −  𝐻𝑖𝑔ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑡−1  (7) 

Figure 5 shows the original signal and decomposition of the 

same into high & low frequency component of the given 

signal. Observing Low Filter, it is evident that, this features 

carries out the denoising of the signal. 

 

 
 

Figure 5. Signal decomposition in Low frequency 

 

A novel time-based correlation approach was used to identify 

the degradation patterns of the low frequency component. 

The approach was based on the observation that if the signal 

is trending up or down over a period of time, it shall have a 

strong correlation with time, which will be positive or 

negative respectively.  

The correlation coefficient was obtained by normalizing the 

covariance of the low frequency signal. 

The covariance of the signal is calculated as 

                𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝐸[𝑋𝑌] −  (𝐸𝑋)(𝐸𝑌)                  (8) 

The variance is calculated as 

                          𝑉𝑎𝑟𝑋 = 𝐸[𝑋2] − 𝐸[𝑋]2 

                                                                                            (9)      

                           𝑉𝑎𝑟𝑌 = 𝐸[𝑌2] − 𝐸[𝑌]2 
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Then the correlation coefficient is calculated as 

 

                𝐶𝑜𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

√𝑉𝑎𝑟𝑋∗ 𝑉𝑎𝑟𝑌
          (10) 

A threshold of 0.9 was then applied to this correlation 

coefficient to detect sections of the signal with high slope, as 

showed in Figure 6. 

 
 

Figure 6. Time based correlation on Low frequency 

 

As observed from Figure 6, the method is more robust and 

less sensitive if compared to previously discussed methods. 

It effectively captures the sections with high slopes; however, 

it is not capable of capturing the areas where degradation is 

slowest and it also generates some sporadic false alarms. 

To overcome the limitation of the current method on the slow 

degradation patterns, the authors devised the dedicated 

approach described in the next paragraph. 

3.1. Methodology for Slow Degradation 

Verbai et al. (2024) applied linear regression method to 

identify and predict the degradation phenomena. Authors 

have further used the linear regression method to develop the 

methodology to capture slow degradation  

The linear regression model is expressed as: 

                                  �̂�𝑖 =  𝑏0 +  𝑏1 ∗ 𝑥𝑖                           (11) 

Where �̂�𝑖 is the predicted value, 𝑏0 is the intercept of the line, 

𝑏1is the slope of the line, and 𝑥𝑖 is the actual value. 

The linear regression model is fit on 1 week of Low 

frequency data of the signal and further analysis is carried out 

on the line slope 𝑏1, 𝑅2 error and Root Mean Square Error. 

R-squared (𝑅2) of the linear regression model is calculated as 

                            𝑅2  = 1 −  (
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
)                          (12) 

Where 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  is the sum of squares of the residual errors 

and 𝑆𝑆𝑡𝑜𝑡𝑎𝑙  is the total sum of the errors.  

𝑅2  indicates the proportion of data points which lie within the 

line created by the regression model. A higher value of 𝑅2 is 

desirable as it indicates a better fit. 

To ensure a good regression model for subsequent analyses, 

a minimum value of 𝑅2 score is required.  

The Root Mean Square Error (RMSE) indicates the quality of 

predictions. It evaluates how far predictions are from the 

measured true values using Euclidean distance.  

                       𝑅𝑀𝑆𝐸 =  √∑
(�̂�𝑖− 𝑦𝑖)2

𝑛

𝑛
𝑖=1                           (13) 

Where �̂�𝑖 is predicted value, 𝑦𝑖  is actual true value and 𝑛 is 

number of observations. 

Above regression methodology was applied on low 

frequency of 7 days data. However in order to early detect the 

degradation phenomena, observation window considered was 

1 day. 

To further make sure that generated errors are within the 

typical operating range of the signal a threshold was applied 

on RMSE as a function of normal operating range of the 

signal. 

To make sure, that only important degradation patterns are 

captured, a minimum threshold value was applied on the 

slope on top of already discussed threshold on 𝑅2 and RMSE 

values. The proper value of the threshold was selected while 

doing an exhaustive testing to obtain a balance between False 

Positive and False Negative.  

Results of Figure 7 shows the degradation pattern captured 

by the new methodology with high accuracy. 

 
 

Figure 7. Detection by Slow Degradation Methodology 

 

3.2. Time Window for Fast and Slow Degradation 

Based on the extensive tests carried out and iteratively 

optimized, authors have specified 2 different observation 

periods, 24 hours and 7 days, which have proven to be 

effective on use cases that are common in our industry. 

Table 1. Time Window duration 

Degradation Type Time Window 

Fast Degradation 24 Hours 

Slow Degradation 7 Days 

 

3.3. Autonomous Training and Self Adjusting Capability 

The developed methodology is intended to have a general-

purpose application by covering various types of signals that 

are typically acquired on turbomachines. Moreover, it must 
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be able to function correctly for signals that span in a wide 

operating range. 

To meet the above requirement, authors have developed a 

methodology to characterize the “Normal State” of operation 

of a signal, namely its typical operating range known from 

the past.  

In order to define an operation range of the signal and 

detection of potential anomalous behavior of the signal, 

authors have then developed a typical operating range of 

signal called as confidence band. 

Confidence Band is a function of the following signal 

statistical indicators and is calculated dynamically:  

                               𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐵𝑎𝑛𝑑 =
         𝑓(𝑀𝑒𝑎𝑛, 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝑠)            (13) 

Any sustained operation outside of the normal state could be 

considered as a potential degradation pattern. 

The method continuously updates the above statistics and 

redefines the system normal state when needed. Other factors 

that influence the signal behavior are the maintenance events 

such as major inspections, repairs, replacements, etc. and 

other external contributors like the process load and ambient 

conditions, which can lead to different operating behavior of 

a given signal. The algorithm is designed to self-adjust when 

this change in signal behavior occurs.  

4. TECHNICAL CASES 

Authors have extensively applied and tested this 

methodology on a variety of turbomachinery signals acquired 

by Baker Hughes’ monitoring service. In the following 

section the authors reported some examples of real 

degradation events captured by applying this methodology on 

historical data. If not detected promptly, the progression of 

the degradation phenomenon could have caused the signal of 

interest to reach protection thresholds, causing alarms or even 

the trip of the unit. A trip leads to unavailability of the 

turbomachine and the loss of production for the end 

customer, with consequent economic damage.  

The implemented methodology provides early detection of 

degradation of critical signals and provides the opportunity to 

perform corrective actions and increase the availability of 

turbomachinery. 

This section captures few of the real technical cases captured 

from variety of signals acquired by Baker Hughes’ 

monitoring service. Few of these signals are part of 

Centrifugal Compressors Auxiliary systems, Gas Turbines, 

etc. Some of the examples of these signals are Filter 

Differential Pressure, Vent Pressure, Compressor Efficiency 

etc,. As discussed before, these signals are expected to be 

stationary with in the normal operating range of the system. 

Any independent monotonic trend identification is 

considered to be anomalous behavior of the signal.  

The grey are highlighted in the figures represents Confidence 

Band of the signal, which is the expected range of operation. 

As discussed before, methodology keeps on dynamically 

calculate this confidence band. Anomaly events are generated 

when the signal exceeds this confidence band. 

4.1. Example of Fast Degradation 

This section describes the example in which underlying 

degradation phenomena is Fast in nature and happens with in 

time window of 24 hours. 

4.1.1. Fast Degradation Profile 1 

 

Figure 7. Detection of Fast Degradation event 1 

4.1.2. Fast Degradation Profile 2 

 

Figure 8. Detection of Fast Degradation event 2 

As seen from Figure 7 & Figure 8, the methodology can 

effectively capture fast degradation of the signal, even when 

signal has high oscillation or a reset.  

4.2. Example of Slow Degradation 

This section describes the example in which underlying 

degradation phenomena is Slow in nature, accumulates over 

a longer period of time and happens with in time window of 

7 days. 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 940



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

7 

4.2.1. Slow Degradation Profile 1 

 

Figure 9. Detection of Slow Degradation event 1 

4.2.2. Slow Degradation Profile 2 

 

Figure 10. Detection of Slow Degradation event 2 – Noisy 

signal 

 

In some cases, the monitored signal can be noisy and this may 

impact the detection capability of the algorithm. A such 

example is visible in Figure 10, where the raw signal is noisy, 

but at the same time shoes a slow degradation process. With 

the novel approach of the methodology, segregating low 

frequency of the signal, the methodology is effectively able 

to denoise the signal and accurately captures the degradation 

trend.  

4.3. Timely Corrective Actions 

The degradation patterns detected by this analytic could be 

associated to some specific failure modes of the system, thus 

mapping of this potential root cause with detected type of 

degradation phenomena is of high importance. Based on 

strong OEM knowledge, Baker Hughes has identified up to 8 

root causes for degradation patterns. Some of these root 

causes are Instrument deviations, Clogging, Condensation, 

Process fluctuations, Fouling etc. With the given identified 

root cause, diagnostic engineers then propose a targeted 

corrective actions to the site service engineers. 

Implementation of this corrective actions eventually leads to 

improved uptime of the unit with no unscheduled 

shutdowns/repairs for the end customer. 

5. RESULT ANALYSIS 

To summarize, the novel methodology proposed by the 

authors, separates High frequency and Low frequency 

component of the signal to effectively denoise the data and 

separate the rapid changes happening into the signal.  

As the degradation profile is strongly dependent on the time 

interval, currently 2 observation windows have been 

considered. Results have shown that method is effectively 

able to capture the Fast and Slow degradation of the signal, 

whereas standard methods like Mann Kendall and Thiel Sen 

slope has not been very effective and accurate in either 

identifying the degradation trend or wrongly capturing the 

degradation. It is to be further noted that, analytic has quite 

good generalization capability as it is able to catch wide 

operating range of signal as observed from Figure 7, 8, 9 & 

10. 

In order to validate the methodology on a larger data set, the 

approach was applied on 600+ turbomachines being 

monitored by Baker Hughes’s iCenter eco system. With 

extensive understanding of Turbomachines system, signals 

for validation were selected in such a way that signal show a 

degradation trend due to inherent malfunctioning of the 

system. Some of the examples of these signals are Filter 

Differential Pressure, Vent Pressure, etc.  Methodology was 

tested in a Batch process where incoming data with a given 

sampling frequency of 1 minute was processed in a batch of 

2 hours.  

To calculate the key performance indicators of the 

methodology, a manual approach was used which required a 

great effort from the subject matter experts to analyze all the 

events generated by the algorithm. The methodology was also 

tested on a number of real cases of degradation that were 

already known to the monitoring service. 

Table 2 shows the performance metrics of the method 

implemented.   

Table 2. Performance of Method during Validation 

 

Details Value 

Number of Assets on which methodology 

was applied  
600+ 

Average processing time for 2 hours batch 

with 1 minute sampling 

1.1 seconds / 

asset 

Total Degradation events captured on 

multiple signals 
50+ 

Probability of Detection  > 95% 
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False Positive Rate < 5% 

False Negative Rate < 5% 

Precision > 95% 

Recall > 95% 

 

6. CONCLUSION 

In this paper, the authors discussed the problem of detecting 

degradation phenomena in the application field of 

turbomachinery and explained the importance of 

implementing early detection of such events in Baker Hughes 

continuous monitoring service.  

Authors have also described degradation phenomena which 

accumulates with time scales of different duration, happening 

on different signals acquired on turbomachines. The existing 

methods for the identification of degradation patterns, 

already known in the literature, have not been deemed 

accurate enough for general purpose applicability required by 

the solution. A novel approach has been developed 

comprising strong features, like the extraction of low 

frequency component of the signal, the incorporation of time 

based correlation and linear regression model applied on 

multi time observation window. It was shown that these 

unique features empower the method with accurate detection 

rate, precision and recall. The proposed methodology also 

embeds autonomous learning and auto setting capability that 

enables generalized application covering multiple types of 

signals with wide operating ranges.  

To validate the new methodology on a large data set, tests 

were performed on historical timeseries data from more than 

600+ turbomachines being monitored by Baker Hughes’s 

iCenter eco system. The signals were chosen on some 

families of mechanical systems which generally can present 

degradation phenomena during their life cycle. The paper 

then also discusses some real detection cases and explains the 

process through which the probable associated root causes 

are identified and the corrective actions are suggested to the 

final customers for field implementation. Finally, the 

performance matrix of the methodology is shown, which was 

found to comply with the stringent detection requirements 

followed by Baker Hughes. 

NOMENCLATURE  

LNG Liquified Natural Gas 

OEM     Original Equipment Manufacturer 

MK Mann Kendall 

TS  Thiel Sen 

RMSE Root Mean Square Error 
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