
 1 

Labeling Algorithm for Outer-Race Faults in Bearings Based on 

Load Signal  

Tal Bublil1, *, Cees Taal2, Bert Maljaars2, Renata Klein3, Jacob Bortman1 

1 PHM Laboratory, Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O.B653, Beer-Sheva 

8410501, Israel 

talbub@post.bgu.ac.il 

jacbort@post.bgu.ac.il 

2 SKF, Research and Technology Development, Meidoornkade 14, 3992AE, Houten, the Netherlands. 

cees.taal@skf.com  

bert.maljaars@skf.com  

3R.K. Diagnostics, P.O. Box 101, Gilon, D.N. Misgav 20103, Israel 

Renata.Klein@rkdiagnostics.co.il 

 
ABSTRACT 

Rolling element bearings are essential components for the 

proper functioning of many types of rotating equipment. 

Diagnosing faults in bearings has traditionally been done 

using signal processing techniques inspired by physics, 

wherein acceleration signals are analyzed using time-

frequency analysis methods. To study the effect of bearing 

damage on acceleration signals, experiments are typically 

performed aiming for a natural propagation of a spall. 

However, the extent of spall severity during the test remains 

uncertain. It is possible to disassemble and reassemble the 

bearing for visual inspection. Nevertheless, previous studies 

observed that the vibration signal would drastically change if 

this operation was conducted repeatedly, impacting the 

identification of trends in the acceleration signal. The 

objective of this study is to provide a method which can assist 

with labeling the spall size in endurance tests without the 

necessity of disassembling and reassembling the test rig. To 

address this issue, a new algorithm, based on the load cell 

signal was developed to assess the spall size using low-speed 

measurements. This algorithm enables the identification of 

the circumferential angle at which the rolling element 

interacts with the spall and is only carrying a partial load. The 

algorithm has been validated through visual inspections 

conducted during the experiment. This algorithm makes it 

possible to estimate the spall size without the need for visual 

inspection in subsequent experiments. A labeled endurance 

test contributes to a better understanding of spall propagation, 

such as the effect of speed, load, and material properties on 

the propagation speed. This study demonstrates how the load 

signal can be used for fault labeling with relatively simple 

and common techniques. This approach will enable the 

tackling of advanced and more complex problems in future 

endeavors, such as fault severity estimation and even 

prognosis. 

1. INTRODUCTION 

Bearings play a crucial role in nearly all rotating machinery 

(Malla & Panigrahi, 2019), and monitoring their condition 

typically involves four stages: detection, identification, 

severity estimation, and prognosis (Bechhoefer & 

Schlanbusch, 2018). A substantial amount of research has 

been conducted on the subject, with a focus on the detection 

and identification stages, which have shown promising 

results. Bearing damage severity is typically defined as a 

function of overall vibration levels ((ISO), 2016). 

Unfortunately, these thresholds are very application 

dependent and difficult to generalize. A robust and objective 

method for severity estimation in bearings remains 

challenging. 

One common approach to define severity is based on raceway 

spall size in the circumferential direction. Among the studies 

engaging spall size estimation, various types of sensor 

measurements are utilized. Common methods include 

accelerometers, some employing oil debris monitoring 

(ODM), and others utilizing optic fibers (Gazizulin et al., 

2019; Madar et al., 2022; Medvedovsky et al., 2022). A 

review of different approaches is given in Zhang et al., 2022. 

Accelerometers are relatively common components in 
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machinery due to their ease of installation. Methods based on 

accelerometers typically try  to identify the entry and exit 

points of rolling elements from the spall within the time 

domain (Epps I K, 1991; Moazen-ahmadi & Howard, 2016; 

Sawalhi & Randall, 2011). Some of these studies employ 

low-pass filters to detect entry and exit events (Moazen 

Ahmadi et al., 2016), a practice that may pose challenges due 

to its reliance on a rule of thumb. Additionally, these methods 

are often detecting very small defects, whereas numerous 

applications involve significant spall sizes. There are also 

severity estimation methods which utilize condition 

indicators, which are then employed to calculate a health 

indicator (Gebraeel et al., 2004; Ma et al., 2012). These 

methods offer increased robustness in noisy conditions 

compared to the aforementioned methods since they consider 

trends based on multiple sensor recordings over time. 

However, establishing a direct link between health indicators 

and spall size in rotating machinery poses challenges, 

primarily due to missing ground truth values of its spall size 

during operation. 

Studies that use ODM can estimate the spall size by 

calculating the total mass of debris particles originating from 

the bearing (Madar et al., 2022; Portal et al., 2022). However, 

to use this method, certain geometric assumptions are made 

which might be invalid. Optic fibers are used to measure the 

strain on the housing bearing, and by tracking the changes in 

the signal, it is possible to calculate the length of the spall 

(Medvedovsky et al., 2022). Nevertheless, both of these 

methods require expensive equipment and are not suitable for 

every test rig or machinery. 

Emulating the topography of a spall is a challenging task. 

Consequently, studies that have explored severity estimation 

in bearings often rely on artificial spalls with less realistic 

rectangular shapes. However, the interaction between the 

rolling element (RE) in the bearing and the artificial spall 

could be significantly different from the interaction with a 

real spall, which may result in higher impulses in the 

acceleration signal than those observed in natural spalls 

(Zhang et al., 2021). 

One approach to achieve naturally growing spalls is through 

endurance tests. Nevertheless, for measuring the spall size in 

acceleration algorithm validation, it is necessary to 

disassemble and reassemble the test rig, which can 

significantly alter the vibration signal (Smith & Randall, 

2015).   Recent studies have shown, that for specific test rig 

setups a load cell can act as a proximity measurement for 

displacement containing a distinctive pattern related to the 

spall geometry (Zhang et al., 2022). Moreover, an 

observation is made that the load-cell signal is less sensitive 

to the re-assembly of a bearing compared to acceleration.  

In this study we propose a unique algorithm to estimate spall 

sizes in endurance tests using load signals, which can be 

obtained without visually inspecting the spall. The algorithm 

is implemented at low speeds, enabling validation of spall 

dimensions during endurance experiments. 

2. EXPERIMENTAL SETUP 

The endurance test was conducted in SKF Research and 

Technology Development (RTD). The test was performed on 

the R2 test rig (Harris, 2006), as shown in Figure 1, with the 

positions of the accelerometer and the load cell indicated. For 

measuring the rotational speed, a tachometer measuring two 

pulses per shaft rotation was used. In the experiment, two 

bearings were measured: the tested bearing, located on the 

left side of the test rig, and a reference intact bearing 

positioned on the right side of the test rig. Both bearings were 

monitored throughout the experiment. The algorithm 

developed in this study was primarily validated using the 

load-cell data acquired from the tested bearing on the left 

side. Throughout the experiment, sensor snapshots were 

recorded, defined as synchronized recordings of all sensors at 

a sample rate of 49152 Hz for 36 seconds. 

To validate the load-based algorithm, a visual inspection was 

required. To simplify the process of disassembling and 

reassembling the test rig, a bearing with a design that allows 

easy access to the outer race was chosen. The selected bearing 

is a cylindrical roller bearing of the N209 ECP type. During 

the experiment, only a pure radial load is applied because this 

bearing type cannot sustain axial loads.  

 

Figure 1: SKF R2 test rig; The accelerometer marked in red, 

load cell marked in blue. 

2.1. Test Procedures 

The test consists of two stages: (1) a damage initiation phase 

and (2) a spall growth phase. Both phases will be further 

explained in the following sections. 

2.1.1. Damage Initiation Phase 

In this phase, the purpose is to initiate a spall on the outer race 

of the bearing. To expedite this process, an initial small 

accelerometer

load -cell
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damage was introduced to the outer race before the test. The 

damage was created using an electrical discharge machine 

(EDM) on the race surface. The EDM created a rectangular-

shaped damage with circumferential and axial dimensions of 

0.2mm and 2mm, respectively. In this phase, the bearing was 

subjected to high loads and speeds to induce growth. The 

decision to stop this phase was made based on an 

acceleration-based condition indicator (Harris, 2006), where 

an abnormal increase determined the stopping criteria. 

2.1.2. Spall Growth Phase 

The objective of this phase is to capture snapshots of the data 

measured by the sensors while growing the spall at a 

controlled pace. The protocol of this phase contains three 

stages that repeat each other until the end of the experiment. 

Figure 2  illustrates one cycle of this protocol, which includes 

three stages: the growth stage in blue, the monitoring stage in 

orange, and the collection stage in green. The black and 

purple vertical lines at the bottom of the graph indicate the 

load in each stage (black for 16 kN and purple for 6 kN). The 

vertical axis represents the normalized duration, which is the 

time duration normalized by the combined time of the 

monitoring and collection stages. The vertical line represents 

the shaft speed. 

 

Figure 2: Example of one protocol cycle for spall growth. 

One cycle consists of three stages: 1: growth in blue, 2: 

monitor in orange, 3: collect in green. 

 

In the growth stage, the aim is to accelerate spall growth; 

therefore, the bearing is subjected to a radial load of 16 kN, 

and the shaft rotational speed is set to 6000 RPM. One cycle 

of this stage lasts approximately 50 minutes.  

In the monitor stage, two measurements are conducted at a 

high load with a speed of 300 RPM, one at the beginning of 

the collection stage and one at the end. In these 

measurements, the changes in the load cell are clearer and 

therefore will be used in this study for the load-based 

algorithm. 

In the collection stage, measurements are taken from the 

sensors. In this phase, the load is reduced, and the speed 

changes to 10 different speeds spaced between 300 and 3000 

RPM. The measurements at this stage will be used for future 

research. This stage takes around 20 minutes. 

The experiment was halted approximately every 5 million 

revolutions for visual inspections. The test is stopped when a 

critical spall size, exceeding two times the distance between 

rolling elements, is reached. Beyond this size, two rolling 

elements no longer bear any load, which can lead to 

accelerated spall growth and, consequently, a high risk of 

critical failure. 

3. ANALYSIS OF LOAD CELL SIGNAL 

In a faulted bearing, with a spall not larger than the distance 

between two rolling elements in the outer race, the interaction 

of the rolling element and the spall can be roughly divided 

into two stages. In one stage, none of the rolling elements 

interacts with the spall. The other stage is when one of the 

rolling elements is interacting with the spall; both stages are 

illustrated in Figure 3. 

 

Figure 3: Illustration of REB interaction with outer race 

spall; (A) none of the RE interact with the spall (B) One RE 

enters the spall. 

 

In stage one, the force applied to the bearing is divided among 

all the rolling elements in the bearing. In stage two, one of 

the rolling elements is inside the spall and, therefore, does not 

carry any load. This results in a different distribution of the 

load which appears to be observable on the load cell. By 

detecting these changes in the load cell, one can estimate the 

duration of the interaction with the spall, which can then be 

easily calculated to determine the spall length. At higher 

speeds, the transition between stages occurs more rapidly, 

meaning the system doesn’t have enough time to stabilize, 

making it more challenging to detect in the time domain. 

A B
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Figure 4: Raw load signal at 300 RPM with zoom on one 

cycle, equivalent to one shaft rotation: the area of interest 

marked by the red dashed rectangle indicate the area rolling 

element over the defect. 

When examining the load signals acquired from the 

experiment at low speeds, it is possible to detect the 

interaction of the rolling element with the spall. Figure 4 

shows an example of a signal with the visible interaction 

marked. To automate the process of identifying load 

distribution changes in the signal, a seven-step algorithm is 

proposed. The steps are described in Figure 6, with each step 

designed to emphasize and isolate the interaction of the 

rolling element with the spall. Each one of the steps is 

explained: 

1. The load signal is detrended, by subtracting the 

“smoothed” signal from the original signal, making 

the signal centered around zero. 

2. The interaction with the spall that occurs during the 

rotation of the shaft is periodic in the time domain 

when the speed is constant. However, even when 

setting the test rig to a constant speed, the speed is 

never truly constant. Therefore, angular resampling 

of the detrended load signal is conducted, 

converting the signal to the cycle domain. 

3. Bearings are asynchronous components due to 

slippage (Sol et al., 2022). When employing 

Modified SA, as further explained in point 5, one 

can obtain a signal with isolated synchronous 

elements to the shaft's frequencies. By subtracting 

the SA signals from the original signal, the discrete 

shaft synchronous frequencies are removed, 

mitigating the interferences of other rotating 

components. This yields a signal containing only the 

asynchronous components. This algorithm is known 

as de-phase (Klein, 2017). 

4. The cycle of interest is the interaction between the 

rolling element and the spall. Therefore, angular 

resampling is performed again based on the BPFO. 

Unlike the angular resampling based on the shaft’s 

speed in step 2, the angular resampling in this step 

ensures a consistent number of samples in each 

cycle of the BPFO.  

5. Modified Spectrum Analysis (MSA) (Koren, 2017) 

is utilized in this scenario. In MSA, the signal is 

segmented into N parts. The amplitudes of the 

Fourier Transforms (FT) for these segments are then 

averaged, resulting in an MSA signal with the 

averaged amplitude and phase information from a 

single segment. The fundamental steps of the MSA 

algorithm are outlined in Equations 1 and 2. Where 

N is the number of segments into which the signal is 

divided, and 𝑥𝑛 represents a single segment of the 

signal. This technique is employed to isolate signal 

components asynchronous to the BPFO, including 

noise. 

 |�̅�| =
1

𝑁
∑|𝑓𝑓𝑡(𝑥𝑛)|

𝑁

𝑛=1

 (1) 

 𝑀𝑆𝐴 = 𝑖𝑓𝑓𝑡{|�̅�| ∙ 𝑒𝑥𝑝(𝑗 ∙ ∠𝑓𝑓𝑡(𝑥1))} (2) 

6. A dynamic threshold is established by computing a 

percentage of the difference between the signal's 

highest and lowest points. Initially, a lower 

threshold is implemented for smaller spalls, which 

are more susceptible to noise interference. Once the 

estimated spall length reaches a predetermined 

value, a higher threshold is activated. This 

adjustment is intended to enhance accuracy. Figure 

5 shows a processed signal with a set threshold 

indicated by a yellow dashed line. 

 

Figure 5: Processed signal with threshold indicated by a 

yellow dashed line; 𝑻𝒔𝒑𝒂𝒍𝒍 denotes the number of points 

below the threshold, and 𝑻𝑩𝑷𝑭𝑶 represents the total number 

of points in the MSA signal. 

 

7. The determination of the pulse length involves 

calculating the percentage of values below the 

dynamic threshold. With the utilization of Equation 

3, estimation of the spall size becomes feasible. 
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Here, RE represents the distance between two 

rolling elements, 𝑇𝑠𝑝𝑎𝑙𝑙  denotes the number of 

points in the synchronous average below the 

threshold, and 𝑇𝐵𝑃𝐹𝑂  represents the total number of 

points in the MSA signal. 

 𝑆 = 𝑅𝐸 ∙
𝑇𝑠𝑝𝑎𝑙𝑙

𝑇𝐵𝑃𝐹𝑂
 (3) 

   

 

Figure 6: Block diagram of the load-based algorithm. 

4. RESULTS 

To validate the load algorithm, visual inspections were 

conducted during the endurance experiment. The tested 

bearing is a SKF N209 ECP cylindrical roller bearing. During 

each visual inspection, only the outer ring was disassembled, 

examined, and photographed. The spall size was measured by 

counting the number of pixels the spall occupies in each 

photo. An example from two visual inspections is shown in 

Figure 7. The spall lengths calculated from the proposed 

algorithm and the visual inspections were plotted for 

comparison and presented in Figure 8. 

 

Figure 7: Visual inspections during endurance test: (A) at 

189.09 million revolutions and (B) at 199.01 million 

revolutions. direction of the RE is from right to left.  

 

It is evident that the estimated spall size by the load algorithm 

follows the trend of the measured sizes. However, in some 

cases, the estimated spall size deviates from that trend. These 

deviations sometimes occur after the visual inspections. The 

process of disassembling and reassembling could 

significantly alter the measured signals, as noted in a previous 

study (Heng et al., 2009). However, in the load signals, the 

impact is relatively small compared to acceleration and can 

be mitigated by using smoothing techniques. In other cases, 

the changes could be related to machinery malfunction, 

which contaminated the measurements. Despite these 

deviations, the suggested algorithm has shown good results 

and, in most cases, has been able to estimate the spall length 

accurately. 

 

Figure 8: Comparison between the results of the load-based 

algorithm and the visual inspection. 

 

In this work we present an algorithm to track spall size 

continuously in a robust manner in a lab environment by 

using existing load cells. Our proposed method can be used 

to validate spall size estimation algorithms. Moreover, it can 

be used to further study the physics of spall propagation, e.g., 

understanding the effects of speed and load. 

Rotation 
speed

Load 
signal

Detrend

Angular 
resampling

De-phase

BPFO 
resampling

Modified 
SA

Set 
threshold

Calculate 
spall size

(1)

(2)

(6)

(3)

(4)

(5)

(7)

189.09 mRevs

2.10x5.41mm 5.96mm x 10.3mm

199.01 mRevs
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5. CONCLUSION 

In conclusion, bearings play a vital role in nearly all rotating 

machinery, highlighting the necessity of accurately 

estimating the severity of defects within them. As of today, 

there is no robust method for severity estimation in bearings, 

which can be used in all machinery. Endurance tests are 

crucial in bearing research, providing valuable insights into 

spall growth, and accurately labeling the data is essential for 

understanding this process. 

Traditionally, labeling has relied on visual inspections during 

endurance tests, which can significantly alter vibration 

analysis results. This study introduces a load-based algorithm 

that eliminates the need for visual inspection, thus providing 

a more extensive dataset for labeling the severity of spalls. 

Although load cells are not typical components in machinery, 

they are common in experimental test rigs and can greatly 

assist with future research. The load-based algorithm was 

validated via visual inspection, demonstrating good 

agreement between the two methods. Not only does this 

algorithm streamline the testing process, but it also serves as 

a valuable tool for future studies, enabling researchers to 

track spall propagation and establish ground truth for 

developing acceleration-based algorithms. Overall, the 

implementation of this load-based algorithm represents a 

significant advancement in bearing defect analysis, offering 

improved labeling accuracy and opening up new avenues for 

further research in the field. 
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NOMENCLATURE 

𝑥𝑛 single segment of the signal 

|�̅�| average of the segment amplitudes 

N numbers of segments 

MSA MSA signal 

𝑅𝐸 distance between two rolling elements 

𝑇𝑠𝑝𝑎𝑙𝑙  number of points representing the spall 

𝑇𝐵𝑃𝐹𝑂  total number of points in the MSA signal 

S spall length  
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