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ABSTRACT

The complexity of modern electro-mechanical systems re-
quire the development of sophisticated diagnostic methods
like anomaly detection capable of detecting deviations. Con-
ventional anomaly detection approaches like signal process-
ing and statistical modelling often struggle to effectively han-
dle the intricacies of complex systems, particularly when deal-
ing with multi-variate signals. In contrast, neural network-
based anomaly detection methods, especially Auto-Encoders,
have emerged as a compelling alternative, demonstrating re-
markable performance. However, Auto-Encoders exhibit in-
herent opaqueness in their decision-making processes, hin-
dering their practical implementation at scale. Addressing
this opacity is essential for enhancing the interpretability and
trustworthiness of anomaly detection models. In this work,
we address this challenge by employing a feature selector
to select features and counterfactual explanations to give a
context to the model output. We tested this approach on the

SKAB benchmark dataset and an industrial time-series dataset.

The gradient based counterfactual explanation approach was
evaluated via validity, sparsity and distance measures. Our
experimental findings illustrate that our proposed counterfac-
tual approach can offer meaningful and valuable insights into
the model decision-making process, by explaining fewer sig-
nals compared to conventional approaches. These insights
enhance the trustworthiness and interpretability of anomaly
detection models.

Abhishek Srinivasan et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Modern electrical and mechanical systems are increasingly
equipped with more sensors, enabling the development of
new anomaly detection methods to identify and alert on de-
viations indicating failures or malfunctioning. Traditionally,
these anomaly detection systems were meticulously designed
for specific machines and specific components. However, this
requires deep domain knowledge and understanding of the
systems.

Recent data-driven approaches offer a compelling alternative.
They leverage generalizable algorithms that can learn from
data, eliminating the need for expert-crafted rules for each
specific scenario. This reduces the efforts required for build-
ing an anomaly detector. Neural networks, in particular, have
shown remarkable effectiveness in anomaly detection for var-
ious applications (Schmidl, Wenig, & Papenbrock, 2022).

Detecting anomalies in a system using sensor data is a task
within the field of multivariate time-series analysis. Current
trends of neural-network based time-series anomaly detection
methods fall under two main categories, i.e., forecast and re-
construction (Schmidl et al., 2022). The forecasting meth-
ods are state-based models, they learn the inherent mecha-
nism for forecasting the future states. When the observations
and model forecast deviate by a certain threshold an alarm is
raised. On the other hand, the reconstruction-based methods
learn to compress the normal data (fault free) to a lower di-
mensional latent space. This lower dimensional latent space
is transformed back to the original space. Any data with the
reconstruction error higher than a given threshold is consid-
ered anomalous.

In real settings just raising anomaly alert is not enough to act
upon it. A context is required, such as to know why the model
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is flagging an anomaly and which sensor data is behaving
anomalous. Neural networks are inherently black-box mod-
els and neural-network-based anomaly detection does not nat-
urally provide its internal decision-making process. Signifi-
cant progress has been done within the field of explainability
in this direction (Molnar, 2020). The explainability methods
can provide global or local explanations. The global expla-
nations aim to distill the model in an easily understandable
logic form (i.e., to explain the model mechanism). Whereas
the local explanations aim to explain the prediction of each
input sample, e.g., Saliency map and counterfactuals.

Counterfactual explanation is a promising tool that provides
context to the anomalies found by neural-network-based mod-
els. This explanation method is especially interesting for di-
agnostic applications, as their explanation focuses on answer-
ing the question: ‘why is sample A classified as an anomaly
and not normal?’. The usual approach for building counter-
factual explanations is to start from an anomalous sample and
optimise it via a cost function, towards a counterfactual sam-
ple which would be classified as normal by the same model
that classified it as anomalous. To our knowledge, there is
very limited amount of work focused on explaining time se-
ries anomaly detection (Haldar, John, & Saha, 2021; Sulem
et al., 2022). From the perspective of component diagnostics
and maintenance, the existing approaches have a crucial lim-
itation: they often modify all features within a time series to
explain the anomaly. The freedom of adjusting just any sig-
nal of the anomalous sample in the optimisation process to
change the classification averages out valuable information
and spreads it over many signals. This loss of information
makes it more difficult to interpret the generated counterfac-
tual and makes it less useful for root-cause analysis and diag-
nostics.

For gaining valuable insights into the anomalies, it is crucial
to know the specific features responsible for the anomaly and
the reason behind the model’s classification. As discussed
in the previous paragraph, conventional counterfactual expla-
nations solely address the reason behind the anomalies. In
this work, we propose an explanation method that identifies
the relevant features and simultaneously explains the reason
behind the anomaly detection for time series reconstruction-
based models.

Our approach was tested on the SKAB benchmark data (Katser
& Kozitsin, 2020) and on a real-world industrial time-series
data using Auto-Encoder based anomaly detection. The re-
sults show that counterfactual explanations, using the pro-
posed approach, provide insightful explanations about the na-
ture of the anomalies such as correlation loss and data drift.

2. RELATED WORK

Counterfactual explanation approaches in general have dif-
ferent focuses, including generating valid, sparse, actionable,

and causal explanations (Verma, Dickerson, & Hines, 2020).
Few address the problem of explaining time-series or anomaly
detection. Haldar et al. (2021) investigate the challenge of
generating robust counterfactuals for anomaly detection. They
define robust counterfactuals as counterfactual samples that
don’t flip back to the original class in the vicinity of a cer-
tain distance. They solve this by adding a constraint in the
cost function used for counterfactual optimisation. Sulem
et al. (2022) build upon the previous work DiCE (Mothilal,
Sharma, & Tan, 2020) for generating diverse counterfactual
bounds for time-series anomaly detection. They promote di-
versity on the generated counterfactual to address the prob-
lems of classical counterfactual explanation methods, i.e., gen-
erating only one of many possible solutions. Here, their focus
was to provide explanation bounds through diverse explana-
tions.

Other research, such as that by Li, Zhu, and Van Leeuwen
(2023) and Antwarg, Miller, Shapira, and Rokach (2021),
utilise feature importance, a different class of explanations,
for Auto-Encoder based anomaly detection. In contrast to
ours, their studies do not target time-series data. Antwarg et
al. (2021) use a Shapley-values-based approach (feature im-
portance) for Auto-Encoders to explain the impact of a cer-
tain feature on other features reconstruction. (Chakraborttii &
Litz, 2020) use feature level thresholds for explanations and
use feature selection to raise alarms individually. However,
they do not explain the reason behind the model prediction.

To our knowledge, previous work has focused on providing
either the relevant features or the reason behind anomaly de-
tection. Whereas our approach provides both; the relevant
features responsible for the anomaly and the reason why the
model classified it as an anomaly. These two factors play a
vital role in planing a meaningful action for diagnostics, such
as troubleshooting and maintenance scheduling.

3. PRELIMINARIES
3.1. Auto-Encoder (AE)

Auto-Encoders (AE) are unsupervised modeling approaches.
An AE model reduces the input, i.e., high dimensional data
x € R™ into a low dimensional latent representation (encod-
ing) z € R*, where k < n, using an encoder E(x,w,).
This encoder is followed by a decoder D(z,wy) which re-
constructs the input (decoding) £ € R™ from the latent rep-
resentation. The encoder and decoder are neural networks
with parameters w,. and wy, respectively. The training pro-
cess optimises the parameters of the encoding and decoding
functions to provide a reconstruction & as close as possible to
the input . Some common loss functions utilised are mean
square error (MSE), mean absolute error (MAE), and Huber
loss.

To extend the AE approach to time-series data we use convo-

Page 266



Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN — 978-1-936263-40-0

lution-based architectures for the encoder and the decoder.
We pre-process the data into time-windows. A time-window
of length [ is represented as X = (z¢,...,244;) € R,
where x; € R™ are the signal values at time ¢.

3.2. Gradient based Counterfactual Explainer

In this section, we outline the fundamental principles of gra-
dient based counterfactual explanation techniques. Counter-
factual explanations are generated by gradient optimisation
on the objective function posed by Wachter, Mittelstadt, and
Russell (2017). The objective function /(') written in gen-
eral form is given by

I(z") = cost(x',model(z")) + (A xd(z,2")) , (1)

where 1 is the sample, 2’ is the generated counterfactual, \ is
the weighted factor and the function d(., .) is a distance mea-
sure. This objective function contains two parts, the first part
optimises to flip the class (from anomalous to non-anomalous)
of the provided anomalous sample and the second minimizes
the change between the explanation and the provided sample.
Other custom parts can be added depending on the use-case.

In addition to requiring an objective function, this approach
also requires the model to be differentiable to be able to use a
gradient-based optimisation for counterfactual generation. A
simple gradient descent optimisation is given by

l’; = x;—l - U-Vl(mg—l) ) (2)

where ¢ is the optimisation iteration number, 7 is the step
length and x_, is the sample form the previous iteration.

4. METHOD

Our approach has three different modules; illustrated in figure
1: 1) Anomaly detector, 2) Feature selector, and 3) Counter-
factual explainer. The anomaly detector detects the anoma-
lies. If the provided sample is anomalous, the feature selec-
tor provides a list of relevant features to be explained. The
counterfactual explainer builds an explanation on the relevant
signals that the feature selector selects.

The anomaly detector (module 1) uses an AE, with an en-
coder E and a decoder D. The encoder E consists of 1D-
convolution layers followed by fully connected layers, where-
as the decoder D uses a mirrored architecture starting with
fully connected layers and then 1-D transpose convolution
layers. The resulting outputs from the decoder have the same
dimension as the inputs. The AE is trained to minimize the
reconstruction loss using Huber loss given by

for \/yij < B 3)

otherwise

{0.5 i /B,

1
L(Y):MZ Vi — 0.5+ B,

tj

Anomalous
Sample

Module 1:
Anomaly Detector
Auto-Encoder

Module 2:
Feature Selector

Relevant
Features

A 4

Module 3:
Counterfactual
Explainer

Figure 1. Our proposed methods has 3 modules, 1) Anomaly
detector, 2) Feature selector, and 3) Counterfactual explainer.
The samples that are classified anomalous by the anomaly
detector (module 1) are explained though the feature selec-
tor (module 2) and the counterfactual explainer (module 3).
The explainer (module 3) uses the selected features from the
feature selector and the input sample.

where Y = (X — X)2 € R"¥, the o denotes element wise
operation, M is the number of elements of the matrix Y, X
is the input to AE and X is the reconstruction from AE. Once
the AE is trained, the anomaly score (AS) for the validation
set is calculated using

AS(X,X) = MSE(X,X)+ MAE(X,X), (4

where {X,X'} € R™*! and MSE(-,-) is the mean square

error and M AE(-,-) is the mean absolute error of all ele-
ments of the matrices. The mean squared error (MSE) ele-
ment emphasizes larger errors (greater than one) more heavily
than the mean absolute error (MAE). Conversely, MAE pe-
nalizes smaller errors (below one) more severely. This combi-
nation of properties contributes to the effectiveness of the AS.
Scores above a threshold are considered anomalous, where
the threshold is defined as 0;5, = piser + (K * 0serr) and piger is
the mean anomaly score on the validation set, o, is the stan-
dard deviation of anomaly scores on the validation set and &
a parameter.

Explanations are provided by the next two modules only when
a given sample is classified as anomalous, i.e., when the AS
is above the defined 6. The feature selector (module 2) se-
lects features relevant to the anomaly. It processes the anoma-
lous time window and identifies the features as having either a
high or low impact on the anomaly. High-impact features are
defined as the ones that are over m x percentile(ASW, 90)
for more than 90% for the window duration, where we choose
m = 0.75 and ASW is the anomaly score for each feature
and time point in the window and is given by

ASW (X, X) = (X — X)? 4+ |X — X|o, (5)
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where {X , X } € R™*! and the o denotes element wise op-

eration. The key difference between equation (4) and equa-
tion (5) lies in the averaging of the error term. ASW in Equa-
tion (5) does not average the error, retaining the time and
feature dimension assists feature selector to select the right
features where anomalies are observed.

The counterfactual explainer (module 3) takes in an anoma-
lous time-window and the features selected by the feature se-
lector. The counterfactual generator uses a modified gradient
based explanation (see section 3.2). The difference is that the
counterfactual explanation is generated only for the selected
features by module 2. This is done by setting the gradients of
non-selected features to zero and using the same equation (2)
for optimisation, where the cost term is given by the AS in
equation (4) and the model given by the anomaly detection
AE model.

4.1. Evaluation Metrics
4.1.1. Anomaly Detection Evaluation

As a sanity check, the developed anomaly detection is eval-
uated with three different metrics; F1-score, False Positive
Rate (FPR) and Recall. Equations for these evaluation mea-
sures are provided by

TP
Fl-score — 6
O TP Y (05% (FP+ FN))’ ©

rp

FPR— — - 7
FP+ TN’ 7
TP
Recall = ———
= TPIFN ®)

where, TP, FP, TN, and FN refer to true positive, false posi-
tive, true negative, and false negative, respectively.

4.1.2. Explainability Evaluation

The developed explainability approach is evaluated with mea-
sures: validity, sparsity, and distance. Validity checks if the
generated counterfactual is valid, i.e., if the produced coun-
terfactual is classified as normal. Sparsity measures the pro-
portion of features changed in order to generate the counter-
factual. Finally, the distance provides the mean absolute error
distance between the sample and counterfactual.

N
validity(x Z (AS(z5, AE(2})) < 0) ,  (9)

ind(z,z")

Z g =

1]k| > 6)

N n
1 1
sparsity(z,z') = N E (n znd(xmk,zgjk)) , (10)
i=1

k=1

1L (1 /
WZ > M@ =)l | an

where {z, 7'} € RV>nx!

¢ N: the number of samples,

» [: the sequence length, i.e., the number of time steps per
sequence,

¢ n: the number of features,

e x: sample to be explained,

« z': the counterfactual explanation,

e Oy, the threshold used for anomaly detector,
e ¢ limit defining significant change.

* x(c): the indicator function, returning 1 when its argu-
ment condition c is true, and O otherwise.

* AE(c): is the Auto-Encoder model.

The significant change € in sparsity allows some wiggle room.
Typically, this parameter is defined based on the context and
the application. In this study e is set to 0.005, i.e., any change
above is counted to be a significant.

5. EXPERIMENTAL SETTING
5.1. SKAB dataset

(Katser & Kozitsin, 2020) designed a benchmark dataset for
time-series anomaly detection. This data is collected from a
test-rig consisting of a water tank, valves, and a pump. In this
setup, the pump is specifically crafted to extract water from
the tank and subsequently circulate it back into the same tank.
This setup is equipped with numerous sensors like accelerom-
eter on the pump, pressure sensor after the pump, thermocou-
ple in water, current, and voltage, in total of 8 signals. The
collected data is organised in four parts 'no faults’, "valve 1°,
’valve 2°, and ’others’. ’No fault’ has data from normal op-
eration. Data in ’valve 1’ and ’valve 2’ has data where the
corresponding valves were closed for partial duration. The
“others’” comprises data from multiple anomaly categories in-
cluding rotor imbalance, cavitation, and fluid leaks. Each file
in ’valve 1’, ’valve 2’ and ’others’ is part normal and part
anomalous. It is crucial to note that no two anomaly types
co-occur at the same time. The data utilization from different
parts of the dataset is summarised in the table 1. The files
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1 — 4 are omitted as the data is marked to be simulated and
has different characteristics than the other files. After pre-
processing into windows, the size of train, validation and test
set is 18584, 4658 and 10426 samples. Out of 10426 test
samples 3876 are anomalies.

Dataset I Used as | Files
Anomaly-free [[ 80% Train, 20% Valid All

Valve 1 80% Train, 20% Valid | Only normal behaviour

Valve 2 80% Train, 20% Valid | Only normal behaviour

Others Test 5-14

Table 1. Table summarizing utilization of SKAB dataset used
in our experiments.

5.2. Real-world industrial Data

A commercial, real-world industrial data was collected from a
field truck. This data consists of recordings from sensors dur-
ing normal and anomalous behaviour. Similar to SKAB data,
this industrial data encompasses two anomaly types, with no
instances of simultaneous occurrences. Two different anoma-
lies were considered: “correlation loss” and “change in re-
lation”. A set of 11 relevant sensor signals were utilised for
the experiment. The training and validation processes were
conducted using two separate dataset containing only normal
data (i.e., no-fault data). The test set involved one no-fault
scenario and two anomalous runs, where the anomalies were
of a different nature. After pre-processing into windows the
number of samples in train, validation and test set is 3231,
1074 and 4355 samples. Out of 4355 test samples 1396 were
anomalies.

5.3. Model and Explainer Setup

To pre-process the data, we have used min-max normalisa-
tion. This involves using the minimum and maximum values
from the train-set to normalise the train, validation, and test
sets. The time-series sensor signals were pre-processed into
smaller chunks using a sliding window technique, with a win-
dow length [/ of 64 over n signals, n being 8 and 11 for SKAB
and real-world data respectively.

Experiments on the SKAB dataset employed a random seed
of 125. The AE model consists of: i) Encoder with 2 layers
of 1D convolution with 64 and 32 filters, kernel size of 5 and
stride of 2, followed by a fully connected layer of 8 units;
ii) Decoder consists of a mirrored architecture to the above,
starting with a dense layer of size 128 followed by 2 layers of
1D transpose convolution with 32 and 8 filters, kernel size of
5 and stride of 2. The model was trained for 150 epochs with
a batch size of 64, using Adam optimiser with a learning rate
of A = 0.001, parameters 51 = 0.9, and 52 = 0.999, we set
k = 8 for calculating 6;;,.

Experiments on the industrial employed uses a random seed
of 42. The AE model consists of: i) Encoder with 2 layers

of 1D convolution with 32 and 64 filters, padding 1, kernel
size of 5 and stride of 1, followed by 4 fully connected layers
with 64, 32, 16, and 8 units; ii) Decoder consists of the mir-
rored architecture, starting with 2 dense layers of size 16 and
32, followed by 2 layers of 1D transpose convolution with 64
and 32 filters, kernel size of 5 and stride of 1. The model
was trained for 100 epochs with a batch size of 32, using
Adam optimiser (AMSGrad variant) with a learning rate of
A = 0.001, parameters 81 = 0.9, and 52 = 0.999, we set
k = 10 for calculating 6;,.

Experiments on both dataset used gradient descent optimisa-
tion for 75k iterations, with a learning rate of 0.01 for gener-
ating explanations in the the counterfactual explainer (module
3).

6. RESULTS AND DISCUSSION

This section is organized into two parts, first evaluation of the
anomaly detection and second the results from the counter-
factual explanations.

6.1. Results from Anomaly detection

Two AE models were trained, one for each dataset (SKAB
and industrial). The anomaly detection threshold was calcu-
lated on the validation set, as described in Section 4. The
trained models were then evaluated on their respective test
sets. The performance of the anomaly detector is summarized
in Table 2.

The SKAB dataset results show satisfactory performance with
F1-score and Recall around 0.7, along with a False Positive
Rate (FPR) of 0.24. The industrial dataset exhibits excep-
tional performance, achieving F1-score and Recall close to
0.9, with a perfect zero FPR. Anomaly detection confusion
matrix for both datasets can be found in Appendix Al.

Table 2. Evaluating anomaly detection models on SKAB and
industrial dataset.

Dataset || F1-score | Recall | FPR
SKAB 0.68 072 7024
Industrial data 0.94 0.88 0

6.2. Results from counterfactual Explanation

To demonstrate the effectiveness of our method in explain-
ing time-series anomalies, we compare it with two other ap-
proaches:

* Reconstruction: This method directly uses the AE re-
construction as the explanation for an anomaly. This is
based on the assumption that the reconstructions are pro-
jected onto the normal space, hence, a plausible counter-
factual explanation.
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* Counterfactual Explainer (Without Feature Selection):
This approach utilizes a counterfactual explainer (mod-
ule 3) to generate explanations directly for all features,
similar to gradient-based counterfactual explanations with
A = 1 in equation (1). This essentially explains every
feature without any selection.

¢ Our Proposed Approach (With Feature Selection): This
combines a feature selector (module 2) and a counter-
factual explainer (module 3). The feature selector iden-
tifies the most relevant features, and the counterfactual
explainer then focuses its explanation on these selected
features only, with A = 0 in equation (1).

We evaluate the explanations generated by these three ap-
proaches using three metrics: validity, sparsity, and distance.
These metrics are explained in detail in section 4.1.2. The
results of this comparison are presented in Table 3.

Table 3. Compilation of evaluation measures from SKAB and
industrial dataset. The arrow direction indicates if higher or
lower values that makes the approach better.

Dataset | Method | Validity 1 | Sparsity | | distance |
SKAB Reconstruction 1.0 1.0 0.246
SKAB Counterfactual 0.72 1.0 0.214
SKAB Ours 0.67 0.16 0.150

Industrial data | Reconstruction 1.0 1.0 0.140
Industrial data | Counterfactual 0.93 0.99 0.200
Industrial data Ours 0.99 0.17 0.156

Table 3 shows that our approach has reasonably good validity
and distance values compared to the other two simpler meth-
ods, but with a much better sparsity values than the other
methods. Note that the reconstruction method will always
have the highest possible validity value due to its nature that
the reconstructions are in the same manifold as training data.
So this method scores best in this validity measure on both
datasets. The counterfactual explainer (without feature selec-
tion) has higher validity measure than our proposed method
on the SKAB data. The counterfactual explainer (without fea-
ture selection) has an advantage of being able to vary all fea-
tures to provide explanations. This does not necessary mean
that the explanation will be more meaningful as by adjust-
ing all features simultaneously the information (the reasons)
about the raised anomaly gets diluted. Additionally, altering
all signals by the counterfactual explainer (without feature se-
lection) results in a the sparsity scores much worse than our
method (with feature selection). Scores form our approach
are consistently good in all three measures. To look further
into the meaningfulness of the given explanations we illus-
trate some scenarios in section 6.2.1.

We leverage UMAP embedding (a dimension reduction tech-
nique) to achieve two objectives: visualize the relationship
between the generated counterfactuals and the test data, and
evaluate the validity of the explanations independent of the
model used for counterfactual generation. In Figure 2 we

visualize the UMAP embedding trained on the test-set data
from the industrial dataset. Green points represent the non-
faulty data (based on ground truth), red points represent the
anomalies (based on ground truth), and yellow points rep-
resent the projected counterfactuals (generated form our ap-
proach). As evident from the Figure 2 the majority of coun-
terfactuals projected on top of the green normal data embed-
dings, indicating that they represent valid non-faulty behav-
iors. Only a few, 12 out of 1350 explanation are non-valid
(which is reflected in the validity measure). These non-valid
samples are projected onto the same space as the red faulty
data embedding. The lack of valid explanations can be due to
parameter selection, optimisation budgets and quality of the
feature selection. The validity in confusion-matrix form for
the SKAB test data is given in Table 6 in Appendix A2, the
validity confusion-matrix form for real-world industrial test
data is given in Table 7 in Appendix A2.

UMAP Dimension 2

Normal
Anomaly
Counterfactual

-10 -5 15 20 25

0 5 10
UMAP Dimension 1

Figure 2. Industrial data: UMAP embedding learnt on no-
fault and anomalous data from the test set. Later the gener-
ated counterfactual is projected into the same embedding.

6.2.1. Plots showing insights on the explanations

In this section, we show two different explanation scenarios,
one from the industrial and the other from the SKAB dataset.
Scenario 1 is from the industrial dataset and is illustrated in
the Figure 3. The time-window plotted in Figure 3 was clas-
sified as anomalous and signal 7 was selected as high impact
feature. In Figure 3 we show the input signal 7 and signal 8§
in blue and the counterfactual explanation in orange (see Fig-
ure 6 in the Appendix A3 for comparison with reconstruction
and counterfactual signals). The root cause of this anomaly
is a loss of correlation in signal 7. In normal (no-fault) data
signal 7 and signal 8 are correlated with a median correlation
coefficient of 0.99 and our explanation restored the correla-
tion between the signals on the anomalous data (of this type)
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our CF explanation —— Input Sample

/1

Sig 7

Sig 8

0 10 20 30 40 50 60
Time

Figure 3. Plot of counterfactual explanation generated by our
approach for industrial dataset. This plotted sample was of
correlation loss anomaly. Signal 7 and signal 8 in blue show
the input and signal 7 in orange shows the explanation.

to a median correlation coefficient of 0.93.

Figure 4 shows the second scenario from SKAB data. Here
the selected anomalous window belongs to the rotor imbal-
ance anomaly. This window was classified as anomaly and
our feature selector selected AcclRMS and Acc2RMS sig-
nals which belong to the accelerometer sensors as high impact
features. The explanation from our approach indicates that
the vibrations observed by the accelerometer should be lower
to be classified as normal (see the Figure 5 in Appendix A3
to see the comparison with CF and reconstruction signals).

—— Input Sample our CF explanation

N

0.6 -

0.4

AcclRMS (g)

0-2 T T T T T T T

0.6 -

0.4

Acc2RMS (g)

T T T T T

0 10 20 30 40 50 60
Time

Figure 4. Plot showing the counterfactual explanations pro-
vided by our approach and the anomalous samples. Only the
high impact features that were explained are plotted.

In Scenario 1, the explanation hints that the the correlation
between signal 7 and signal 8 is broken by the flat line and
is confirmed by the correlation analysis. Combining this ex-

planation with the domain expertise, it is easy to conclude
that the sensor for signal 7 is broken. In Scenario 2 from the
explanation we know that we have too high vibrations that
often are originated by rotor imbalance. The explanations
provided by our approach are meaningful in the context of
system functionality and provides insights about the nature
of the anomaly when compared to other approaches. This is
due to it’s capacity to select features for explanation. The
comparison between different approaches can be seen in the
detail in the Figure 5 and Figure 6 provided in Appendix A3.

7. CONCLUSION

In summary, our work proposes a method for explaining AE-
based anomaly detection for time-series data, based on rele-
vant feature selection and counterfactual explanations. This
approach can answer on which features the anomaly is lo-
cated together with why the sample was classified as an ano-
maly. We find that these explanations have consistently good
scores in all three measures, validity, sparsity and distance,
which translates into useful and actionable insights from a
diagnostic perspective. We give two examples, one from a
benchmark dataset and one from an industrial dataset, on how
the proposed method can help to diagnose the classified anoma-
lies from the AE anomaly detection model. This contribution
serves as a diagnostic tool, enhancing our understanding and
analysis of anomalous events. Note that the quality of expla-
nation depends on the performance of the selected anomaly
detection model, parameter selection and the quality of fea-
ture selection.

Future work can focus on different optimisations for the ex-
planation, improve the quality of the feature selector and un-
derstand the model relation with the explainer.
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APPENDIX
Al. Confusion Matrix for the Anomaly detector

In this section, the confusion matrices for the anomaly detec-
tor on SKAB and real-world industrial dataset are presented
in Table 4 and Table 5, respectively.

Table 4. Confusion Matrix for SKAB test data.

Prediction outcome

P N Total
_ P 2788 1088 3876
gi:f N’ 1573 4977 6550
<> Total 4361 6065 10426

Table 5. Confusion Matrix for real-world industrial test data.

Prediction outcome

P N Total
_ P 1350 171 1521
32 N o 2834 2834
2% Total 1350 3005 4355

A2. Confusion Matrix like expression for validity using
our approach

In this section, we show valid samples in a confusion-matrix
like setting for SKAB and real-world industrial dataset are
presented in Table 6 and Table 7 respectively.

Table 6. Validity confusion Matrix for SKAB test data.

Prediction outcome

Valid Not Valid Total

.§ True Positives 1885 903 2788
%’% False Positives 1068 505 1573
= & Total 2953 1048 4361

Table 7. Validity confusion Matrix for real-world industrial
test data.

Prediction outcome

Valid Not Valid Total
£ TruePositives 1338 12 1350

%’ % False Positives 0 0 0
= & Total 1338 12 1350

A3. Plot comparing different approaches

A sample from rotor-imbalance anomaly is plotted along with
different explanations in the Figure 6. The plotted sample is
the same as in the Figure 4. In figure 6, explanations from
different methods are compared. It can be seen that other
approaches explains by changing all the features where as the
explanation from our approach changes only ACCIRMS and
ACC2RMS signals. In similar way , for the sample plotted
in the Figure 3, in Figure 5, we compare our approach with
other type of explanations.
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Figure 5. Plot showing the explanations provided by recon-
struction, counterfactual(CF) based (i.e., without feature se-
lector) and our approach (i.e., with feature selector). Addi-
tionally the input sample is plotted.
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Figure 6. Plot showing the explanations provided by recon-
struction, counterfactual(CF) based (i.e., without feature se-
lector) and our approach (i.e., with feature selector). Addi-
tionally the input sample is plotted.
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