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ABSTRACT

In response to the urgent need to combat climate change and
reduce greenhouse gas emissions, the transition towards re-
newable energy sources such as solar and wind power is indis-
pensable. However, the intermittent nature of these sources
poses significant challenges to the stability of power grids.
Battery Energy Storage Systems (BESS) offer a viable solu-
tion, and there is potential for Electric Vehicles (EVs) to serve
as energy reservoirs, thereby bolstering grid stability through
Vehicle-to-Grid (V2G) technology. While V2G holds promise,
concerns persist regarding the longevity of batteries, particu-
larly with the additional demand from charging and discharg-
ing cycles. To address these concerns, this study introduces a
health-aware control strategy for V2G service scenarios. By
employing feedback control mechanisms to adjust degrada-
tion rates, the strategy aims to effectively manage battery
aging. Simulation outcomes of a V2G scenario with ran-
dom input sources illustrate the efficacy of this proposed ap-
proach, demonstrating its potential applicability in practical
settings where battery health needs to be managed. In sum-
mary, this research contributes to the advancement of health-
aware strategies for an interconnected grid where electric ve-
hicles participate as energy sources, with a primary focus on
optimizing battery health management while fulfilling grid
demands. Future efforts will concentrate on refining opti-
mization strategies and integrating control methodologies with
state estimators to ensure the performance of the approach on
embedded battery health management systems.

1. INTRODUCTION

In the face of climate change and the urgent need to reduce
global greenhouse gas (GHG) emissions, the transition to non-

fossil fuels and renewable energy sources is crucial. While
photovoltaics and wind power energy are promising solutions,
their intermittent nature poses a challenge to the stability of
the power grid. In solving this problem, Battery Energy Stor-
age Systems (BESS) are proving to be a crucial component
in ensuring a consistent energy supply. In parallel, the pro-
liferation of Electric Vehicles (EVs) offers the opportunity to
use their batteries as energy storage units, which can act as an
energy buffer during the day reinforcing the stability of the
power grid.

The concept of using EV as energy storage known as Vehicle-
to-Grid (V2G) offers advantages, but also pose some chal-
lenges. According to (Didier et al., 2021) a fleet of 15% elec-
trified cars in France in 2030 would mean an energy stock of
25GWh throughout the day, equivalent to 20% of the daily
average production of the French renewable energy grid in
2020. Another notable benefit is the potential for users to re-
coup their investment by participating in grid-level demand
response programs. However, the use of batteries, particu-
larly EV batteries, raises concerns about their longevity as
these batteries are more often used in a ”two-shifts” opera-
tion. The impact on battery life has direct financial and en-
vironmental implications and therefore justify efforts to find
V2G strategies that take battery health into account.

A well- known solution is to use the grid operator as an in-
telligent conductor, requesting energy from multiple energy
sources to ensure the effectiveness of grid distribution while
reducing the cost of multiple sources, including the cost of
battery aging. An overview of such an approach that uses
optimized scheduling methods to control the power grid in-
cluding V2G application is discussed in (Collath, Tepe, En-
glberger, Jossen, & Hesse, 2022). However, it is important to
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note some limitations of this solution, such as a generalized
modeling of battery degradation and the non-consideration of
aging-related changes in electrical behavior. An additional
challenge lies in the prediction of degradation behavior, a
task that remains difficult even with the improved accuracy
of data-driven methods.

With recent advancements in online estimation methods for
determining the state of health in individual battery packs, the
feasibility of health management has expanded to the battery
management system (BMS) level. The overall objective is to
ensure optimal discharge using adaptive control algorithms to
alleviate stress factors and manage the aging process through-
out the operational lifespan of electric vehicles, accounting
for varying conditions. Recent studies have shown the bene-
fits of implementing a health management controller in wind
turbines (Kipchirchir, Do, Njiri, & Söffker, 2023). Using a
feedback controller framework can effectively mitigate the
degradation process and regulate the end-of-life of these sys-
tems using control laws and dynamic models to adapt or re-
configure operational processes. It is expected that incor-
porating this approach into battery-powered applications can
also bring benefits as the aging process in can be efficiently
managed.

In this sense, this article presents a health-aware control (HAC)
strategy to address battery aging by considering the dynami-
cal interaction between operational and stress variables (e.g.
state of charge and temperature). The approach is based on
the modulation of the degradation-rate using a feedback con-
troller, as proposed in (Félix, Martinez, & Bérenguer, 2023),
in a V2G scenario. For this purpose, a novel dynamic model
is first proposed that models the degradation-rate as a func-
tion of identified stress factors in response to operational de-
mands. As presented in (Pelletier, Jabali, Laporte, & Ven-
eroni, 2017), the stress factors and effects in battery aging are
closely interrelated and an optimal control behavior is not ob-
vious. In addition, the discharge process does not behave lin-
early and suffers from the fluctuations of aging mechanisms.
Therefore, based on the proposed model, a control design is
also presented that incorporates robust techniques to handle
uncertainties inherent in the degradation modeling and ran-
domness induced by the system operation.

The effectiveness of the approach is evaluated through simu-
lations with a degraded battery model that simulates electrical
and thermal dynamics, taking into account variations in crit-
ical factors such as increments on the internal resistance and
reduction on the battery capacity induced by the ageing pro-
cess and affecting battery autonomy. To demonstrate practi-
cal applicability, the article includes a case study of a simula-
tion of in V2G scenario, integrating uncertainties and random
elements to highlight the advantages of the approach in real-
life. The results initiate a discussion on the benefits of the
approach and its limitations of implementing HAC to V2G

and further applications.

Accordingly, Section 2 presents the electrical circuit model
of a battery subject to degradation and the proposed model of
aging behavior. Section 3 describes the design of a feedback
control approach to regulate the degradation-rate. Section 4
shows the results obtained by implementing such a health-
aware controller at the BMS level of a V2G application. Con-
clusions and future perspectives are discussed in Section 5.

2. SYSTEM MODEL OF A DEGRADED BATTERY

2.1. Equivalent circuit model

Figure 1. A simplified equivalent circuit model of the battery.

Figure 1 illustrates an equivalent circuit model of a lithium
battery simplifies the complex electrochemical processes within
the battery into a basic electrical behavior (Pelletier et al.,
2017). It includes a voltage source Voc(k) representing the
open-circuit voltage, internal resistanceR to account for losses
within the battery, both dependent of the State-of-Charge (SoC)
usually expressed by a parameter SoC(k) to track the avail-
able capacity of the battery. This model also incorporates a
capacity element C modeling the battery’s charge storage ca-
pability, and the flow of current i(t) through the battery dur-
ing charge-discharge cycles. Let us represent such equivalent
circuit model as follows:

SoC(k + 1) = SoC(k)− Ts
I(k)

(3600 · Cn)
100 · γ(k) , (1)

Vt(k + 1) = aVt(k) + (1− a)E(k) , (2)
with E(k) = Voc(SoC(k))−Rn(SoC(k)) · I(k) · γ(k) .

(3)

In such model the dynamics of SoC is modeled using Coulomb
counting of Eq.1, a function of the charge-discharge current
rate I(k) and counting sampling Ts, whereas the behavior of
terminal voltage Vt(k) follows Eq. 2 that is driven by a filter
parameter a, and Voc and Rn that are functions of the current
SoC(k).

2.2. Aging mechanism

In the equivalent circuit model, the state-of-charge and ter-
minal voltage fluctuate in response to the current rate I(k)
(I(k) < 0 during discharging). Moreover, the charge-discharge
behavior is intricately linked to the battery’s aging process.
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While aging stems from physical-chemical factors, its effects
are reflected in electrical characteristics such as capacity fad-
ing and increasing internal resistance (Barré et al., 2013).
This relationship suggests that these characteristics are influ-
enced by an aging parameter, denoted here as γ. Specifically,
the capacity C(k) decrease and resistance R(k) increase can
be expressed as functions of γ:

C(k) =
Cn

γ(k)
(4)

R(k) = Rn(SoC(k)) · γ(k) , (5)

where Cn and Rn are the nominal value for capacity and in-
ternal resistance.

For simplicity, let us consider γ to be equivalent in both ef-
fects, as they pertain to the same aging process. This frame-
work sets the stage for developing a degraded battery model,
just as introduced in (Martinez, Félix, Kulkarni, Orchard, &
Bérenguer, 2024), where γ = 1 represents a new battery.
During each discharging and charging mission, γ tends to in-
crease until it reaches a maximum value of γ = 2, indicating
that the battery can no longer operate.

2.3. Degradation extended model

As an electrochemical process, charge-discharge behavior in-
curs energy losses and generates thermal effects. This behav-
ior is externally influenced by ambient temperature Tamb(k)
and the Joule effect, which produces heat (TJoule(k)) when the
current rate is non-zero. The thermal model can be described
by Eq. 6, where c0 is the inertial parameter of the thermal be-
havior, and TJoule(k) is defined by Eq. 7, incorporating factors
such as c1, Rn(SoC(k)), I(k), and γ(k).

T (k + 1) = c0T (k) + (1− c0) (TJoule(k) + Tamb(k)) ,
(6)

TJoule(k) = c1Rn(SoC(k))I(k)
2γ(k) (7)

How γ increases is an important research topic. In this matter,
it is known that the increased current generates heat and ac-
celerate degradation by promoting the dissolution of the elec-
trode material and the breakdown of the electrolyte, thus we
propose a model for the increase in γ based on the same in-
fluences as heating:

γ(k + 1) = c3Rn(SoC(k))I(k)
2γ(k) (8)

While this model remains an assumption and approximation,
it is crucial for simulating the aging process responsible for
increased resistance and decreased capacity. A similar ap-

proach to finding a degradation growth model is presented
in (Brown et al., 2009) for electro-mechanical actuator ap-
plications. Also, this sheds light on which variables of the
charging-discharging process could be considered as relevant
factors for making decisions regarding aging acceleration.

Note that as the model is posed, an increase in γ increases
the acceleration of the aging process itself, similar to how in-
creased temperatures in degraded batteries increase the degra-
dation of the batteries themselves. In addition, a significant
increase in γ can lead to instability of T .

3. PROBLEM FORMULATION

This work focus on the application of health-aware discharg-
ing for power sale to the grid, known as V2G or V2Market.
In this application, there are three main concerns:

1. Supplying the grid with enough energy stored in the bat-
tery in order to stabilize it.

2. Monetizing the time the car spends parked in the parking
lot without charging.

3. Yet, taking into account the cost of battery degradation
since discharging counts as a cycle in the battery’s lifes-
pan.

As explained in (Reniers, Mulder, Ober-Blöbaum, & Howey,
2018), when purchasing stored energy, the grid offers a value
per kWh correlated with intermittent sources (e.g., solar and
wind) availability. Energy prices fluctuate stochastically due
to the stochastic behavior of these resources. A grid opera-
tor manages participation percentages and demand for each
source to optimize production, considering costs, including
batteries degradation. This optimization is reviewed in (Collath
et al., 2022). While grid demand is generated, users aim to
monetize their parked time without charging. Such profitabil-
ity can be determined by:

R =

tf∑

k=0

P (k)× Price(k) (9)

Here, P (k) represents the power sold at discrete time step k,
which can be measured by:

P (k) = Vt(k)× I(k) (10)

With power demand and price previously established, maxi-
mizing profitability becomes a matter of ensuring that P (k)
closely matches the power demand and maximizing the dis-
charging interval tf .

Despite the potential for monetizing a parked car, it is im-
portant to acknowledge that there is a cost associated with
battery degradation when discharging. This degradation ul-
timately shortens the battery’s lifespan, leading to decreased
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performance and necessitating eventual battery replacement.
Let us consider this cost as the accumulated degradation over
the discharging mission:

D = γ(tf )− γ(0) (11)

To proceed with a solution, let us consider the following:

• The power demand profile (i.e., Pgrid(k)) is pre-defined
on an hourly basis, and the power sold never exceeds the
power demand (P (k) ≤ Pgrid(k)).

• The battery experiences degradation during discharge, as
described by Eq. 8. The initial degradation index γ is es-
timated online using algorithms such as the one proposed
in (Didier et al., 2021) or (Martinez et al., 2024).

• The initial State of Charge (SoC) is known and may be
lower than the maximum capacity, while a minimum bat-
tery SoC is specified and consistently lower than the ini-
tial SoC, as represented by:

SoCmin ≤ SoC(k) < SoC(0) ≤ 100%

• The maximum duration for which the vehicle remains
parked, selling energy, is predefined as follows:

k ≤ tmax ∼ U(t1, t2)

• The terminal voltage remains consistently above a safe
minimum (Vt(k) > Vmin).

Figure 2 illustrates the proposed V2G service scenario with
battery health management control acting as a discharging
auxiliary system. It is assumed that SoH and SoC estimations
are available and provided by a BMS.

Figure 2. Illustration of Power-sale discharging mission.

3.1. Discharging strategies

The sale of vehicle energy can have numerous strategies. The
first and simplest strategy is to manage the delivery of energy

to exactly match the grid demand, only stopping the discharge
when any of the restrictions (i.e. SoCmin, tmax, or Vmin) are
triggered. However, this strategy is not optimized, as it does
not prioritize maximizing profitability or minimizing degra-
dation costs. Therefore, we can assume other strategies that
act on the current rate to maintain power close to demand,
while at the same time, avoiding excessive degradation or de-
liberately degrading to manage battery lifespan. Here we are
assuming that the grid is supplied by several other vehicles,
and that its stability will not be affected if P (k) < Pgrid.

In the scope of this study, we consider two control strategies:

1. Find the appropriate current I(k) at time k that facilitates
discharge in a manner that SoC achieves its minimum
by time tf = tmax, i.e. SoC(tmax) = SoCmin. This
strategy optimizes the utilization of parked time and the
current, a key factor influencing degradation.

2. Find the optimal current I(k) at time k that allows the
degradation rate to follow a predefined reference ∆γref ,
ensuring a desired growth rate by time tf = tmax, i.e.
γ(tmax)− γ(0) = ∆γref .

The first strategy emphasizes managing the discharge dura-
tion. If the discharge time is shorter than the parking dura-
tion, the current is adjusted to meet the objective. This ap-
proach ultimately influences degradation growth through ef-
fective time management.

On the other hand, the second strategy prioritizes degradation
effects. It involves tracking a desired γ growth rate either to
meet a predefined lifespan or to meet a optimize a value γd

derived from an optimization problem involving power sold
and γ growth rate.

As discussed in (Collath et al., 2022), BESS technology that
addresses only issues 1 and 2 of the previously formulated
problem does not account for degradation costs over time, re-
ducing the profitability of V2G usage. The two strategies pro-
posed here aim to address the third issue. The first strategy
involves mitigating the impact of current on aging increase
during discharge, while the second strategy focuses on regu-
lating the degradation-rate by reconfiguring discharge across
multiple cycles. Both strategies will inevitably affects the per-
formance of energy delivery to the grid, reducing the profit
per discharge. However, this reduction can lead to a signif-
icant improvement in battery life. By designing an optimal
controller for both strategies, we try to find the best compro-
mise for this trade-off.

3.2. Control framework

For the design of the controller, we consider the system to
be controlled written in a discrete-time state-space represen-
tation:

xk+1 = A(ρk)xk +B(ρk)uk + E(ρk)dk , (12)
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with respect to the state vector defined as xk ∈ ℜn, the con-
trol input variable uk ∈ ℜm and the disturbance input of
dk ∈ ℜp. The variability of the system is determined by a
varying parameter vector ρk. When the varying parameter ρk
is bounded and it belongs to a convex polytopic region Ωρ

limited by N vertices of the polytopic set θ ∈ Ωρ ⊂ ℜL de-
fined by ρk boundaries. Then, we can write ρk as a convex
combination of vertices θ(i) as follows:

ρk =

N∑

i=1

α
(i)
k θ(i) , (13)

where α(i)
k ≥ 0 and

∑N
i=1 α

(i)
k = 1.

Such a modeling approach is known as polytopic modeling,
which enables the construction of robust control designs by
guaranteeing stability within the boundaries of the convex set.
Since the system is subject to variations due to stochastic dis-
turbances in discharge conditions or changes over time in γ
due to aging, this approach will ensure stability for all vari-
able conditions that the discharging process and its dynamics
face.

3.2.1. SoC rate control design

According to Eq. 1, SoC decreases dynamically as follows:

SoC(k + 1) = SoC(k) + SoC ′(w(k)) (14)

Here, w(k) represents the decision variable that can be ad-
justed to solve a control problem, specifically a tracking ref-
erence problem. To address this problem, we introduce an
integrator error tracking z(k) to be minimized. The system to
be stabilized is thus defined as:

w(k + 1) = u(k) (15)

z(k + 1) = z(k) + Ts · (ŜoC ′(w(k))− SoC ′
ref (k)) (16)

where u(k) represents the control decisions at each sample
k, with Ts as the decision rate. SoC ′

ref (k) is the desired de-
crease rate of SoC. The linear decrease behavior of SoC(k)
imposes a desired rate given by:

SoC ′
ref (k) =

SoCmin − ŜoC(k)
tmax − k

(17)

where tmax and SoCmin are the maximum discharging time
and the minimum SoC chosen by the user. ŜoC(k) can be es-
timated through online algorithms such as presented in (Didier
et al., 2021) with a higher sampling rate.

By choosing the current rate adjustments as the decision vari-
able w(k), we obtain

SoC ′(w(k)) =
−Ts · 100
(3600 · Cn)

γ(k)(Igrid(k) + w(k)).

Now we can define the system matrix as follows:

Ak =

[
0 0

Ts · ρ(k) 1

]
and Bk =

[
1
0

]
, (18)

where x(k) := [w(k) z(k)] and ρ(k) = −Ts·100
(3600·Cn)

γ(k), with
ρ(k) ∈ [ρmin, ρmax] imposed by minimum and maximum val-
ues of γ and nominal capacity.

Finally, we propose to calculate the decisions here using a
feedback control law such as:

u(k) = −Kx(k). (19)

To find the optimal control gain K that minimizes the er-
ror z, the system matrices are used to solve a robust Linear-
Quadratic Regulator (LQR) problem (see Appendix A) with
a Linear Matrix Inequality (LMI) solution.

3.2.2. Aging rate control design

According to Eq. 8, the increase of γ can be expressed as:

γ(k + 1) = β(w(k))γ(k)

In line with the SoC rate control, w(k) denotes the decision
variable adjusted to solve a control problem, particularly a
tracking reference problem, and an integrator error tracking
z(k) is also employed for minimization. The system to be
stabilized is thus defined as:

w(k + 1) = u(k) (20)

z(k + 1) = z(k) + Ts · (β̂(w(k))− βref (k)), (21)

where β̂(w(k)) represents the estimated increase rate of γ, Ts
is the control decision rate. βref denotes the current desired
increase rate. The exponential growth behavior of γ imposes
a desired rate given by:

βref (k) =
1

(tmax − k)
ln(

∆γ
(n)
ref + γ̂(0)

γ̂(k)
) (22)

where γ̂(0) is the estimated γ at the beginning of the cycle
and γ̂(k) at each control calculation, tmax is the imposed
maximum discharging interval, and ∆γref is the chosen in-
crease increment of the current cycle, which can be calculated
in different ways; we propose calculating it based on the value
desired of γ for a chosen number of cycles N as follows:

∆γ
(n)
ref =

1

2 ∗ (N − (n− 1))
ln(

γmax
ref

γ̂(0)
) (23)

n represents the current discharge cycle, while γmax denotes
the desired level of γ in cycle N . In this scenario, the vehi-
cle is expected to operate in two shifts: during the day in the
parking lot and the remainder of the day on regular routes,
which counts as an additional full discharge. Although real-
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world usage may introduce random degradation during the
vehicle’s operational shift, we assume that the cumulative
effect of these fluctuations does not surpass the degradation
equivalent to two full discharges of the vehicle.

According to Eq. 8, the dynamic of β is defined by β(w(k)) =
c3Rn(SoC(k))(Igrid(k) + w(k))2. Now, the matrix of the
system can be defined as:

Ak =

[
0 0

Ts · ρ(k) 1

]
and Bk =

[
1
0

]
, (24)

where x(k) := [w(k) z(k)] and

ρ(k) = 2 ∗ c3Rn(SoC(k))Igrid(k),

with ρ(k) ∈ [ρmin, ρmax] imposed by minimum and max-
imum values of internal resistance and current rate imposed
by the grid, and variations on c3. For this strategy, we also
propose utilizing a feedback control law

u(k) = −Kx(k),

where the control gain K is determined through a robust con-
trol LQR problem.

4. RESULTS: V2G SCENARIOS

The degradation battery model presented is used here to sim-
ulate an aging battery. The control framework is employed
to achieve the objectives of the two different discharge strate-
gies. Firstly, let us describe the simulation scenario used to
obtain the results, and then analyze the outcomes of such ap-
proaches for battery health management.

4.1. System Description

In real-life scenarios, uncertainties are inherent in the aging
process of systems. Various sources of randomness contribute
to these uncertainties, stemming from factors such as inter-
nal resistance, open circuit voltage, and ambient temperature
fluctuations. The interplay of these factors leads to diverse
aging acceleration rates, ultimately resulting in varying the
battery’s lifespan.

The introduced degraded battery model is utilized to simulate
the controlled system. The model’s parameters, including in-
ternal resistance and open-circuit voltage as functions of SoC,
are detailed in Appendix B.

The simulated scenario considers the stochastic nature of bat-
tery parameters and discharging conditions. The simulation
parameters treated as stochastic sources are listed in Table 1.

These conditions vary randomly, as detailed in Table 1, and
are subject to change with each simulation of the 20 consec-
utive days of V2G discharge. For example, Figure 3 outlines
the user-defined parameters for each discharge event, includ-
ing the minimum desired SoC (SoCmin) and the maximum

Table 1. Simulation parameters

Parameter Value Unit
Tamb N (23, 3) ◦C
C1 N (2.5, 10−2) Ah
Rmin N (0.02, 10−2) Ω
Eo N (4.2, 10−2) V

SoC(0) N (90, 10) %
ϵγ U(2e− 4, 12e− 4) -
tmax N (4, 1) h

SoCmin N (10, 1) %
Pgrid N (175, 300) W

discharge duration (tmax). These settings collectively deter-
mine when the discharge should halt, in conjunction with the
minimum voltage, as elaborated in the preceding problem for-
mulation.
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Figure 3. User settings for 20 days in consecutive discharge
scenarios.

It is assumed that the battery operates in two shifts: during
the day in the parking lot and the rest of the day on regular
routes, which contributes to additional aging. Thus, at the
start of each new day n ∈ [1, N ], the initial value of γn(0) is
defined as:

γ(n)(0) = γ(n−1)(tf ) + ϵγ , (25)

where γ(n−1)(tf ) represents the level at the end of the last
discharging day, and ϵγ denotes a random positive additional
increase.

Figure 4 displays, then, the initial SoC, SoC(0), representing
the battery’s starting level upon arrival at the discharge station
for the current shift. Additionally, it depicts the additional
degradation factor since the last discharge, denoted as ϵγ .

Finally, the resulting discharge will depend on the discharg-
ing conditions, which will vary with each discharge event.
The discharge halts once one of the stop conditions is met.
Figure 5 showcases the outcomes of simulations of discharge
scenarios without a discharge control. It illustrates diverse
discharge histories observed over 20 consecutive days, em-
phasizing the system’s variability influenced by the stochastic
nature of battery parameters and discharging conditions.
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Figure 4. Initial conditions for 20 days in consecutive dis-
charge scenarios.

Figure 5. Simulated energy discharge for 20 days in consec-
utive discharge scenarios for a battery pack of 10 cells.

4.2. Control implementation

In this work, two control strategies are employed to mitigate
battery aging, utilizing a feedback control u(k) for the current
rate, expressed as I(k) = Igrid + w(k).

SoC Rate Control: For the implementation of the first strat-
egy’s control, Eq. (15) is utilized. Employing robust LQR
techniques with the previously defined system matrices and
simulation parameters, the resulting control gain K is deter-
mined as follows:

K = [0.011726, −70.399]. (26)

The initial value for the integral action is calculated according
to Eq. (15) as:

z0 =
w0 +K(1)w0

−K(2)
. (27)

where the initial decision parameter is chosen to be w0 = 0.
Note that, in practice, w(k) is equivalent u(k − 1).

Aging rate control: For aging control, Eq. (20) is em-
ployed to minimize the reference tracking error. The rate

adjustment is accomplished through a feedback control u =
−Kx(k), whereK is also computed by solving a robust LQR
problem with the provided model parameters, yielding the
following values:

K = [0.9987, 5444.5]. (28)

It is expected an aging rate reference to be determined ac-
cording to Eq. (23) using the following parameters:

n ∈ [1, N ], N = 20, γmax
ref = 1.025.

Here, γmax
ref is the desired aging parameter value at the conclu-

sion of 20 days, which is set to be lower than the expected
value of standard discharging, but could be chosen to respect
a prognostic and health management constraint.

4.3. Simulation results

When implementing the control of the SoC decrease rate or
the aging control (increase of γ) for the 20 consecutive days
scenario, we obtain the respective aging curves of both strate-
gies as shown in Figure (6a). Each day of discharging service
resulted in an increase in the rate of γ and energy sold to the
grid, as shown in Figure (6b) and Figure (6c), respectively.

The total energy sold through the SoC rate control strategy
surpasses that of the γ rate control. This is because the latter
prioritizes tracking the desired γ growth rate over maximizing
energy discharged. In particular, SoC rate control surpasses
standard discharge in total energy when it focuses utilizing
the entire available discharge time. Moreover, when exam-
ining the aging rate, standard discharge emerges as the least
favorable option. SoC rate control effectively mitigates aging
by regulating the current rate, although it remains suscepti-
ble to random fluctuations determined by the discharge con-
ditions. Conversely, aging rate control continuously adjusts
the aging rate to achieve the required γ value by the end of
the 20 cycles.

By considering 1.025 as the maximum γ rate (instead of γ =
2), the total energy sold by the battery in 20 days would be
comparable to that of other strategies, as it undergoes more
cycles below the maximum γ threshold. Additionally, aging
rate control provides the advantage of effectively managing
capacity fading. By considering the 20-day rate as a reference
and considering the total aging interval (γ = 2), the battery
can reach half of its maximum capacity in about 800 days
with aging rate control, a level of certainty not achievable
with the other strategies.

5. CONCLUSION

This work introduces two health-aware strategies for grid en-
ergy sales in a V2G service. The first strategy focuses on
managing discharge to maintain the SoC above a specified
minimum within the discharge interval, optimizing usage and
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Figure 6. Results of 20 days (N = 20) of discharging for
power selling using different strategies.

mitigating stress factors like discharge current. This strat-
egy embodies a basic approach, based on stress factor miti-
gation, offering a V2G service that considers aging process.
The second strategy aims to regulate the aging increase rate
during the discharge event to maintain the SoH below a spec-
ified maximum within the interval discharging days. Both
strategies employ adaptive control of grid demand, designed
with robust techniques and error minimization. Results show
the first strategy reduces the final aging, represented by the
stress factors index, while increasing total energy sold at the
discharging end. Conversely, the second strategy prioritizes
desired degradation increase rates, potentially compromising
energy sold, but it succeeds in managing the aging process.
Specifically, the degradation rate regulation strategy ensures
that the aging factor reaches the desired level within the spec-
ified timeframe, which proves beneficial for lifetime control.
Furthermore, it still ensures the sale of energy close to the
standard discharge behavior. In summary, this paper’s contri-
butions include:

• Incorporating aging effects such as capacity decrease and
resistance increase into the discharge behavior of a bat-
tery model.

• Health-aware discharging approaches using degradation-
rate regulation and discharge-rate regulation.

Certainly, there is significant potential in incorporating SoH
and SoC estimations integrated with closed-loop HAC frame-
works to effectively manage battery health. Future work in-
volves integrating control approaches with SoC an SoH es-
timation approaches to validate performance when used in
conjunction, particularly in embedded applications. Further-
more, the utilization of other control optimization techniques,
such as Model Predictive Control (MPC), to align with differ-
ent objectives, such as charging process, is encouraged. An
extension of this work could involve comparing it with al-
ternative approaches addressing the same issue. Finally, this
study lays the groundwork for a charging-discharging park-
ing service with energy selling that integrates strategies for
the management of battery lifetime.
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D. A. (2018). Improving optimal control of grid-
connected lithium-ion batteries through more accurate
battery and degradation modelling. Journal of Power
Sources, 379, 91–102.

APPENDIX A - LQR PROBLEM

Consider a linear system represented in state-space form as:

ẋ = Ax+Bu

where x is the state vector, and u is the control input.

The Linear Quadratic Regulator (LQR) problem is a control
strategy designed to create an optimal feedback controller for
such linear systems while minimizing a quadratic cost func-
tion and stabilizing the system. The objective of the LQR
problem is to minimize a quadratic cost function, defined as:

J =

∫ ∞

0

(
xTQx+ uTRu

)
dt (29)

Here, Q is a positive semidefinite weighting matrix that pe-
nalizes deviations of the state from its desired trajectory, and
R is a positive definite weighting matrix that penalizes con-
trol effort or deviations of the control input from its desired
values.

The optimal control law u is then determined to minimize Eq.
29 and stabilize the system. When the control law is defined
as

u = −Kx
K is the optimal gain matrix found through a stability guar-
antee function equivalent to the Riccati Equation, which de-
pends on the existence of a positive definite matrix P .

APPENDIX B - MODEL PARAMETERS

In battery discharging, the values of Rn and Voc, as depicted
in the equivalent model, vary as functions of SoC(k). These
variations can be expressed by the following equations:

Rn(SoC(k)) =M ∗
(
Rmin +

K3

SoC(k)
+

K4

100− SoC(k)

)

(30)

Voc(SoC(k)) =M ∗
(
Eo −K1 ln (100− SoC(k))−

K2

SoC(k)

)

(31)

Cn =M ∗ C1 (32)

Table 2 presents the parameters of the model used for simula-
tion. These parameters are obtained using data from (Fricke,
Nascimento, Corbetta, Kulkarni, & Viana, 2023).

Table 2. Battery model parameters

Parameter Value
M 10
Ts 0.02 s
a exp

(−Ts
50

)

c3 10−8

K1 0.27
K2 0.45
K3 0.25
K4 0.02

M is the number of cell in the battery pack. ObtainedRn and
Voc are illustrated in Figure 7.
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Figure 7. Nominal values of Rn(SoC) and Voc(SoC) re-
sulted from the considered model with mean mean parame-
ters.
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