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ABSTRACT 

Most manufacturing facilities driven by motors generate 

vibration and noise representing critical symptoms against 

facility malfunctioning conditions in the manufacturing 

industry. Due to the difficulty of obtaining abnormal data 

from facilities in manufacturing sites, many prior researchers 

who have studied predicting facility faults have adopted 

unsupervised learning-based anomaly detection approaches. 

Although these approaches have a strength requiring only 

data on from facility normal behaviors, it is not clear that the 

anomalies detected by an anomaly detection model are due to 

the real component faults. Also, the model performance is 

likely to change according to the diverse abnormal conditions 

of the given facility. In this paper, we took an experiment 

with a fault vibration simulator to measure the anomaly 

detection performance of a one-dimensional convolutional 

autoencoder model with different fault conditions. In the 

experiment, we used four different abnormal conditions: 

imbalance, misalignment, looseness, and bearing faults, 

which are the most frequently occurring facility component 

failures from the rotating machineries. Data were gathered 

from the simulator with the IEPE(Integrated Electronics 

Piezo-Electric) type sensor. We proposed the N-

Segmentation algorithm that performs anomaly detection in 

segmented frequency region according to corresponding 

component faults for better anomaly detection performance. 

In conclusion, the proposed algorithm showed about 15 times 

better anomaly detection rate than not applying it. 

1. INTRODUCTION 

Artificial Intelligence (AI) technologies are adopted in 

various field domains to replace human beings or improve 

legacy systems. The manufacturing sector has also gradually 

tackled AI-based anomaly detection (AD) approaches for 

facility monitoring and fault detection. (Kumar, Khalid, & 

Kim, 2022; Zhang, Lin, Liu, Zhang, Yan, & Wei, 2019). AI-

enabled facility monitoring systems are necessary to improve 

productivity, reduce costs, and ensure worker safety in 

manufacturing sites. Facility anomaly is an abnormal 

condition where defects or failures occur, and it can be 

determined and predicted by analyzing physical data 

measured during the facility operation from physical sensors 

such as those of vibration, current, and temperature. Since 

motors drive most manufacturing facilities, they generate 

various vibration signals during operation. These vibration 

signals represent a valuable basis for predicting whether the 

facility is in normal operations or defective status. When the 

vibration increases or becomes excessive, certain mechanical 

trouble has usually occurred. Since the vibration does not 

increase or become excessive for no reason, it is considered 

an indicator of machinery malfunction (Shreve, 1994). 

However, since the types of facility defects or failures are so 

diverse, obtaining sufficient data on facility defects and 

failures in manufacturing sites is impractical (Hiruta, Maki, 

Kato, & Umeda, 2021; Li, Li, & Ma, 2020). As a result, 

unsupervised learning approaches that use only data acquired 

when the facility is in a normal condition are very practical. 

As the fault situations are diverse and unsupervised AD 

models require reconstruction of input signals, there are two 

important considerations, namely, types of faults (Thi, Do, 

Jung, Jo, & Kim, 2020) and the reconstruction range 

(Amarbayasgalan, Pham, Theera-Umpon, & Ryu, 2020). 

Considering these points, we conducted a vibration AD test 

using a fault vibration simulator and an Integrated Electronics 

Piezo-Electric (IEPE) type vibration sensor. We collected the 

vibration data of the simulator's normal signals and abnormal 

signals generated under normal operation and conditions of 

imbalance, misalignment, looseness, and bearing faults. Then, 

we trained the normal signals with a one-dimensional 

convolutional autoencoder (1-D CAE) and measured the AD 

performance by normal signals and fault signals. We 

introduce the N-segmentation algorithm for the better AD 
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performance, which performs it by segmenting the frequency 

range into N different regions. The proposed algorithm can 

detect fault vibration signals with improved performance. 

2. BACKGROUND 

AI models are classified as supervised or unsupervised 

learning, depending on whether labels are used during the 

learning process. Applying supervised learning to AD 

requires data for all types of anomalies. Since gathering 

anomaly data for enough training is practically impossible, 

unsupervised learning using only the normal-condition data 

of the facility is more suitable, and the Autoencoder (AE) is 

representative of unsupervised learning (Lee, Lee, & Kim, 

2024; Wei, Jang-Jaccard, Xu, Sabrina, Camtepe, & Boulic, 

2023). AE is an AI model that learns how to produce output 

data as close as possible to the input data without data labels. 

Using a difference between the input data of the AE and the 

reconstructed data generated by the output data of the AE 

detects anomalies. In this case, the reconstruction error, the 

difference between the input data and the output data of the 

AE, is calculated by error functions such as mean absolute 

error (MAE), mean squared error (MSE), and root mean 

squared error (RMSE). 

Various research has been performed regarding AD using 

fault vibration signals. Wisal and Oh (2023) developed a new 

deep learning algorithm that utilized ResNet and 

convolutional neural networks to detect the unbalance of a 

rotating shaft for both binary and multiclass identification. 

Kamat et al. (2021) used random forest, artificial neural 

network, and AE to detect the bearing fault. Their experiment 

showed the AE provides the highest accuracy of 91% over 

the others. Ahmad et al. (2020) has taken experiment with 

AD for rotating machines by comparing a long short-term 

memory-based AE (LSTM-AE) and an isolation forest model. 

The experimental results on real-world datasets showed that 

the LSTM-AE achieved an average f1-score of 99.6%. Most 

previous works focused on developing the model achieving 

high accuracy for AD, but they are suggested within the 

limited fault environment or dataset. 

In vibration accuracy for condition monitoring, an IEPE-type 

sensor is usually capable of more precise vibration 

measurement than a Micro-Elector-Mechanical System 

(MEMS) type sensor. (Hassan, Panduru, & Walsh, 2024). In 

the previous research regarding AD by frequency 

segmentation, Park & Lee (2022) successfully performed AD 

by synthesizing the frequency domain data of the IEPE-type 

vibration sensor collected from the printing facility and the 

virtual frequency signals. However, for the objective 

performance evaluation of the approach, it is necessary to 

utilize data collected in a simulator environment like actual 

facilities, not a virtual signal. 

3. PROPOSED ALGORITHM 

We propose the N-Segmentation algorithm that detects 

abnormal vibration signals by segmenting the frequency 

domain measured by a vibration sensor into N frequency 

ranges. The algorithm uses N reconstruction errors and N 

thresholds to determine anomalies in the target vibration 

signal. The algorithm predicts whether the frequency section 

corresponding to each segment is a normal or an anomaly 

using the threshold that is the maximum reconstruction error 

value of the segment. Therefore, the algorithm can perform 

not only AD of the target signal but also AD of the segments. 

In other words, it can present additional information on which 

segment of the entire frequency range has an anomaly 

occurred. Here, N, the number of segmented frequency 

ranges, is a kind of hyperparameter designated by analysts, 

so applying various N values is necessary to measure the 

performance of a model like 1-D CAE through the proposed 

algorithm. Figure 1 shows a schematic diagram of the 

proposed algorithm when N is 4.  

 

 

Figure 1. N-Segmentation Algorithm (N=4) 

 

3.1. 1-Dimensional Convolutional Autoencoder 

1-D CAE is an AE composed of encoders and decoders using 

one-dimensional convolutional layers (Zhang, Wang, Yi, 

Wang, Liu, & Chen, 2021). Convolutional layers can learn 

the data with high accuracy when the data size is constant, 

such as image data with two-dimensional data shape of width 

and height in pixels. Compared with two-dimensional images, 

as one-dimensional input vectors like vibration signals 

contain intuitive data characteristics, it is a great opportunity 

to use deep learning-based methodology for AD (Chen, Yu, 

& Wang, 2020). In the case of the frequency domain data 

used in this study, a 1-D CAE model is applied to capture the 
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status of the simulator with the vibration signal having one-

dimensional 1024 numerical data. We developed the 1-D 

CAE model that consists of two 1-D convolution layers as 

encoder and two 1-D transposed layers as decoder using 

Python 3.10.9 and TensorFlow 1.12.0. Table 1 shows the 

structure of the model and hyperparameters. 

Table 1. Structure of the model and hyperparameters 

Layer 
# of 

Filters 

Kernel 

Size 

Activation 

Function 

1-D Conv. 64 8 RELU 

1-D Conv. 32 8 RELU 

1-D Trans. Conv. 64 8 RELU 

1-D Trans. Conv. 1 8 - 

 

Since MSE and RMSE can lead to higher weights given to 

higher errors, the model tends to be more sensitive to noise 

that might cause false positives (Kang, Kim, Kang, & Gwak, 

2021). In the reconstruction loss function for AE-based AD 

models, MAE is more appropriate than the other two 

functions (Xu, Jang-Jaccard, Singh, Wei, & Sabrina, 2021). 

Therefore, the loss function used in the training process using 

the model is MAE in Eq. (1). Here, 𝑛 denotes the number of 

numeric values contained in one vibration signal. 𝑋′ denotes 

the reconstructed signal from the model, and 𝑋 denotes the 

input signal to the model. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑋′𝑖 − 𝑋𝑖|                             (1)

𝑛

𝑖=1

 

3.2. Thresholds 

Unsupervised learning-based AD requires a threshold to 

determine whether the vibration signal represents an anomaly. 

In the existing AD using AE, the maximum reconstruction 

error value (Kang, Kim, Kang, & Gwak, 2021; Wei, Jang-

Jaccard, Xu, Sabrina, Camtepe, & Boulic, 2023) or the 3-

sigma value (Lee, Lee & Kim, 2024; Panza, Pota, & Esposito, 

2023) among the reconstruction errors of the training data has 

been set as a threshold. In this case, the threshold has to be 

only one. However, in the proposed method, thresholds are 

generated as many as the number of segments N. Figure 2 

shows the reconstruction error distributions as a histogram 

for each segment of the training data when N is 4. The red 

vertical line in each histogram in Figure 2 represents the 

maximum reconstruction error used as a threshold to 

determine the anomaly in the segment. 

 

 

Figure 2. Reconstruction error distributions and thresholds 

(N=4) 

3.3. Anomaly Detection 

The proposed algorithm uses all N thresholds to detect the 

fault vibration signals among the test signals. If all the N 

reconstruction errors in the N segments of a target signal are 

lower than the corresponding thresholds, the signal is 

considered normal. Otherwise, it is a fault vibration signal. 

Figure 3 shows an example of the AD process of the proposed 

algorithm when N=2. 

 

 

Figure 3. Process of anomaly detection (N=2) 

 

The true-positive rate (TPR) in Eq. (2) was set to measure the 

performance of AD. Here, TP is the number of correctly 

predicted vibration signals, and FN is the number of 

incorrectly predicted ones. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                  (2) 

4. EXPERIMENT 

4.1. Setup 

The vibration signals were gathered with a fault vibration 

simulator and an IEPE-type sensor for about two months. The 

simulator is the AST-VFS product of AST company of the 

Republic of Korea, and the sensor is the Model 131.02 
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product of VibraSens company of France. The vibration 

signals were collected every two minutes and obtained by 

Vib-AiR, the wireless health monitoring solution of 

RESHENIE company of the Republic of Korea, through open 

platform communication-unified architecture (OPC-UA) 

protocol (Schleipen, Gilani, Bischoff, & Pfrommer, 2016). 

Figure 4 shows the experimental environment. In Figure 4, R 

and L in parentheses mean Right and Left, respectively. The 

sensor (red square in Figure 4) was set on the top of the right-

bearing housing of the simulator (blue square in Figure 4). 

The sensor can collect vibration signals in three-axis 

directions. In the experiment, only the Y-axis signals, which 

is the direction of rotation of the motor (the orange arrow in 

Figure 2), were used. 

 

Figure 4. The fault vibration simulator and the IEPE sensor 

 

4.2. Data Description 

The dataset includes normal vibration signals at the motor 

rotation speed of 1,500 RPM and four fault vibration signals: 

imbalance, misalignment, looseness, and bearing faults. 

Table 2 summarizes the 16 simulator settings for generating 

fault signals. In Table 2, settings #1 to #6 are the conditions 

for the imbalance. Setting #7 is for the misalignment. Settings 

#8 to #10 are for the looseness. Finally, settings #11 to #16 

are for the bearing faults. 

 

Table 2. Simulator settings for the faults 

No Setting 

#1 Attaching 1.7g mass to the right disk 

#2 Attaching 1.7g mass to the left disk 

#3 Attaching 1.7g mass to each disk 

#4 Attaching 6.25g mass to the right disk 

#5 Attaching 6.25g mass to the left disk 

#6 Attaching 6.25g mass to each disk 

#7 Set to 1.2mm 

#8 Loosening the left bearing housing 

#9 Loosening the right bearing housing 

#10 Loosening both bearing housing 

#11 Applying outer wheel defect bearing to the left 

#12 Applying outer wheel defect bearing to the right 

#13 Applying inner wheel defect bearing to the left 

#14 Applying inner wheel defect bearing to the right 

#15 Applying ball defect bearing to the left 

#16 Applying ball defect bearing to the right 

 

One vibration data has 1,024 features that are numerical 

values representing amplitudes of each frequency from 0 to 

243.76Hz. Figure 5 (a) is an example of the normal vibration 

data, and Figure 5 (b) is the result of visualizing it. 

 

Figure 5. An example of the normal data 

 

Figure 6 shows the sample fault signals collected from the 

simulator using the sensor. Figure 6 (a), Figure 6 (b), Figure 

6 (c), and Figure (d) are the results of the visualization of the 

signals collected under the imbalance of setting #1, the 

misalignment of setting #7, the looseness of setting #8, and 

the bearing fault of setting #11, respectively. These fault 

signals in Figure 6 showed different patterns in the number 

of peaks and amplitude values of peaks compared to the 

normal vibration signal in Figure 5(b). However, most 

frequencies in all signals showed very low amplitudes close 

to zero, except for a few frequencies. These frequency data 

characteristics affect the reconstruction results of the model 

and can consequently influence the AD performances. 

 

 

Figure 6. Example of the fault signals 
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A total of 21,365 vibration signals were collected from the 

simulator, of which 17,624 (82.5%) vibration signals were 

used as training data and 3,741 (17.5%) vibration signals as 

test data. Table 3 shows a detailed description of the dataset. 

Normal vibration signals of 17,624 training data and 481 test 

#1 data in Table 3 were generated when the motor in the 

simulator rotated at 1,500 RPM without applying fault 

condition settings described in Table 2. Test data used in tests 

#2 to #17 in Table 3 were generated from the operating 

conditions of the simulator with settings #1 to #16 in Table 2, 

respectively. In summary, the AD performances were 

measured with TPR for a total of 17 test cases (tests #1 to #17 

in Table 3) in the experiment. The experiment was conducted 

in two cases: with and without the proposed algorithm. 

Table 3. Description of the dataset 

Purpose Type # of Data 

Training Normal 17,624 

Test 

#1 Normal 481 

#2 Imbalance (setting #1) 154 

#3 Imbalance (setting #2) 279 

#4 Imbalance (setting #3) 120 

#5 Imbalance (setting #4) 213 

#6 Imbalance (setting #5) 230 

#7 Imbalance (setting #6) 184 

#8 Misalignment (setting #7) 241 

#9 Looseness (setting #8) 319 

#10 Looseness (setting #9) 118 

#11 Looseness (setting #10) 265 

#12 Bearing Fault (setting #11) 138 

#13 Bearing Fault (setting #12) 251 

#14 Bearing Fault (setting #13) 127 

#15 Bearing Fault (setting #14) 269 

#16 Bearing Fault (setting #15) 196 

#17 Bearing Fault (setting #16) 156 

 

5. EXPERIMENTAL RESULTS 

5.1. Anomaly Detection without N-Segmentation 

Figure 7 shows the results of AD for the test data (Test #1 to 

#17 in Table 3) when the N-Segmentation algorithm is not 

applied. The blue dots and the red horizontal line in Figure 7 

represent the MAE values for the test data and the threshold, 

respectively. Therefore, the dots above the threshold line 

mean predicted anomalies. The normal vibration signals 

(Test #1 in Figure 6) were exactly predicted as normal 

vibration signals. On the other hand, the performance of AD 

for the fault vibration signals (Test #2 to Test #17 in Figure 

7) was too low. A few data were detected as anomaly signals 

in misalignment (Test #8 in Figure 7) and looseness (Test #10 

and Test #11 in Figure 7), where TPRs were measured as 0.21, 

0.19, and 0.05, respectively. Except for these cases, no 

detection was made for the rest of the anomalies. Overall, AD 

performances with the traditional approach using the model 

were too poor. 

 

 

Figure 7. Result of anomaly detection without N-

Segmentation 

5.2. Anomaly Detection with N-Segmentation 

As mentioned in Section 3.3, the proposed algorithm finally 

determines an anomaly signal by OR operation of AD results 

in segmented frequency ranges. Since the IEPE sensor 

collected a frequency signal of 0-243.76Hz, the segments are 

made by dividing the frequency range evenly. Figure 8 shows 

AD results in the segmented frequency ranges when N is 4: 

0~60.76Hz (Figure 8 (a)), 61~121.76Hz (Figure 8 (b)), 

122~182.76Hz (Figure 8 (c)), and 183.76Hz (Figure 8 (d)). 

In the example, as shown in Figure 8 (c) and Figure 8 (d), the 

proposed algorithm can detect most anomalies belonging to 

misalignment (Test #8 in Figure 8 (c)) and imbalance (Test 

#5 and Test #7 in Figure 8 (d)) compared to Figure 7. AD 

performance with the proposed algorithm has improved 

dramatically in these faults compared to the results of Figure 

7. 
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Figure 8. Result of anomaly detection with N-Segmentation 

(N=4) 

As mentioned before, because N is a kind of hyperparameter, 

the proposed algorithm needs to be confirmed by changing N. 

Figure 9 shows the AD performance of the algorithm 

according to the change in the N value. When N is zero in 

Figure 9, the TPRs indicate AD results of not applying the 

proposed algorithm. The AD performance with N-

Segmentation shows higher TPR scores than without it in all 

fault cases: imbalance (Figure 9 (a)), misalignment (Figure 9 

(b)), Looseness (Figure 9 (c)), and Bearing Faults (Figure 9 

(d)). Especially when N was 8, the TPRs for imbalance (Test 

#7) and misalignment (Test #8) improved dramatically from 

0.01 to 0.99 and 0.21 to 1, respectively. In this case, the TPR 

for all fault signals was 0.40, and the proposed algorithm 

detected 1,301 anomalies among a total of 3,260 anomalies. 

On the other side, the traditional approach without the 

proposed algorithm just detected 87 anomalies. 

 

 

Figure 9. Performance of anomaly detection by N 

6. DISCUSSION 

The results of the experiment can be summarized as follows. 

First, the N, the number of segmentations, did not affect the 

AD performance for the normal vibration signals in the test 

data. Regardless of N, the TPRs for the normal vibration 

signals were always measured as 1. Second, even if anomaly 

signals were the same fault type, the TPRs for the same fault 

signals showed differences according to the specific settings. 

Overall, anomaly signals measured in higher physical 

changes near the sensor were relatively better detected (see 

Table 2, Table 3, and Figure 9). Therefore, when detecting 

facility faults using a vibration sensor, the position of the 

sensor must be carefully determined. Third, the proposed 

algorithm can improve the performance of the unsupervised-

based AD. In our experiment, the proposed algorithm 
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detected about 15 times fault vibration signals in the best case 

(N=8) than N=0. Even in the worst case (N=14), it could 

detect fault vibration signals more than 8 times. Fourth, the 

proposed algorithm not only detects the fault vibration 

signals with better performance but also provides additional 

information about the frequency range in which the anomaly 

occurred (see Figure 8). This information can be used to 

predict the type of facility failure. 

7. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed the N-segmentation algorithm, 

which uses segmented frequency ranges to enhance facility 

fault detection performance. To measure the algorithm 

performance, we collected the frequency domain data of the 

vibration signal with the fault vibration simulator using the 

IEPE-type sensor. We trained the normal vibration data in the 

collected vibration signal using the 1-D CAE model and 

performed AD for the normal vibration data and four types of 

fault vibration data: imbalance, misalignment, looseness, and 

bearing faults. We detected up to 15 times more anomalies 

with the proposed algorithm than without it. The results show 

that the proposed algorithm is effective in AD for fault 

vibration signals. However, this study has limitations in 

applying only the 1-D CAE model and experimenting in the 

simulation environment. In future research, we aim to 

improve the proposed algorithm by comparing other machine 

learning models, and we will adopt it to facilities and 

equipment operating in real manufacturing sites. 
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