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ABSTRACT

To assist subject matter experts in investigating electronic fail-
ures of drilling tools, an innovative risk assessment approach
for oil well drilling operations is developed that relies on
synthetic time-series data to emulate environmental factors
encountered downhole, explicitly focusing on temperature,
shock, and vibration. The approach involves utilizing load
cycle counting to extract meaningful features from each en-
vironmental channel measured by the drilling tool. The re-
sults from experiments with features related to dwell periods
(dwell time and dwell damage) and load cycles (cycle means
and cycle ranges) show a significant correlation between load
cycle features and the risk label. Subsequently, a tree-based
machine learning model is trained to label drilling operations
based on synthetic data. Several models have been trained ini-
tially with comparable results. However, the advantage of us-
ing a tree-based model, specifically extra trees, is explainabil-
ity and the stochastic aspect, which translates into model ro-
bustness when applied to real data. Preliminary results from a
case study indicate that this new approach is highly effective
in categorizing environmental risks associated with drilling
operations. This risk assessment method can significantly en-
hance the decision-making process in investigating electronic
board failures by offering reliable decision support.

Delia-Elena Dumitru et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

1. INTRODUCTION

The drilling process has undergone a remarkable transforma-
tion in the oil and gas industry, evolving into a complex and
sophisticated endeavor. This increased complexity stems di-
rectly from the necessity of accessing and extracting valuable
resources hidden deep within the earth’s crust. To accomplish
this daunting task, the industry relies heavily on drilling tools,
which are the technological cornerstones of these operations.

Drilling tools represent exceedingly intricate systems enriched
with electronics, comprising a multitude of electronic boards,
each meticulously designed to fulfill specialized functions of
paramount significance to the success of drilling operations.
These electronic boards function as the central hubs of tech-
nological operations, assuming responsibilities encompass-
ing data acquisition, signal processing, management of con-
trol systems, and the facilitation of seamless communication
(Kang et al., 2022). Thus, the reliability and performance of
these electronic boards are inexorably linked to the overall
effectiveness of drilling endeavors. However, the harsh op-
erating conditions encountered downhole, including elevated
temperatures, dynamic vibrations, and substantial shocks, ren-
der these boards susceptible to complex failure modes, poten-
tially resulting in drilling operation failures. Failed drilling
operations can lead to significant financial losses and envi-
ronmental concerns. Therefore, health assessment and prog-
nostics of electronic boards in drilling tools is essential to en-
sure that proactive maintenance is carried out in advance to
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prevent drilling operations from failing.

The current health assessment and prognostics models for

electronics are predominantly data-driven. For instance, physics-

of-failure-based prognostics combine sensor data with mod-
els that evaluate a component’s deviation from normal oper-
ation (Pecht & Gu, 2009). Another example is the use of ac-
celerometers to monitor the response of printed circuit boards
to vibrations and predict their remaining life (Gu, Barker, &
Pecht, 2009). Similarly, (Vichare & Pecht, 2009) propose a
technique that extracts load parameters from time-series data
to estimate remaining life and assess damage. This method
focuses on identifying valuable features for prognostics with-
out requiring the storage of large volumes of data. Addi-
tionally, (Prisacaru, Gromala, Han, & Zhang, 2022) detect
faults in electronic packages through the Mahalanobis dis-
tance and clarify them using a clustering technique. They
also employ Echo state networks to perform degradation as-
sessment and remaining useful life prediction. Additional lit-
erature on data-driven approaches for electronics health as-
sessment and prognostics can be found in the following re-
view articles: (Bhat, Muench, & Roellig, 2023), (Bhargava et
al., 2020), and (Michael G. Pecht, Myeongsu Kang, 2018).

In the context of electronic boards used for oil well drilling
operations, (Kale, Carter-Journet, Falgout, Heuermann-Kuehn,
& Zurcher, 2014) propose a probabilistic approach that uses
operational data, drilling dynamics, and historical mainte-
nance information to predict reliability and life of electron-
ics. (Bhatnagar, Cassou, Masry, & Mosallam, 2021) develop
a data-driven fault detection approach tailored to electronic
boards in intelligent remote dual-valve systems . Similarly,
(V. Gupta et al., 2023) present an automatic fault detection
method based on support vector machines for resistivity sub-
systems in Logging-While-Drilling (LWD) tools. (Sobczak-
Oramus, Mosallam, Basci, & Kang, 2022) introduce a data-
driven fault detection approach for transmitter subsystems in
LWD tools . Finally, (Mosallam, Kang, Youssef, Laval, &
Fulton, 2023) propose a data-driven fault diagnostics approach
for three power supply boards in LWD tools.

Obtaining comprehensive data and corresponding labels through-

out the equipment lifecycle is essential for building data-driven
models for health assessment and prognostics of electronics.
Subject matter experts usually derive data labels through fail-
ure investigations, but this process can be costly and time-
consuming for complex equipment. Specifically, investigat-
ing electronic board failures in drilling tools requires manu-
ally examining extensive operational environment data mea-
sured by the tools. This process is labor intensive and prone
to human error, making it challenging. Considering this chal-
lenge, this paper proposes an innovative risk assessment ap-
proach for oil well drilling operations to assist subject matter
experts in investigating electronic failures. One of the pri-
mary advantages of this approach is its ability to harness the

power of supervised learning for efficient and objective risk
assessment, compared to manual inspections of operational
environment data.

Literature has shown that various factors, such as tempera-
ture, humidity, vibration, dust, electrical stress, etc., affect
the performance and life of electronic components (Michael
G. Pecht, Myeongsu Kang, 2018). Among these factors, fail-
ures attributed to environmental conditions like temperature,
humidity, and vibration constitute a significant 84% of elec-
tronic failures (Bhargava et al., 2020). Given the paramount
importance of environmental factors in electronic failures, this
paper seeks to develop a method to aid the subject matter ex-
perts investigate the specific environmental factors contribut-
ing to electronic failures.

However, only temperature and vibration are considered in
the proposed method. We did not account for potential fac-
tors such as dust, humidity, chemicals, and radiation. This
omission is because drilling tools do not typically measure
these parameters for electronic boards. The physical arrange-
ment of electronic boards within these tools inherently pro-
tects against exposure to dust, humidity, radiation, and chem-
icals that may be present in the wellbore. These tools are
typically enclosed within robust steel tubing, shielding inter-
nal electronics from direct contact with these environmental
factors. Moreover, before tool deployment, field engineers
frequently introduce nitrogen into these tools, reducing the
likelihood of exposure to potentially harmful substances. As
a result of these protective measures and practices, the risk of
electronic board damage due to dust, humidity, radiation, and
chemical exposure is significantly mitigated.

The rest of this paper is structured into four sections. The first
section offers a detailed presentation of the proposed method.
Following that, a case study is presented. Finally, the last sec-
tion summarizes the findings and suggests potential avenues
for future research.

2. PROPOSED METHOD

The proposed method consists of three steps: data genera-
tion, preprocessing and feature extraction, and modelling, as
illustrated in Figure 1.

2.1. Data generation

To leverage the power of supervised learning, labeled envi-
ronmental data are needed. We generate synthetic time se-
ries programmatically to remove the need for expert-labeled
data. Drilling tools regularly record measurements concern-
ing the environment, specifically, temperature, shock peak
values, and vibration root mean square values; therefore, in
our experiment, we generate synthetic time series data that
emulate drilling conditions for each of the three channels.
The simulated data incorporate various sources of random-

Page 17



Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN — 978-1-936263-40-0

Generating Data
synthetic collection

temperature,

shocks and

vibration signal

_ Data
Smoothing the | preparation
signal using the

upper envelope

Extracting
features for each
environmental
channel

Constructing the
risk classifier

Figure 1. Proposed method.

ness, including sinusoidal waves with random time-variant
amplitude and frequency, Gaussian noise, random spikes, and
random shocks with random decay rates. Specifically, low-
risk time series data exhibit lower parameter values for ran-
dom number generation than high-risk time series data. For
instance, the mean and standard deviation for generating low-
risk temperature data’s Gaussian noise are set to 40 and 3,
respectively, while the amplitude for temperature shocks falls
between 30 and 70. On the other hand, the mean and standard
deviation for generating high-risk temperature data’s Gaus-
sian noise are set to 80 and 10, respectively, while the ampli-
tude for temperature shocks falls between 50 and 100.

2.2. Data preparation

To effectively use the generated environmental data, prepro-
cessing and optimal feature extraction are required. The pre-
processing step consists of smoothing the signal using the
upper envelope of the signal, as shown in Figure 2. After
the preprocessing step, the environmental features can be ex-
tracted. For each environmental channel (i.e., temperature,
shocks, and vibration) we compute two features based on
dwell periods and two features based on load cycles, using the
rainflow cycle counting method for the latter (Lee & Tjhung,
2012).

2.3. Feature extraction using rainflow cycle counting

Rainflow cycle counting is a method used in fatigue analy-
sis to quantify the number of stress cycles experienced by a
component or material (Endo, 1974).

The process involves analyzing a time series of stress or strain
data to identify and count individual cycles. These cycles
represent the repeated loading and unloading of a material,
which can lead to fatigue failure over time. Rainflow cycle
counting is especially useful for irregular or variable ampli-

Modelling
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Figure 2. Generated vibration signal for a high-risk run (red)
and a low-risk run(green), before and after preprocessing.
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tude loading conditions, where the stress levels vary over time (a) Hysteresis filtering

(Lee & Tjhung, 2012).

The method consists of four steps, as illustrated in Figure 3:

Load

1. Hpysteresis filtering (Figure 3a) entails removing cycles
smaller than an amplitude gate that contribute minimal
damage. This is accomplished by setting a gate with a

specific amplitude. Any cycle with an amplitude below
this gate is excluded from the load-time data. The gate / \\/\/A

Load

is projected sequentially from left to right starting from
each turning point in the time series. If a turning point
falls below the gate’s threshold, it is omitted from the
time history. (Endo, 1974)(Lee & Tjhung, 2012).

2. Peak-valley identification (Figure 3b) consists of locating (b) Peak-valley identification
the points in the data where the direction of the signal
reverses. In a cycle, only the highest and lowest values
are pertinent for fatigue life assessments. Therefore, any A
intermediate data points between these extremes within a \/\/

cycle can be disregarded as they do not contribute to the
fatigue calculation. (Endo, 1974)(Lee & Tjhung, 2012). Time

3. Indiscretization (Figure 3c), the amplitude dimension of
the signal is divided into a set number of equal bins. Each
data point is then mapped to the center of its correspond-
ing bin to facilitate cycle counting. Centering the data
samples within their bins slightly modifies their ampli-
tudes, therefore it is crucial to utilize an adequate number Time
of bins in the analysis to minimize significant alterations
in amplitudes (Endo, 1974)(Lee & Tjhung, 2012).

4. In four-point counting (Figure 3d), the identified peaks
and valleys are connected to form hysteresis loops, or
closed paths that represent complete stress cycles (Endo,
1974)(Lee & Tjhung, 2012). This is done using the fol-
lowing steps:

(a) Select four consecutive points: S1,.52, 53, 54.
(b) Compute inner stress: |52 — S3.

Time

Load

Load

(c) Discretization

Load
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(c) Compute outer stress: [S1 — S4].

(d) If the inner stress range is less than or equal to the
outer stress range, a cycle is counted, otherwise it is
not counted. Time

Load
N oW os e
[~

. . d) Four-point ti
Using the method described above, the extracted features are (d) Four-point counting

as follows:

1. average cycle mean, where the cycle mean represents the

Load
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2. average cycle range, where the cycle range represents
the absolute difference between the initial and final points
of a cycle 1 2 3 4.5 6
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3. dwell time, representing the cumulative time during which
the signal oscillation is lower than a set threshold From

4. dwell damage, representing the average amplitude during
the dwell time
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Figure 3. Rainflow cycle counting steps.
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Figure 4. Confusion matrix for a binary classification prob-
lem.

2.4. Modelling

We model the problem as a binary classification problem,
where we interpret the positive class as high environmental
risk, and the negative class as low environmental risk.

For risk classification three models were trained: logistic re-
gression (LaValley, 2008), random forest (Biau & Scornet,
2016), and extra trees (Geurts, Ernst, & Wehenkel, 2006).
The random forest and the extra trees models consist of an
ensemble of 100 trees, and the Gini index was used as the
splitting criterion. Logistic regression, as well as the ensem-
ble tree-based models are less prone to overfitting and thus
have the potential to generalize better to real data.

3. CASE STUDY

A number of 1128 examples were generated, out of which
80% were used for training and 20% for testing. The training
set was further split into train and validation sets in the same
ratio using k-fold cross validation with 10 folds. The data
were split as to preserve the class balance.

To evaluate the models on a labeled subset of the data we
make use use of the confusion matrix (Fawcett, 2006), illus-
trated in Figure 4. In a binary classification problem, the con-
fusion matrix has four sections:

1. True positives (TP): the number of instances where the
model correctly predicts the positive class (high risk).

2. True negatives (TN): the number of instances where the
model correctly predicts the negative class (low risk).

3. False positives (FP): the number of instances where the
model incorrectly predicts the positive class.

4. False negatives (FN): the number of instances where the
model incorrectly predicts the negative class.

To compare the models, we use the area under the receiver
operating characteristic (ROC) curve (ROC AUC score). The
ROC curve plots the true positive (TP) rate, defined as

TP
TP+ FN’

Avg. cycle mean - temperature
Avg. cycle mean - vibration
Avg. cycle mean - shock

Dwell damage - vibration

Avg. cycle range - shock

Avg. cycle range - temperature
Avg. cycle range - vibration
Dwell time - vibration

Dwell time - shock

Dwell damage - shock

Dwell time - temperature

Dwell damage - temperature

o 5 10 15 20 25 30

Figure 5. Model feature importance.

against the true negative (TN) rate, defined as

TN
TN+ FP

It is a graphical representation of a binary classifier at differ-
ent classification thresholds. The ROC AUC score is repre-
sented by the area under the ROC curve, where a score of 0.5
indicates a random model (Bradley, 1997).

The three trained models output a ROC AUC score of 1 on
the validation set, indicated in Table 1. The application of the
trained models is to assess environmental risk on electronic
boards. Therefore, an important aspect is the ability of the
model to successfully transfer knowledge from synthetic data
to real data. In this regard, the stochastic features of the extra
trees represent an advantage for increasing robustness (Geurts
et al., 2006).

Table 1. Comparative ROC AUC score for the three trained
models.

Model ROC AUC score
Logistic regression 1.00
Random forest 1.00
Extra trees 1.00

We evaluate feature importance for the classification prob-
lem using Shapley values. This step helps to reduce feature
redundancy and improve model interpretability. Shapley val-
ues are a method derived from cooperative game theory that
has been adapted for use in explaining the predictions of ma-
chine learning models. They provide a way to fairly assess the
impact of each feature for a particular prediction in a model
(Merrick & Taly, 2020).

Using this method, Figure 5 indicates that for the extra trees
model, the most impactful features are the average cycle means
on each environmental channel, which is consistent with the
feature correlation matrix in Figure 6.

Feature correlation in a machine learning model refers to the
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Figure 6. Feature correlation matrix.

degree to which the variables (features) in the dataset are re-
lated to each other, as well as with the target variable. For
this experiment we use the Pearson correlation coefficient
(Kendall & Stuart, 1973) and we specifically study the cor-
relation between the features and the target variable, denom-
inated as risk. In Figure 6 we notice the highest correlation
between the average cycle means on the temperature, shock
and vibration channels, and the risk variable.

In the second iteration of experiments, we restrict the training
to these three features.

During the validation step, the model achieves promising clas-
sification results, as indicated by the confusion matrix in Ta-
ble 2. Based on the confusion matrix, we define the following
metrics:

Accuracy = TP+ TN , 9]
TP+TN+FP+FN

Precision = I’;ji-—PF‘]D’ 2)

Recall = TP};-—PFN’ 3)

Flscore = 2+TP @

2xTP+FP+FN’

The results on the validation set are consistent with the results

on the test set after the training is completed, which can be
seen in Table 3, despite the 0.52 score for data drift. Data
drift indicates a difference in the statistical properties of the
data. Therefore, the classification scores prove the robustness
of the extra trees model and the potential for such a model to
be used for assessing risk on real data.

Table 2. Confusion matrix on the validation set, where the
positive class is equivalent to a high-risk run and the negative
class is equivalent to a low-risk run.

Predicted positive | Predicted negative

True positive 93 0

True negative 0 86

Table 3. Metrics measured on the test set.

Metric Value
Accuracy 1.00
Precision 1.00
Recall 1.00
F1 Score 1.00
ROC AUC | 1.00
Data drift 0.52
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4. CONCLUSION AND FUTURE WORK

This paper presented a data-driven approach for assessing en-
vironmental risk in electronic boards based on supervised ma-
chine learning. The method makes use of synthetic data and
consists of extracting features with respect to dwell time and
load cycles, showing that the latter have a larger impact on the
performance of the models. The extra trees model achieves
promising results on the synthetic data, but further work is
needed to address the potential mismatch between training
and test data in practical applications.

To address this issue, we plan to collect real-world environ-
mental data and use it to fine-tune the model to better handle
the variability of different environments. Additionally, we
could explore the use of transfer learning techniques to adapt
the model to new environments and improve its robustness to
different types of data.

Overall, the proposed approach shows potential for assessing
environmental risk in electronic boards, but further research
is needed to optimize the model for real-world applications.
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