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ABSTRACT

This paper presents SurvLoss, a novel asymmetric partial loss
and error calculation function for survival analysis and re-
gression, enabling the inclusion of censored samples. An ob-
servation in a dataset for which the complete information re-
garding an event of interest is not available is called censored.
Censored samples are ubiquitous in the industry and play a
crucial role in Prognostics and Health Management (PHM)
by providing a realistic representation of data, improving the
accuracy of analyses, and supporting better decision-making
in various industries and the healthcare sector. The proposed
approach can effectively equip the conventional regression
loss functions such as Mean Absolute Error (MAE), Mean
Squared Error (MSE), or Root Mean Squared Error (RMSE)
with the ability to process censored samples. This can impact
the field hugely by providing a more accessible usage of neu-
ral network models in survival analysis. The proposed sur-
vival loss incorporates censored samples by penalizing pre-
dictions outside the censoring region and skipping them oth-
erwise. Then, it uses weighted averaging to aggregate the
loss from censored samples with the loss from event samples.
Unlike many other methods in the field, the proposed model
distinguishes itself by avoiding superficial assumptions and
exclusively relies on the available information, considering
the entirety of the data.

We compared the proposed loss function with its baseline
on two publicly available datasets. The first dataset, called
C-MAPSS, is from NASA Turbofan Jet Engines simulation,
and the second is a recently published real-world dataset from
SCANIA trucks. The goal of both datasets is to predict the re-
maining useful life (RUL) of the machines. The experimental
results show that optimization algorithms for training deep
neural networks like Adam can effectively utilize the pro-
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posed loss function to calculate gradients, update the model’s
weights, and reduce training and test errors. Moreover, the
proposed model outperformed the baseline by taking advan-
tage of the censored samples. The proposed loss function
paves the way for the employment of advanced architectures
of neural networks with bigger training sizes in survival anal-
ysis.

1. INTRODUCTION

This paper deals with the problem of time-to-event predic-
tion. Specifically, the prediction of time until a component
fails or, in other words, the component can no longer perform
its intended functionality. The literature has three main direc-
tions for tackling this problem. The remaining useful life pre-
diction (Revanur, 2020; Altarabichi, 2020; Karlsson, 2023),
risk classification (Rahat, Pashami, Nowaczyk, & Kharazian,
2020), and survival analysis (Wang, Li, & Reddy, 2019). While
each of these directions has benefits and drawbacks, a shared
challenge among all three approaches is dealing with the cen-
sored samples. While some methods, like Cox proportional
hazards (Cox, 1972), consider them using the partial likeli-
hood function, most methods simply ignore censored sam-
ples. Nonetheless, censoring is an inherent aspect of time-to-
event prediction, especially in long-term studies. Censored
samples refer to data points for which the event of interest
(such as death or failure) has not been observed by the end of
the study or at the time of analysis. Censoring can happen,
for instance, when the exact time of the event is unknown;
typically, since the event has not occurred yet, the subject has
been lost to follow-up, or the study finishes before we observe
the event. With the censored samples, we have incomplete in-
formation about the individual, i.e., we don’t know when the
event happened. Still, we know the event has not occurred
during a specific period.

Generally, three types of censoring are recognized in survival
analysis (Kleinbaum & Klein, 1996). The right censoring
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where the event of interest has not happened for some individ-
uals by the end of the study, but it may occur at an unknown
time in the future. In other words, the event time for these
individuals is known to be longer than the observed follow-
up time. The left censoring happens when we know that the
event of interest happened before a specific time, but we don’t
know precisely when, i.e., the survival time is shorter than the
study’s start time. Finally, we have interval censoring, where
we only observe the event that has happened within a spe-
cific time window, but again, we don’t know precisely when.
Right censoring is considered the most common type; hence,
it is regarded as the primary focus of this paper. It is worth
mentioning that although we only looked at the right censor-
ing, the proposed loss function can be generalized similarly
to all three types.

Censoring is prevalent in the industry for many reasons, such
as the long life of components or changes in the conditions of
the equipment, like the expiry of a warranty period. In real-
world industrial applications, it is common to access much
more censored samples than those that fail. Depending on
the cases, the ratio of censored to death varies, but this ratio
can reach, for instance, 30 censored samples per 1 death or
more. Most available methods in the field struggle with con-
suming censored samples and end up ignoring these samples.
This means that they essentially ignore a significant portion
of their available data.

An exception to this general rule is methods based on survival
analysis designed to take advantage of the censored informa-
tion. However, survival analysis is much more common in
clinical studies than in industry due to its practical limita-
tions, such as the inability to process big data sizes or their
shortage in handling temporal information, like sequences of
observations from the same individual over time. Addition-
ally, they mostly rely on the Cox proportional assumption,
which is known to be naive and not genuine in many real-
world cases. On the other hand, there is no way to validate
the survival functions produced by these models as we only
have access to the time of the event, and the actual degra-
dation curves are unknown. That is why, in many industrial
applications, we rely on the median or the mean point of the
survival functions. Concordance index (C-index) (Harrell,
Califf, Pryor, Lee, & Rosati, 1982) is the typical survival
analysis evaluation metric which only considers the order of
the events and is known to be biased (Hartman, Kim, He, &
Kalbfleisch, 2023; Alabdallah, Ohlsson, Pashami, & Rögn-
valdsson, 2024). Most survival datasets are clinical records
of patients with a very small number of data points (around
1000) and features (around 10), and there are limitations re-
garding the proportion of censored data compared to event
instances. In most studies, clinical researchers maintain this
percentage below 50%.

Additionally, specific constraints are related to applying neu-

ral networks within the survival analysis domain. While a
handful of methods have been proposed to merge the capa-
bilities of neural networks with survival analysis (Katzman et
al., 2018; Kvamme, Borgan, & Scheel, 2019), the prediction
accuracy for deep learning methods remains comparable to
the classical methods such as Cox and Random Survival For-
est (Ishwaran, Kogalur, Blackstone, & Lauer, 2008) in many
datasets. It is shown that the performance gain using deep
learning or neural network-based approaches is often around
0.02 to 0.03 in concordance index (Chen, 2020). This is pri-
marily due to various underlying assumptions made by meth-
ods, such as the constant ratio of risk over time or the small
sizes of the standard survival analysis datasets. On the other
hand, the neural network field is growing rapidly, and it is cru-
cial to search for new ways to employ their incredible com-
putational power in fields such as time-to-event prediction.

This paper contributes to the mentioned challenge by intro-
ducing a new loss function called survival loss, which essen-
tially enables conventional neural networks to process cen-
sored samples along with the standard event samples. The
idea is to penalize the model in accordance with the infor-
mation available. For the event samples, the survival loss
performs similarly to an ordinary loss by considering the dis-
tance between the model predictions and actual values. For
the censored samples, the survival loss only penalizes the
model if the predicted value falls outside the censoring time
interval. As an example for the right censored samples, the
model gets penalized only if its prediction is below censoring
time (which we already know the event has not happened in
that period). On the other hand, if the model’s prediction is
larger than the censoring time, the proposed survival loss ef-
fectively ignores that sample in the loss calculation as there
is no evidence of the precise event time. Ultimately, the final
loss value will be reported as a weighted average of the error
values from censored and event samples. The weighting of
the two error values takes place in accordance with the num-
ber of considered samples in each part. The following section
defines the proposed loss function in more detail.

2. METHODOLOGY

We first visually explain the intuition behind the proposed
survival loss and later define it mathematically. Figure 1 de-
scribes how the proposed survival loss function calculates
the amount of error for an event sample, right-censored sam-
ple, left-censored sample, and interval-censored sample. The
follow-up region (represented in red) indicates the period where
we monitored the individual, and we know that the event of
interest has not occurred inside it. The censoring region (rep-
resented in green) displays the period where the event has
happened or will happen inside it, but we don’t know pre-
cisely when. Finally, the red-dotted region represents the time
in the future after the event has occurred.
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Figure 1. Visual explanation of the proposed loss function.

The loss calculation for an event sample is straightforward.
The distance between prediction and actual event time indi-
cates the amount of error. Here, we can use any loss calcula-
tion formula like mean absolute error (MAE), mean squared
error (MSE), root mean squared error (RMSE), etc. For the
sake of simplicity, this paper primarily focuses on the MAE,
but any other mentioned error measurement functions can in-
terchangeably be employed.

Unlike the event samples, the proposed loss uses an asym-
metric error calculation algorithm for the right censored sam-
ple. If the prediction falls within the follow-up region (i.e.,
the outside of the censoring region), we penalize the predic-
tion according to its distance from the censoring time. Note
that this error partially captures the whole error of the predic-
tion as the event happens sometime after censoring time, and
the actual error is greater than the proposed partial one. Since
calculating the exact error for these samples is impossible, we
resort to partial penalization. This partial error from the cen-
sored samples can help the optimization algorithm calculate
gradients more accurately. Conversely, if the prediction falls
within the censoring time, the amount of error is set to null.
Note that a null error differs from a zero error since, in the for-
mer, we remove the sample from the total number of samples
in the batch and, therefore, from the denominator of the av-
eraging function. Finally, a similar logic can also handle the
left-censored and interval-censored samples. Again, for the
sake of simplicity, we primarily focus on the right censored
samples and mean absolute error. Still, the method can be
generalized to all censoring types and error calculation func-
tions.

Figure 1 also provides some example prediction points and
their associated error values for varying conditions. The er-
rors for prediction A, B, C, and D are respectively T2 − T1,
T3−T2, ∅, and T5−T4, where ∅means we ignore the sample
in the loss calculation.

Assume (X, t, δ) represents a random survival data point where
X ∈ Rd is a d-dimensional covariate vector and δ ∈ {0, 1}
is an event indicator such that δ = 1, if we observed the event

and δ = 0 in case of censoring. Moreover, t = min(y, c) is
the observed time, where y ∈ R+ is the actual event time
and c ∈ R+ is the censoring time.

In the context of PHM and without loss of generality, we de-
fine the set of failed samples where the event of failing hap-
pened for them (i.e., δi = 1) as:

(Xi, yi)
NFailed

i=1 (1)

and similarly the set of censored samples (i.e., δi = 0) as:

(
X̃j , cj

)NCensored

j=1
(2)

which means we divide the samples into two groups of failed
(aka event) and censored samples where the total number of
samples is N = NFailed + NCensored. Then, for a given
predictive model f , we define ŷi = f(Xi) and similarly, ĉj =
f(X̃j) as the output of the predictive model for the failed and
censored samples. Note that we have access to the ground
truth values for f(Xi), but ground truth values for f(X̃j) are
unknown, and the only information we have regarding them
is that the actual event time is greater than cj . This means
that we can only penalize the model if the prediction of the
model ĉj is less than cj ; otherwise, we ignore the sample in
our loss calculation. Note that ignoring a sample in the loss
calculation is different from having an error equal to zero for
that sample since by ignoring the sample, we do not consider
it in the total number of samples in the denominator of the
loss function.

The new survival loss function is defined as a weighted sum
of the error for the censored and failed samples:

E =
NFailed × EFailed +NCensored′ × ECensored′

NFailed +NCensored′
(3)

where Censored′ represents the set of samples for which the
model predicts a survival time less than the censoring time,
i.e., ĉj < cj and is defined as follows:

NCensored′ =
∥∥∥
(
X̃j , cj

)
given ĉj < cj

∥∥∥ (4)

this means that NCensored′ ≤ NCensored since:

{
(
X̃j , cj

)
given ĉj < cj} ⊆ {

(
X̃j , cj

)
} (5)

Then, equations 6 and 7 represent the standard calculation of
the mean absolute error for the two groups of Failed and
Censored′.
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EFailed =
1

NFailed
×

NFailed∑

i=1

|yi − ŷi| (6)

ECensored′ =
1

NCensored′
×

NCensored′∑

j=1

|cj − ĉj | given ĉj < cj

(7)

and if we plug in equations 6 and 7 into equation 3, we get
Equation 8 that defines Survival Mean Absolute Error (S-
MAE). Equation 8 can easily be modified for Mean Squared
Error (MSE) and Root Means Squared Error (RMSE). Note
that in the extreme cases of very high censoring ratio, the de-
nominator of the Equation 8 can become zero. To avoid such
cases, we recommend reducing the censoring ratio by ran-
domly skipping some of the censored samples or increasing
the batch size of the gradient descent algorithm.

3. EXPERIMENTAL RESULTS

We first provide some general information about the experi-
ments and the two datasets used in section 3.1. This is fol-
lowed by the experimental results and discussion for the first
dataset in section 3.2, and that of the second dataset in section
3.3.

3.1. Experimental Setup

For the experiments, we used two public run-to-failure datasets,
one on lab-simulated data and the other on real-world data
from the field. The first dataset is the well-known NASA
Commercial Modular Aero-Propulsion System Simulation,
also known as C-MAPSS (Saxena, Goebel, Simon, & Eklund,
2008). It is a widely used benchmark dataset in prognostics
and health management (PHM) developed by NASA to sup-
port research in aircraft engine health monitoring and prog-
nostics and to estimate the remaining useful life. The dataset
consists of simulation measurements from turbofan jet en-
gines with multiple subsets, each corresponding to different
operating conditions and engine fault modes. It includes sen-
sor measurements collected from various sensors installed on
the engine, along with information about the engine’s health
and remaining useful life. The C-MAPSS dataset contains
temporal information in the form of multiple observations
during time from each engine.

The C-MAPSS dataset originally did not contain censored
samples as it is a simulated dataset, and the actual failing
time for all the engine cases is provided. Since the goal of
this paper is to study the effect of having censored samples
in the dataset, we used the algorithm introduced in (Rahat,
Kharazian, Mashhadi, Rögnvaldsson, & Choudhury, 2023) to
transform the dataset into survival settings by defining a spe-
cific study period and labeling all the failed samples after the

end of the study as censored.

The second dataset is the recently published SCANIA Com-
ponent X Dataset (Kharazian, Lindgren, Magnússon, Stein-
ert, & Reyna, 2024; Lindgren, Steinert, Andersson Reyna,
Kharazian, & Magnússon, 2024). This dataset is collected
from an unknown engine component (called component X)
of a fleet of trucks. We refer to the second dataset as the Sca-
nia dataset. This dataset contains sensor measurements from
21278 censored trucks and 2272 instances of trucks where
their component X failed. We define the censoring ratio for
a dataset as the percentage of censored samples to the total
samples, i.e., the number of censored samples divided by the
total number of samples. Therefore, in this dataset, the cen-
soring ratio is 90%, which is way beyond the common censor-
ing ratios in the survival analysis domain. Looking at the lit-
erature, it is very rare to see a dataset that contains more than
50% censored samples. Similar to C-MAPSS, this dataset
includes temporal measurements from trucks. The only dif-
ference compared to C-MAPSS is that in C-MAPSS, the in-
tervals between the observations are the same, but here they
vary.

The predictive model used for the experiments is a multilayer
Perceptron neural network that contains an input layer fol-
lowed by five dense layers, each containing 14 neurons, fol-
lowed by a single neuron as the output, where all layers use
the ReLU activation function. The purpose of the network is
to predict the remaining useful life of a piece of equipment
according to the covariate features received as input. All the
networks are trained using the Adam optimization algorithm,
and the batch size for all experiments is 32.

There is no need to spend too much time optimizing the neu-
ral network’s architecture, as both the baseline and the pro-
posed model use the same architecture in terms of fairness of
the comparisons. We also tweaked the network’s architecture
and confirmed that the proposed loss function is not sensi-
tive to the architecture and can perform robustly regardless
of its structure. Two models are compared in the following
sections. The first model uses the mentioned neural network
architecture with S-MAE as the loss function and is referred
to as the proposed model. Due to the use of S-MAE, the
proposed model can consume censored samples. The second
model also uses the mentioned neural network architecture.
The only difference is using the standard MAE loss function,
which makes the second model unable to render censored
samples as there are no ground truth target values associated
with them in the dataset. We refer to the second model as the
baseline model. The code is implemented in Python using
Keras running on a TensorFlow backend. A code implemen-
tation of the S-MAE function in TensorFlow is also provided
in the appendix section.
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ES−MAE =

(∑NFailed

i=1 |yi − ŷi|
)
+ (
∑NCensored′

j=1 |cj − ĉj | given ĉj < cj)

NFailed +NCensored′
(8)

3.2. SCANIA Dataset

We used the SCANIA dataset for the first experiment. Here,
the number of censored to failed samples is enormous, which
means most of the components did not fail during the study
period. As mentioned before, the ratio of censored vehicles is
90%. In other words, we have around 9 censored vehicles per
failed one. Including all censored samples in the experiments
is technically impossible, as this will cause the loss to become
zero for almost all batches, and consequently, the gradients
will become NaN. We randomly down sample censored in-
stances to 500 vehicles. We also include all 2272 instances
of failed trucks. The resulting dataset has a censoring ratio
of 18%. Additionally, we ignored the temporal information
and randomly picked one observation per truck for this ex-
periment. The number of independent features in this dataset
is 105, and the goal is to predict the remaining useful life of
component X.

The objective of the experiment is to investigate how the in-
clusion of censored samples impacts a model employing the
proposed survival loss function compared to a standard loss
function. We conducted two experiments with the model out-
lined in the experimental setup. In the first experiment, the
model is equipped with the ability to incorporate censored
samples through the proposed S-MAE loss function. Con-
versely, the second iteration excludes censored samples from
the training data, as the model employs a conventional loss
function, making it unable to process partially observed in-
stances. Both models are trained for 10 epochs. The test data
used for evaluating both models contains both censored and
failed cases, and the S-MAE loss function is used to report
the models’ performance.

Figure 2 represents the five-fold cross-validation results for
the Scania dataset. The two models’ average training and test
curves across five folds are presented using lines. The shaded
confidence bands visualize the respective standard deviations
of the test data across five folds. The green curves represent
the model’s performance using S-MAE, and the red curves
represent the conventional MAE loss function. The y-axis
shows the value of error using S-MAE. Similar to the stan-
dard MAE, the lower values of S-MAE indicate better perfor-
mances. As you can see in the figure, the model that used the
proposed S-MAE consistently outperforms the conventional
MAE. Furthermore, the standard deviation of both models de-
creased during the training epochs.

Figure 2. Five-fold cross-validation results for Scania dataset.

3.3. C-MAPSS Dataset

In the second experiment, we performed an assessment sim-
ilar to the first experiment but with the C-MAPSS dataset.
We used the dataset related to the first operational setting
(FD001) representing condition one (Sea Level) with 14 co-
variate features and the remaining useful life of the equip-
ment as the target. The train and test trajectories each con-
tain 100 units, and a varying number of readouts is available
in the dataset for each unit. We merged the train and test
units from the original dataset to get a dataset with 200 units
and reduced the samples by randomly picking 20 readouts
from each engine unit. Again, we employed a 5-fold cross-
validation approach to evaluate the performance of the pro-
posed method and compare it to our baseline model. Both
models are trained for 15 epochs. To simulate censoring, we
used the technique described in (Rahat et al., 2023) and set the
end-study parameter to 200 in this experiment. The simula-
tion resulted in 1140 event (failed) samples and 646 censored
samples with a censoring ratio of 36%.

Figure 3 displays the train (shown with a dashed line) and test
(shown with a solid line) learning curves for the baseline and
the proposed models. The green curves show the proposed
model learning curves, while red is used for the baseline. The
shaded area around the test curves represents the standard de-
viations between the results from the five folds. The stan-
dard deviations of the training curves are not visualized to
avoid overcrowding and maintain readability. The models are
trained until the learning curves flatten after about 15 epochs.
As can be seen, the proposed model outperforms the baseline
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Figure 3. Five-fold cross-validation results for C-MAPSS
dataset.

Table 1. The final performance of two models on the test data
averaged over 5 folds.

Scania Dataset C-MAPSS Dataset
S-MAE 50.32 ± 0.85 29.49 ± 2.64
MAE 60.77 ± 1.31 39.14 ± 2.13

by a significant margin.

Table 1 compared the final performance of two models on the
test data averaged over five folds. The proposed loss func-
tion significantly outperforms the standard mean absolute er-
ror with a margin of 10.45 units in the Scania dataset and with
a margin of 9.65 units for the C-MAPSS dataset. There is no
need to run statistically significant tests as the standard devi-
ation of the models compared to the net improvement level is
little.

4. CONCLUSION

We presented a novel loss and error calculation method that
partially considers censored samples in the context of survival
analysis and remaining useful life prediction. The proposed
loss function can be used with any standard regression error
function and can handle right, left, or interval-censored sam-
ples. To assess the algorithm, we tested it using a flat regres-
sor on two public industrial datasets to predict the remaining
useful life of engine equipment. The results indicated that
the proposed loss function can significantly reduce the model
loss on the test data compared to the baseline. The exper-
iments only looked at the mean absolute error function and
right censored samples. The application of other regression
loss functions with varying censored settings is left for future
work. Another suggested future work is to use the proposed
loss function on advanced types of neural networks, such as

long short-term memory networks (LSTM) or Gated recur-
rent units (GRU), to incorporate temporal information in sur-
vival analysis.
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& Choudhury, S. (2023). Bridging the gap: A compar-
ative analysis of regressive remaining useful life pre-
diction and survival analysis methods for predictive
maintenance. In Phm society asia-pacific conference
(Vol. 4).

Rahat, M., Pashami, S., Nowaczyk, S., & Kharazian, Z.
(2020). Modeling turbocharger failures using markov
process for predictive maintenance. In 30th european
safety and reliability conference (esrel2020) & 15th
probabilistic safety assessment and management con-
ference (psam15), venice, italy, 1-5 november, 2020.

Revanur, e. a., Vandan. (2020). Embeddings based par-
allel stacked autoencoder approach for dimensional-
ity reduction and predictive maintenance of vehicles.
In Iot streams for data-driven predictive maintenance
and iot, edge, and mobile for embedded machine learn-
ing: Second international workshop, iot streams 2020,
and first international workshop, item 2020, co-located
with ecml/pkdd 2020, ghent, belgium, september 14-
18, 2020, revised selected papers 2 (pp. 127–141).

Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008).
Damage propagation modeling for aircraft engine run-
to-failure simulation. In 2008 international conference
on prognostics and health management (pp. 1–9).

Wang, P., Li, Y., & Reddy, C. K. (2019). Machine learning for
survival analysis: A survey. ACM Computing Surveys
(CSUR), 51(6), 1–36.

APPENDIX

SurvLoss Mean Absolute Error (S-MAE) implementation in
Python using TensorFlow. Note that S-MAE receives three
values as input, ground truth observed times, predictions, and
censoring flag that is either True or False.

1 import tensorflow as tf
2

3 def SurvLoss_MAE(y_true, y_pred,
censore_flags):↪→

4 y_true_event = y_true[censore_flags]
5 y_pred_event = y_pred[censore_flags]
6 y_true_censored =

y_true[˜censore_flags]↪→

7 y_pred_censored =
y_pred[˜censore_flags]↪→

8 y_pred_event =
tf.squeeze(y_pred_event)↪→

9 count1 = y_true_event.shape[0]
10 error1 = tf.reduce_mean( tf.abs(

y_true_event - y_pred_event ) )↪→
11 error1 =

tf.where(tf.math.is_nan(error1),
tf.zeros_like(error1), error1)

↪→
↪→

12 y_pred_censored =
tf.squeeze(y_pred_censored)↪→

13 mask = tf.cast(y_true_censored >
y_pred_censored, tf.float32)↪→

14 count2 = tf.reduce_sum(mask)
15 error2 = tf.reduce_mean( tf.abs(

tf.multiply( mask,
(y_true_censored -
y_pred_censored) ) ) )

↪→
↪→
↪→

16 error2 =
tf.where(tf.math.is_nan(error2),
tf.zeros_like(error2), error2)

↪→
↪→

17 survloss_mae = (error1 * count1 +
error2 * count2) / (count1 +
count2)

↪→
↪→

18 return survloss_mae
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