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ABSTRACT

Condition monitoring of gears in gearboxes is crucial to en-
sure performance and minimizing downtime in many indus-
trial applications including wind turbines and automotive.
Monitoring techniques using indirect measurements (i.e. ac-
celerometers, microphones, acoustic emission sensors and
encoders, etc.) face challenges, including the defect inter-
pretation and characterization. Vision-based gear condition
monitoring, as a direct method to observe gear defects, has
the capability to give a precise indication of the starting point
of a potential surface failure, but suffers from the image an-
notations (to train a reliable vision model for automatic de-
fect detection of gears). In this paper, we propose an ac-
tive learning framework for vision-based condition monitor-
ing, to reduce the human annotation effort by only labelling
the most informative examples. In particular, we first train a
deep learning model on limited training dataset (annotated
randomly) to detect pitting defects. To select which sam-
ples have the highest priority to be annotated, we compute
the model’s uncertainty on all remaining unlabeled examples.
Bayesian active learning by disagreement is exploited to esti-
mate the uncertainty of the unlabeled samples. We select the
samples with the highest values of uncertainty to be annotated
first. Experimental results from defect detection of gears in
gearboxes show that with less than 6 times image annotations,
we can achieve similar performances.

1. INTRODUCTION

Detecting defects on gear surfaces is essential for maintaining
the safety, performance, and longevity of machinery, while
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also ensuring quality control and minimizing downtime and
costs, especially for gearboxes in high-power-density ma-
chines (e.g., wind turbines). Many approaches exploit in-
direct measurements acquired from accelerometers, micro-
phones, acoustic emission sensors and encoders to monitor
the damage evolution in gears (Surucu, Gadsden, & Yawney,
2023; Feng, Ji, Ni, & Beer, 2023). However, this indirect way
of gear condition monitoring (e.g., vibration analysis) suffers
from relative indicators and setting good thresholds to accu-
rately track the gear damage (Surucu et al., 2023). Moreover,
the indirect measurements cannot well characterize the de-
fects (e.g., size, location, type) of the gears (Van Maele et al.,
2023). Vision monitoring, which is a direct method to ob-
serve defects has the capability to give a precise indication of
the starting point of a potential surface failure. Gear damage
is often validated using visual inspection with borescopes or
fibre scopes. However, such a system is used in some do-
mains (mainly in wind turbines) as a periodic maintenance
procedure but expensive equipment and permanent machine
stop is needed (Coronado & Fischer, 2015). Recent advances
in computer vision and machine learning have revolutionized
industrial maintenance practices, allowing for the develop-
ment of automated systems capable of visually inspecting
and analyzing gear surfaces. Vision-based approaches uti-
lize cameras and sensors to capture images or videos of gears
during operation, enabling the extraction of meaningful vi-
sual features for condition assessment (Allam, Moussa, Tarry,
& Veres, 2021; Qin, Xi, & Chen, 2023; Miltenović, Rakon-
jac, Oarcea, Perić, & Rangelov, 2022). This shift towards
visual inspection not only facilitates continuous monitoring
but also provides a more comprehensive understanding of
gear health by capturing subtle surface details and anoma-
lies. Massive image data can be acquired by high-speed cam-
eras for visual condition monitoring of gears. Deep learn-
ing, particularly convolutional neural networks (Allam et al.,
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Figure 1. More than 20 minutes were taken by our experts to annotate defect of pitting in a single frame of image. Two types
of defects were annotated for all images: micropitting (red), and pitting (cyan).

2021), has shown remarkable success in image-based tasks,
making it well-suited for gear surface defect detection. How-
ever, to train a reliable vision deep learning model for auto-
matic defect detection of gearboxes, a huge amount of im-
age data typically needs to be annotated, which is expensive
and time-consuming (Alzubaidi, Bai, Al-Sabaawi, & et al.,
2023). For example, it takes more than 20 minutes to anno-
tate all pitting defects in a single frame of image, as shown
in Figure 1. Moreover, image datasets acquired during full
lifetime degradation tests datasets contain many similar ex-
amples that bring no additional information to the diagnos-
tic model. To overcome these problems, the active learning
method was exploited to select the most informative indirect
signals (e.g., vibration, supervisory control and data acquisi-
tion) for gearbox fault diagnosis (Chen et al., 2019) or wind
turbine condition monitoring (Bao, Zhang, Hu, Feng, & Liu,
2023). Recent work on vision-based defect segmentation also
showed that active learning framework can reduce data stor-
age and labeling costs for imbalanced industrial datasets (Li
et al., 2023).

To reduce the cost on manual annotation, this paper proposes
an active learning framework to address the challenge of ac-
quiring labeled data by iteratively selecting the most infor-
mative images for annotation. To the best of our knowl-
edge, this paper is the first study to apply deep active learning
for vision-based gear defect segmentation/detection in gear-
boxes. Specifically, a few images (i.e. around 20) were ini-

tially annotated to train a deep learning model for defect de-
tection. To choose which gear images will be the first prior-
ity to be annotated, we then compute the model’s uncertainty
on all remaining unlabeled examples, where Bayesian active
learning (Atighehchian et al., 2022) by disagreement is ex-
ploited to estimate the uncertainty of the unlabeled samples.
The samples with the highest values of uncertainty will be
chosen to be annotated first. We repeat the image annotations
iteratively (e.g., top 10 images ranking according to the un-
certainty will be annotated in each iteration) until we achieve
a satisfactory performance.

The structure of this paper is as follows. Section 2 introduces
the active learning framework. Section 3 details the experi-
mental data collection and processing. The experimental re-
sults of defect detection on gear flanks are presented and dis-
cussed in Section 4. Finally, the conclusions of this paper are
drawn in Section 5.

2. METHODOLOGY

2.1. Deep segmentation model

To monitor the damage evolution in gears, our solution first
segments the damaged regions (defect) in the acquired im-
ages, then characterizes these damaged regions (change of
size, shape, depth, etc.). A Python library with Neural Net-
works for Image Segmentation based on PyTorch (SMP)
(Iakubovskii, 2019) is exploited for defect segmentation task
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in this paper, as it is an open-source library built on top of Py-
Torch, specifically tailored for semantic segmentation tasks
in computer vision. Semantic segmentation involves assign-
ing a class label to each pixel in an image, thus dividing the
image into distinct regions corresponding to different object
classes. Semantic segmentation is additionally assigning each
detected object a category and discriminates between objects
of the same category. SMP includes an efficient and flexi-
ble implementation of Feature Pyramid Network (FPN) (Lin
et al., 2017) for semantic segmentation tasks, combining low-
and high-resolution features via a top-down pathway to enrich
semantic features at all levels (multi-scale features). By lever-
aging multi-scale features and transfer learning, SMP-FPN
enables accurate and robust segmentation of objects in im-
ages across various scales and contexts, fitting perfectly with
the defect detection in the gears (defect area sizes changing).

The initial training dataset is very limited, since image anno-
tation of these defect in the gears are challenging and time
consuming. Therefore, we leverage pre-trained weights from
models trained on large-scale image datasets such as Ima-
geNet. The pre-trained weight of ResNet-18 (He, Zhang,
Ren, & Sun, 2016), with a convolutional neural network that
is 18 layers deep1, is exploited in our segmentation model.
The pre-trained model has been previously trained on more
than a million images from the ImageNet database and con-
tains the weights and biases that represent the features of
whichever dataset it was trained on. These low-level learned
features are often transferable to different data, including
gears. For example, a model trained on a large dataset of nat-
ural objects (e.g., bird, fish images) will contain learned fea-
tures like edges or textures that would be transferable defects
in gears, which helps improve the performance of the seg-
mentation model (especially with very small training sample
size).

2.2. Active learning for image annotation

Even with a pre-trained model, the segmentation perfor-
mances are still poor, especially for images mixed with two
classes of “micropitting” and “pitting”, as shown Figure 2,
regions of micropitting were misclassified into pitting (poor
performances in confusion matrix), while pitting defects were
misclassified into background. An easy and simple solution
to improve the performances is to add more annotated im-
ages into the training dataset. With a high-speed camera, we
can acquire more than 60 image per second, around 30,000
images for 8 hours. However, image annotation is time con-
suming for our experts (an image shown in Figure 1 may take
20 minutes to annotate), even with advanced annotation tool
CVAT 2. Since it is infeasible for an expert to annotate all
the acquired images, two challenges need to be solved: (1)
which images should be first annotated? (2) how many im-

1https://www.kaggle.com/datasets/pytorch/resnet18
2https://github.com/opencv/cvat

ages should be annotated for a reliable prediction?

Active learning aims to minimize the annotation effort re-
quired by selecting the most informative samples for anno-
tation, i.e., the samples that would most increase the model
accuracy. Active learning is a machine learning paradigm
where a model iteratively queries the user or a human anno-
tator for the labels of the most informative samples. This can
lead to significant savings in time and resources compared to
traditional approaches that rely on labeling large amounts of
data upfront or passive learning from a fixed dataset.

Many active learning approaches have been proposed
(Beluch, Genewein, Nürnberger, & Köhler, 2018; Kirsch,
Amersfoort, & Gal, 2019; Wan et al., 2023), but some of
these methods are either not scalable to large datasets or too
slow to be used in a more realistic environment (e.g., in a
production setup) (Atighehchian, Branchaud-Charron, & La-
coste, 2020). We exploit Bayesian Active Learning by Dis-
agreement (BALD) (Atighehchian et al., 2020) in this paper
to select the most informative samples for annotation. BALD
leverages Bayesian modeling to estimate the uncertainty of
a predictive model and selects samples where the model’s
predictions are most uncertain. In particular, BALD involves
calculating the mutual information between the model’s pre-
dictions and the model’s parameters, given the observed data.
Let D denote the labeled dataset, where D = (xi, yi)

N
i=1

with inputs xi and corresponding labels yi. Let θ represent
the model parameters, and fθ(x) denote the predictive dis-
tribution of the model. The BALD acquisition function is
defined as the mutual information between model parameters
and potential labels of unlabeled data x:

BALD(x) = I[y, fθ(x)]

= H[y]−Ep(fθ(x)|D)[H[y|fθ(x)]]
(1)

Where:

• I[y, fθ(x)] is the mutual information between the label
y and the model’s prediction fθ(x) for an unlabeled data
point x.

• H(y) is the entropy of the label distribution, measuring
uncertainty in the label predictions.

• Ep(fθ(x)|D) is the expectation over the posterior distri-
bution of the model given the current dataset D

• H[y, fθ(x)] is the conditional entropy of the label distri-
bution given the model’s prediction.

Intuitively, samples with higher BALD scores are those for
which the model’s predictions are most uncertain and thus
are most informative for learning. By querying such uncer-
tain samples, the model can learn more effectively with lim-
ited annotated data, leading to efficient data annotation for
model training. In a normal image annotation task, our expert
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(a)

(b)

(c)

Figure 2. Performances on segmentation model trained on a small training dataset. The confusion matrices in the right column
show the performances for three test images, 3 classes were defined by our experts in the images, with class label (color) 0:
background (dark), 1: micropitting (red), 2: pitting (cyan).

annotators will start annotate images according to their order
uploaded into a annotation tools (CVAT) or the project coor-
dinator will assign a certain number of images randomly to
each annotator. Compared to the active learning with random
selection of samples for annotation, the uncertainty score of
active learning with BALD tends to zero when reaching to
300 images in the first iteration, as shown in Figure 3. The
active learning process using BALD is iterative. After anno-
tating the selected samples and incorporating them into the
training set, the model is retrained, and the process repeats.
Over multiple iterations, the model becomes increasingly ac-
curate, and the uncertainty decreases, leading to more con-
fident predictions. The annotation loops will stop until the
end-users satisfy with the performances, which can be eval-

uated by either through a matrix on validation dataset, or by
manually interpretation on randomly selected images (if not
enough validation reference images). Figure 3(b) shows that
the uncertainty score of active learning with BALD tends to
zero after 180 images in the second iteration, while active
learning with random sample selection still needs to annotate
all images to achieve this. By focusing on samples where the
model’s predictions are most uncertain, BALD enables effi-
cient learning with limited annotated data.
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Table 1. Acquired images and manual annotations.

No. Teeth No. Annotated teeth No. Images No. Annotated Images No. Annotated Polygons
54 18 1370 438 1036

Table 2. Data split (within 18 annotated teeth, 438 annotated
images) for active learning.

Initial training dataset Tooth 1 (23 images)
Validation dataset Tooth 15 (31 images)
Test dataset Tooth 5 (31 images)
Pool dataset The other 15 teeth (353 images)

(a) (b)

Figure 3. Uncertainties scores by active learning with: (a)
random selecting samples for annotation, (b) BALD. Itera-
tion 1 means 10 annotated images are added into the initial
training dataset and retrain the model of active learning; iter-
ation 2 means 20 images are iteratively annotated and added
into the initial training dataset.

3. EXPERIMENTS DATA COLLECTION AND PROCESS-
ING

3.1. Data Collection

A dataset containing images of gears subjected to acceler-
ated lifetime tests was provided by ZF Wind Power. While a
brief description of the dataset acquisition is present here, the
reader is referred to the work of (Boemher, 2019) for further
details. The dataset consists of two accelerated lifetime tests,
and was generated on a standard FZG3 gear test rig at ZF
Wind Power. At selected moments of the test, the equipment
was stopped and images of both meshing gears were man-
ually captured using a Canon EOS 500D camera. Figure 4
illustrates the gear degradation of a gear flank throughout the
test. Two pairs of standard FZG C14 spur gears with 16 teeth
(pinion) and 22 teeth (wheel) were tested on each accelerated
lifetime test. In the first test, with total duration of 152h, the
test was stopped 31 times for acquiring the image of the gear
flanks. Meanwhile, on the second test with total duration of
250h, image acquisition was performed 23 times. A prior
qualitative assessment determined that the wheel of the first
test did not developed damage. Hence, the assessed dataset

3Forschungsstelle für Zahnräder und Getriebebau, which denotes the Gear
Research Center at the Technical University of Munich

is composed of 54 teeth: pinion (16) of first test, plus pinion
(16) and wheel (22) of the second test.

3.2. Experimental Setup

The accelerated lifetime testing procedure was designed to
generate micropitting and pitting wear on the visually moni-
tored gear surfaces. As shown in Table 1, 54 teeth were used
in experiments and a large amount of images was acquired
by our camera. After filtering the unclear images (i.e., blurry,
noisy, etc.) and pre-processing, we obtain 1370 images, of
which 438 images were annotated by our experts, as shown in
Table 2. The annotation effort varied according to the amount
of defects in each image, taking approximately 60 hours to
fully annotate the dataset (438 images), and in some cases up
to 30 minutes were required to annotate a single frame.

Two sets of experiments are compared:

• Fixed SMP: train the SMP-FPN models using Initial
training dataset + Pool dataset, totally 16 teeth, 376 an-
notated images;

• Active SMP: train the SMP-FPN model initially on Ini-
tial training dataset (Tooth 1, with 23 annotated images
in total)

Then a number of annotated samples (i.e. 10 in each iter-
ation) selected by active learning from the Pool dataset are
iteratively added into the training dataset, and the model is
retrained. Within active learning segmentation, we will com-
pare different methods to select samples for first priority to be
annotated, such as:

• Active SMP Random: select 10 images randomly in
each iteration;

• Active SMP BALD: select 10 images by using BALD
method in each iteration.

We set some parameters for model training as: batch size:
8, epochs: 100, learning rate: 0.0001. To reduce inherent
randomness in the training of deep networks, each experiment
runs five times for active learning.

For performance evaluations, we exploit the confusion ma-
trix (Powers, 2011) to report the performance of a segmenta-
tion model on a single image. This confusion matrix helps in
understanding where the segmentation model is making er-
rors, whether it is under-segmenting or over-segmenting cer-
tain classes, or if there are misclassifications between classes.
It is an essential tool for evaluating the effectiveness of seg-
mentation algorithms. To evaluate the segmentation models
on the whole test dataset, we exploit mean intersection over
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Figure 4. Example of images collected at selected moments of the test, showing the evolution on the gear degradation with the
test duration.

Figure 5. Mean and standard deviation mIoU of different seg-
mentation methods. Note: the Fixed SMP method is trained
by using fixed number of 376 annotated images; iteration 0
means the model of active learning is trained on Initial train-
ing dataset (Tooth 1 with 23 images); 10 images will be se-
lected in each iteration for annotation and then added into
the training dataset, the model with active learning will be
retrained (for example iteration 3 means 30 images are iter-
atively annotated and added into the Initial training dataset).
We repeated the active learning segmentation experiments 5
times.

union (mIoU), which measures the overlap between the pre-
dicted segmentation and the ground truth segmentation for
each class or object in the image (with Python implementa-
tion4). The value of the metric ranges from 0 to 1, higher
value indicates better performance on segmentation.

4. RESULTS AND DISCUSSIONS

Figure 5 compares the performances of segmentation models
trained by Fixed SMP and Active SMP. The changes of the
predicted segmentation maps by adding more annotated im-
ages into the training dataset can be found in Figure 6. We
take several test images as examples and show the segmenta-
tion results and their confusion matrices by using Fixed SMP
and active SMP BALD in Figure 7.

Based on Figure 5, we can find that with 53 annotated images
4https://lightning.ai/docs/torchmetrics/latest/segmentation/mean iou.html

(i.e. 3 iterations), active learning with BALD can achieve
similar performances as Fixed SMP (where more than 360
annotated images are used for training), which requires 6
times less annotated images for training, reducing more
than 6 times the manual annotation effort. Moreover, Ac-
tive SMP BALD performs better than Active SMP Random,
especially for the first 5 iterations, when a small number of
images are selected for annotations. This means that BALD
can select the most informative images (out of a large dataset)
for annotation when limited manpower is available for an-
notation. The model can learn more effectively with fewer
BALD selected images, leading to efficient data annotation
for model training. As more annotated images (more than
70 annotated images) are added into the training dataset, Ac-
tive SMP Random converges to similar performances as the
method of Fixed SMP, indicating the redundancy in the im-
age annotations. This is because images acquired during full
lifetime degradation for multiple teeth contain many similar
defects that bring no additional information for model train-
ing.

The segmentation models with active learning becomes more
stable, as more annotated images added into the training
dataset, as indicated by the changes of standard deviation
in Figure 5. However, there are scenarios where increasing
the training sample size (by adding more annotated images)
might seemingly degrade segmentation performance, defects
of “micropitting” appear in Figure 6-7 (Fixed SMP for the
third image) as more annotated images added. This may be
due to overfitting, the model should generalize better with
more training samples (that have similar distributions as the
test images). One solution is to add more images that are rep-
resentative of different classes into the pool dataset for active
learning.

Compared to the human expert annotations, the segmen-
tation results predicted by deep learning models (even for
Fixed SMP) need to be improved, regions of “micropitting”
and “pitting” are misclassified into background, whereas
some background regions are also misclassified into “micro-
pitting”, as indicated by the confusion matrices in Figure 7.
Challenges remain in predicting very tiny ”pitting” defects,
as well as images mixed with big “micropitting” defects and
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Figure 6. Prediction map changes as adding more annotated images (selected by BALD) into training dataset. 10 images will
be annotated in each iteration and then added into the training dataset.

Expert annotations Fixed SMP Fixed SMP active SMP BALD active SMP BALD

Figure 7. Performances on segmentation by fixed training number VS. active learning. Each row has one test image, column
1 shows highlighted annotated images by experts, column 2 and 3 show predicted segmentation maps and confusion matrices
by Fixed SMP, column 4 and 5 are predicted segmentation maps and confusion matrices by Active SMP BALD with three
iterations (53 training images).
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tiny ”pitting” defects.

5. CONCLUSIONS

This paper focus on training a reliable deep learning segmen-
tation model for defect detection in gears using less image
annotations. In particular, Bayesian Active Learning by Dis-
agreement (BALD) was exploited to select the most informa-
tive images for annotation iteratively until the satisfied perfor-
mances were achieved. Experimental results show that with
less than 6 times image annotations, we can achieve simi-
lar performances, leading to significant savings in time and
resources compared to traditional approaches that rely on la-
beling large amounts of data upfront. However, gear surfaces
exhibit a variety of defect types and patterns, and the suc-
cessful identification of these defects requires a model capa-
ble of learning intricate features and subtle variations. The
initial results in this paper can be extended by considering:
(1) uncertainties from human annotations (annotations may
be different by different human annotators in Figure 8), (2)
imbalance in class distribution (some classes have more an-
notations than the other classes), (3) data augmentation to in-
crease diversity in the training image dataset, (4) validation of
the active learning methods on wider applications using some
public datasets (e.g., ball screw drive surface defect dataset
(Schlagenhauf & Landwehr, 2021)) for more comprehensive
comparisons.
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