
 1 

Maintenance decision-making model for gas turbine engine 

components 

Hongseok Kim1, and Do-Nyun Kim2 

1Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea 

saint4561@snu.ac.kr 

2Department of Mechanical Engineering, Institute of Advanced Machines and Design, and Institute of Engineering Research, 

Seoul National University, Seoul 08826, Republic of Korea 

dnkim@snu.ac.kr 

 

 
ABSTRACT 

When designing gas turbine engine components, the 

inspection and maintenance (I&M) plan is prepared using the 

safe life. However, the I&M plan determined using safe life 

may be costly since all components are replaced at designated 

life. Therefore, it is important to make maintenance decisions 

considering the time-dependent deterioration process of gas 

turbine engine components for a cost-saving I&M plan. In 

this study, we proposed a maintenance decision-making 

model for gas turbine engine components based on a partially 

observed Markov decision process (POMDP). Using 

dynamic Bayesian networks, a decision-making model 

integrating a reliability analysis model, and a decision model 

for I&M planning was constructed. The signal amplitude data 

resulting from non-destructive inspection according to 

operation hour was used as partially observed data. The total 

cost obtained from the proposed model were compared with 

the results using a fixed I&M plan. The proposed model 

resulted in more cost-effectiveness I&M planning within 

affordable risk levels by considering the interaction between 

risk cost and I&M cost.  

1. INTRODUCTION 

Ensuring the safety of the gas turbine engine is very 

important in aircraft operation. There are two traditional 

inspection & maintenance (I&M) strategies to operate 

aircraft safely; safe life and damage tolerance design. The 

safe life method (C. H. Cook et al., 1982) replaces all 

components after the design allowable life, and time-based 

maintenance (TBM) (Bousdekis et al., 2015) inspects and 

repairs all parts at predetermined intervals. However, 

traditional I&M methods require high costs since I&M 

actions are planned without the consideration of the 

components’ condition. For this reason, a condition-based 

maintenance method that emphasizes combining data-driven 

reliability models with condition-monitored data was 

developed (Alaswad & Xiang, 2017). 

Markov decision process (MDP) is one of the widely used 

methodologies for decision-making models with the 

condition-based maintenance (CBM) method. MDP takes 

actions at each stage to maximize the reward under perfect 

observation of components state. However, there are 

limitations for MDP that perfect observation of the 

components state is unrealistic (Papakonstantinou & 

Shinozuka, 2014b). Partially observable MDP (POMDP) 

quantified the uncertainty of imperfect observation by 

estimating the belief of state from the information obtained 

with the probability of observation. (Papakonstantinou & 

Shinozuka, 2014b, 2014a) determined the optimal life-cycle 

policy of concrete structures by implementing the POMDP. 

(Memarzadeh et al., 2014) proposed the algorithm for 

approximate learning and planning the Bayes-adaptive 

POMDP (BA-POMDP) framework to find the optimal 

maintenance plan of wind farms. 

Morato et al. (Morato et al., 2020) incorporated the dynamic 

Bayesian networks (DBNs) and POMDP to obtain optimal 

I&M strategy for deteriorating structure. They modeled the 

deterioration model based on time-invariant parametric 

DBNs, and an optimal I&M plan was generated by 

minimizing the total cost of inspection, maintenance, and 

reliability. Hlaing et al. (Hlaing et al., 2022) presented the 

non-stationary policy for offshore wind tubular joints by 

integrating the Bayesian networks and POMDP. They 

estimated the probability of failure (POF) using the DBNs 

and obtained optimal I&M policy via POMDP. 

In this work, we proposed the maintenance decision-making 

model for gas turbine engine components. DBNs and 

POMDP were integrated to get optimal I&M policy. The 

fatigue crack growth model was implemented for the 
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deterioration of gas turbine engine components, probability 

of detection (POD) curve which is a function of the crack size 

was used for the inspection model. The remainder of this 

paper is organized as follows. The decision-making model for 

gas turbine engine components is described in “Methodology” 

section. In “Numerical results”, the optimal I&M policy 

obtained using the proposed POMDP model is presented. In 

the final section, the conclusions of this study are 

summarized. 

2. METHODOLOGY 

2.1. PARTIALLY OBSERVABLE MARKOV DECISION 

PROCESS 

MDP provides the framework that finds the optimal policy 

for sequential decision-making problems, as represented in 

Fig. 1. In Fig. 1, the circles are random state nodes, the 

rectangular are decision nodes, and the polygons are reward 

nodes. MDP determines the optimal policy that maximizes 

the expected reward value by using the Bellman equation as 

follows: 

 
𝑉∗(𝑠) = max

𝑎∈𝐴
[𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉∗(𝑠′)𝑠′∈𝑆 ] (1)

  

where s is states of the system, a is the set of possible actions, 

and T(s, a, s’) is transition matrix which is the probability of 

transit from current state st to next state st+1, R(s, a) is the 

reward when doing action a with current state st, and γ is 

discount factor employed when the problem is infinite 

horizon planning case (Morato et al., 2019). However, since 

MDP has the limitation of perfect observation, POMDP 

determines the optimal policy according to the belief state 

estimated from imperfect observation. In Fig. 2, the belief 

state st is updated from the information of component state 

obtained at the inspection node zt, The optimal policy is 

determined at POMDP as: 

 

𝑉∗(𝑠) = max
𝑎∈𝐴

[𝑏(𝑠)𝑅(𝑠, 𝑎) + 𝛾∑𝑃(𝑧|𝑏, 𝑎)𝑉∗(𝑏′)

𝑧∈𝑍

] (2) 

 

where z is observation, and b is belief state of the component. 

The belief state b with action m at stage n is mbn  = bn ˟ Am, 

the belief state bn+1 at the stage n+1 is updated with 

degradation model D; bn+1 =  mbn ˟ D (Faddoul et al., 2013). 

 
Figure 1. Graphical model for Markov decision process 

 

 

Figure 2. Graphical model for Partially observable MDP 

 

2.2. DETERIORATION AND INSPECTION MODEL 

Paris’ law was used for fatigue crack deterioration model of 

gas turbine engine component as: 

 
𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 (3) 

 

where a is the size of crack, N is the cycles of loads, ΔK is the 

stress intensity factor range which is function of crack size, 

shape, and stress range Δσ, and C and m are the constants 

related to material property.  

Eddy current inspection (ECI), one of the non-destructive 

inspection (NDI) methods, was used as partial observation 

model to update the belief state of the gas turbine engine 

component. The POD of ECI depends on the crack size and 

the detection threshold (Hlaing et al., 2022). The size of the 

crack is estimated from the ECI signal amplitude in Eq. (4), 

and the POD is calculated from Eq. (5). Figure 3 presents the 

relation curve between the signal amplitude and the crack 

length, and Fig. 4 is the probability of detection (POD) 

estimated from the detection result data of NDI personnel (D. 

Lee & Kwon, 2023). The a50/95 = 1.123 in Fig. 4 means that 

the detectable crack size at a 50% probability with 95% 

confidence is 1.123mm. The size of the crack is estimated 
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from the ECI signal amplitude in Eq. (4), and the POD is 

calculated from Eq. (5). 

 

�̂� = 𝛽0 + 𝛽1𝑎 + 𝜀 (4) 

𝑃𝑂𝐷(𝑎) =
𝑎a𝛾

1 + 𝑎a𝛾
(5) 

 

 
Figure 3. Relation between ECI signal and crack size 

 

 
Figure 4. Probability of detection curve 

 

2.3. DECISION-MAKING MODEL BASED ON DYNAMIC 

BAYESIAN NETWORKS 

The maintenance decision-making model based on Dynamic 

Bayesian Networks (DBNs), depicted in Fig. 5 was 

developed by incorporating the deterioration, inspection 

model, and POMDP described above. In Fig. 5, the initial 

nodes have no parent nodes, the static nodes are time-

independently invariant nodes, the observed node obtains 

evidence, the functional nodes formulate the crack length 

distribution and reliability, the decision nodes decide for 

actions, and the cost of the decision incurred in the utility 

nodes. The continuous operation time is discretized into time 

slices with uniform intervals.  

 

 

Table 1. Prior probability distributions of initial nodes 

Var Distribution Mean SD Corr. 

m, 

ln(C) 
Binormal 

(2.5, 

log(5.2×10-

12) 

(0.3, 

0.47) 
-0.9 

Δσ 

(MPa) 
Normal 40 5 - 

a0 

(mm) 
Lognormal -1.0 0.001 - 

ar 

(mm) 
Lognormal -1.0 0.001 - 

Yn 

(%) 
Normal 3.29 2.86 - 

 

First, the crack length distribution at time slice t-1 (𝑎𝑡−1) is 

estimated in the deterioration model using Δσ, m, initial crack 

length at time slice t-1 (𝑎𝑡−1
0 ). Next, 𝑎𝑡−1 is updated to 𝑎𝑡−1

∗  

based on the actions determined by the signal amplitude node 

Yt-1, noise amplitude Yn, decision nodes for inspection DZ, the 

threshold of inspection Dth, and maintenance DM. The 

updated crack length distribution at time slice t-1 𝑎𝑡−1
∗  is used 

as initial crack length distribution 𝑎𝑡
0 at time slice t. The prior 

distributions of initial nodes are presented in Table 1. 

The actions determined in each decision node are as follows: 

The inspection decision determines whether to perform an 

inspection or not. The cost of the inspection is obtained in 

inspection utility node UZ depending on the result of the 

inspection decision. 

 - No-inspection: the crack length states transit according to 

the deterioration model. 

 - Inspection: binary inspection result is obtained at node Z as 

‘detected’ or ‘not detected’. When the inspection result is 

‘detected’, the probability of failure increases as the belief 

state of crack length larger than the inspection threshold 

increase. On the other hand, the probability of failure 

decreases since the crack length distribution smaller than the 

inspection threshold rise in the case of ‘not detected’.  

The quality of NDI is determined in the threshold decision 

node. The inspection quality is high as the threshold is lower. 

If the signal amplitude obtained at the cracks is larger than 

the inspection threshold, those cracks are detected at 

inspection result node Z. There is no cost for threshold 

decision. 

There are binary options in the maintenance decision node; 

repair or do-nothing. The maintenance utility node UM 

calculates the cost of maintenance. 

- Do-nothing: there is no maintenance action planned in this 

case, the crack length state evolves according to the 

stochastic deterioration process. 

- Repair: perfect maintenance action is performed. The 

crack length distribution 𝑎𝑡−1
∗  is replaced by the belief state 

of repair crack 𝑎𝑟 . 
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The total cost at time t is calculated by summing the cost of 

the failure, inspection, and maintenance determined 

according to the results of each decision node as follows: 

 

𝐶𝑇(ℎ) = ∑[𝐶𝐼(𝑡)𝛾 + 𝐶𝑀(𝑡)𝛾 + 𝑃𝑓(𝑡)𝐶𝑓(𝑡)𝛾]

𝑡𝑛

𝑡=𝑡0

(6) 

 

where CT is total cost, h is pre-defined heuristic schedule, tn 

is total time horizon, CI is inspection cost, CM is maintenance 

cost, Pf is probability of failure  estimated at node R, and Cf 

is failure cost determined in utility node UR. The CI and CM 

is not incurred in the case of no-inspection and do-nothing, 

respectively. The optimal actions were determined by 

minimizing the total cost. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Maintenance decision-making model for gas turbine components 

3. NUMERICAL RESULT 

A maintenance decision-making model based on POMDP 

was constructed for the J85 gas turbine engine compressor 

first-stage rotor blade for the F-5 aircraft. The J85 gas turbine 

engine compressor first-stage rotor blade is mounted with a 

disc using tangs. The stress concentration at the center tang 

occurred due to contact force between the retainer pin and an 

inner surface of the tang (B. W. Lee et al., 2011). Since the 

fracture at the center tang may occur due to the fatigue crack 

initiated from fretting damages by contact stress, it is 

important to optimize the I&M planning of the blade center 

tang. 

 

 
Figure 6. J85 engine compressor first-stage blade 
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3.1. DISCRETIZATION SCHEMES FOR MODEL PARAMETERS 

Discretization of each random variable is necessary in 

POMDP since the probability of partial observation is 

discretized (Morato et al., 2020). The accuracy of POF and 

computational efficiency are affected by the discretization 

scheme. The discretization schemes for each variable in Fig. 

5 are presented in Table 2. The random variables were 

discretized with a small number of discretization states for 

computational costs. 

 

Table 2. Discretization schemes 

Var Interval Boundaries 

a, ar 0, exp(log(0.01):(log(3)-log(0.01))/4:log(3)), inf 

m 0, log(exp(1):(exp(3.9)-exp(1))/4:exp(3.9)), inf 

Δσ 1:60/4:60, inf 

Yn, Y 0:6:100 

 

3.2. OPTIMAL POLICY BASED ON DECISION-MAKING 

MODEL 

The overall cost of utilizing the proposed decision-making 

model was compared with that of time-based maintenance 

(TBM), a traditional I&M strategy. In TBM, NDI is 

conducted for every time slice, and when a crack is detected, 

a perfect repair action is performed. On the other hand, the 

decision to execute NDI and repair is made for each time slice 

in the most cost-effective way in the decision-making model. 

The parametric study for the costs of inspection, maintenance, 

and failure was conducted to specify the effects of actions. 

The state of the measured signal amplitude Y was imported 

from the actual measured data at each time slice (D. Lee & 

Achenbach, 2016). If the inspection threshold is smaller than 

the measured signal amplitude, it is observed that a crack is 

detected, and a perfect repair action is performed in the TBM 

strategy. Otherwise, in the POMDP strategy, it is determined 

whether to perform inspection and maintenance actions for 

each time slice depending on the total cost. 

The ratio of total cost between TBM and POMDP depending 

on the NDI threshold over 5 time slices is shown in Fig. 7. 

The evidence indicated the crack state progressed from state 

2 to state 5 in each time slice, with failure occurring at state 

6. After repair action, the crack state returned to state 2. RMI 

is the ratio of cost between inspection and maintenance, RFM 

is the ratio of cost between failure and maintenance, and RC 

is the total cost ratio between TBM and POMD as:  

 

𝑅𝑀𝐼 =
𝐶𝑀
𝐶𝐼

, 𝑅𝐹𝑀 =
𝐶𝐹
𝐶𝑀

(7) 

 

𝑅𝐶 = 100
𝐶𝑃𝑂𝑀𝐷𝑃 − 𝐶𝑇𝐵𝑀

𝐶𝑇𝐵𝑀
(%) (8) 

 

Where 𝐶𝑀  is the cost of maintenance, 𝐶𝐼  is the cost of 

inspection, 𝐶𝐹 is the cost of failure, 𝐶𝑃𝑂𝑀𝐷𝑃 is total cost for 

POMDP, and 𝐶𝑇𝐵𝑀 is that of TBM. The RMI = [10, 20, 30, 40, 

50], and RFM = [100, 50, 25, 20] were used to estimate the 

total cost. The 𝐶𝑃𝑂𝑀𝐷𝑃  is more cost-effective than 𝐶𝑇𝐵𝑀 

when the total cost ratio is a negative value; conversely, if 

this ratio is a positive value, the 𝐶𝑇𝐵𝑀 is less expensive than 

𝐶𝑃𝑂𝑀𝐷𝑃. 

 

 
 

Figure 7. Ratio of total cost between TBM and POMDP 

 

The cost of the POMDP strategy is cheaper than TBM in all 

RMI and RFM when the threshold of inspection is lower than 4. 

This implies that a high-quality inspection is crucial for an 

I&M strategy based on POMDP. When the inspection quality 

is high (Dth = 2, 3), the crack state is identified early. This 

enables decisions on whether to perform inspections and 

repairs based on the state of crack growth. Consequently, the 

POMDP strategy conducts fewer inspections and repairs 

compared to the TBM strategy, and no preventative repairs, 

resulting in lower total costs as illustrated in Fig. 8.  

When Dth = 4, the crack state is detected before it grows near 

the limit state. In the TBM strategy, after detecting the crack, 

repairs are performed to maintain a low probability of failure. 

The inspections following repair prevent the crack from 

propagating toward the limit state, resulting in a low cost of 

failure. On the other hand, in the POMDP strategy, when the 

RMI is low, more repairs are carried out than TBM due to 

lower inspection quality. When RMI is high, the probability of 

failure increases because inspections are not performed after 

repairs, leading to a higher total cost. 

Also, the ratio of total cost Rc increases as the inspection 

threshold decreases. Exceptionally, when using the TBM 

strategy with Dth=5, Rc increases. This occurs as the crack is 

detected in state 5, which is proximate to the failure state, as 

depicted in Figure 8(a). Consequently, the estimated 

probability of failure is relatively high, leading to an 

increased total cost. On the other hand, when using the 

POMDP strategy, repairs were carried out preventatively 
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even if the inspection result indicated ‘No-detected’ as shown 

in Fig. 8(b), owing to the limited inspection quality. 

Therefore, when the inspection threshold is 5, the total cost 

of the POMDP strategy was relatively lower than that of 

TBM since the failure cost of the POMDP strategy was low 

through preventive repairs.  

Fig. 8 presents the optimal actions determined by using TBM 

and POMDP strategy depending on each RMI and RFM during 

5 time slices. There are two color blocks to describe the 

results of the decision at each time slice; the left is inspection, 

and the right is maintenance. The action types of inspection 

are ‘No-inspection’ (gray colors), ‘No-detected’ (sky colors), 

and ‘Detected’ (blue colors). The red colors mean the case of 

a ‘Repair’ action, and the orange colors indicate a ‘Do-

nothing’ action. 

In the context of inspection and maintenance, Fig. 8 

illustrates how the cost ratio impact the frequency of 

inspection and maintenance. Specifically, when the cost ratio 

of inspection and maintenance RMI is relatively 

small compared to the cost of failure and maintenance RFM 

(Fig. 8(b), (c)), more frequent inspection were performed. 

Since the cost of the failure is expensive compare to 

inspection and maintenance, it is more cost-effective to 

identify the state of the crack length early by inspecting 

frequently. For example, the optimal decision for inspection 

of RMI=10, and RF=100 was to inspect every time slice, 

similar to the TBM strategy.  

In the case of high RFM, and high Dth, repair action was 

performed even in the case of ‘No-detected’. Since the cost 

of maintenance is cheaper than that of failure, and the result 

of inspection is uncertain, this policy is optimal to reduce the 

POF. On the other hand, when the information quality of 

inspection was high (Dth≤3), repair action was not performed 

immediately, even though the result of the inspection was 

‘Detected’. In this case, the decision to repair or not can be 

determined by the condition of the crack, not preventatively. 

When RMI is larger than RFM (Fig. 8(d), (e)), the cost of 

maintenance becomes expensive. The preventive inspections 

and maintenance were reduced due to high-cost maintenance. 

Therefore, the inspection was not performed at the first time 

slice for all inspection thresholds. The total cost ratio Rc was 

highest when RMI=50, RFM=20, and Dth =2, as presented in 

Fig. 7. The findings from Figures 7 and 8 indicate that an 

increase in inspection quality and a decrease in the cost ratio 

between maintenance and repair enhance the effectiveness of 

the maintenance decision-making model based on POMDP. 

 

 
(a) TBM 

 

 
(b) POMDP (RMI=10, RFM=100) 

 

 
(c) POMDP (RMI=20, RFM=50) 

 

 
(d) POMDP (RMI=40, RFM=25) 

 

 
(e) POMDP (RMI=50, RFM=20) 

 

Figure 8. Optimal actions of TBM and POMDP 
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4. CONCLUSION 

In this work, we proposed a maintenance decision-making 

model for gas turbine components based on POMDP. DBNs 

and POMDP were integrated to construct the maintenance 

decision-making model. The fatigue crack growth model was 

implemented for deterioration of gas turbine engine 

components, POD curve was used for the inspection model. 

The total cost of POMDP was lower than that of TBM when 

inspection quality was high. Also, it was proven that the 

maintenance decision-making model is more effective than 

TBM as the cost ratio between maintenance and repair is 

smaller by parametric study of cost ratio. 

Our future work will focus on complicate inspection and 

maintenance actions. The various options for inspection and 

maintenance actions will improve the decision-making model 

more elaborately. 
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