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ABSTRACT 

Maintenance decisions range from the simple detection of 

faults to ultimately predicting future failures and solving the 

problem. These traditionally human decisions are nowadays 

increasingly supported by data and the ultimate aim is to 

make them autonomous. This paper explores the challenges 

encountered in data driven maintenance, and proposes to 

consider four aspects in a maturity framework: data / decision 

maturity, the translation from the real world to data, the 

computability of decisions (using models) and the causality 

in the obtained relations. After a discussion of the theoretical 

concepts involved,  the exploration continues by considering 

a practical fault detection and identification problem. Two 

approaches, i.e. experience based and model based, are 

compared and discussed in terms of the four aspects in the 

maturity framework. It is observed that both approaches yield 

the same decisions, but still differ in the assignment of 

causality. This confirms that a maturity assessment not only 

concerns the type of decision, but should also include the 

other proposed aspects.  

1. INTRODUCTION 

Von Leibnitz already dreamt of a universe where decision 

problems were solved by computations rather than by furious 

debates. Centuries later, it is much better understood that Von 

Leibnitz’s dream cannot come true. So, one may compute 

many decisions, but not any decision. Where computed 

engineering decisions fail, maintenance decisions are 

typically triggered. Unsurprisingly, maintenance decisions 

are often hard to compute, or they may even be fundamentally 

incomputable. However, an inability to compute a decision 

does not imply that such a decision cannot be supported by 

computations. This paper will present a maturity framework 

for computational maintenance decision support.  

In this framework, maturity grows as more (advanced) 

decisions in a maintenance control loop are computed. 

However, the presented framework not only considers the 

type of decision, as in existing data maturity models, but 

relates maturity also to: (i) the translation of reality to data 

(vice-versa), (ii) the computability (with models) of the 

decisions involved and (iii) the causality of the relations 

obtained. A case study will be used to explore the attainable 

maturity starting from the lowest level. An experience based 

and a model based approach will be attempted, which both 

will prove to take the correct decision for  an arbitrary 

validation set. Still, decision makers should care about the 

approach as causality is managed differently. In the 

experience based approach, causality will be assigned 

afterwards. In the model based approach, causality is 

inherent, as a model that is posited as true is solved. Further, 

it is observed that it is impossible to compute a true model 

from only a history of measurements. Therefore, a history of 

measurements will be indecisive about the approach. Still, the 

engineering profession established a plethora of guidelines 

that have often proved to be correct. As these engineering 

guidelines strengthen (a suspicion of) causality for both 

approaches, the attainable maturity in data driven 

maintenance may rise at an acceptable risk. 

This paper is organized as follows. Section 2 will introduce 

the four basic aspects of the framework to assess the maturity 

in data driven maintenance. Section 3 will portray a typical 

construction of two different autonomous fault detection and 

isolation methods (the first step in maturity). Section 4 will 

demonstrate fault detection and isolation in an iconic case 

study. Finally, section 5 will discuss the results and section 6 

will present the conclusion. 

2. BACKGROUND 

This section will introduce the four basic elements that jointly 

determine the maturity in data driven maintenance and thus 
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constitute the proposed framework. Section 2.1 addresses the 

challenges in computing a “real” decision, section 2.2 will 

discuss the challenges in using (engineering) models to 

compute  decisions. Then section 2.3  will relate the flow of 

the maintenance control loop with a conventional data 

maturity model. Finally, section 2.4 discusses the difference 

between observed associations and causality, and its effect on 

decision making. 

2.1. Obstructions in computing “real” decisions 

Data (Latin: givens) are input symbols to a syntactical formal 

language. Hilbert dreamt of a formal language that could 

provide a complete, consistent, and decidable foundation of 

mathematics. Gödel (1931), Church (1936) and Turing 

(1937) showed that such a formal language is nonexistent and 

the dreams of Von Leibnitz and Hilbert were destroyed. This 

means that some problems are fundamentally incomputable. 

Moreover, even the most potent computing devices may just 

fail to compute a problem in time. Therefore, problems that 

are computable in principle may be too complex to compute 

in practice. 

A formal language becomes meaningful by assigning a truth 

value. Then, a computation may become similarly 

meaningful and it may eventually represent some reasoning 

about truth or falsehood. Evidently, Von Leibnitz similarly 

hoped to compute meaningful decisions as he hoped to settle 

legal disputes this way. Then, a computed decision involves 

both syntax and semantics (Figure 1).  
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Figure 1. Framework for computing “real” decisions. 

 

Engineers are not necessarily orthodox positivists but the 

engineering profession is not just about modelling, it also 

includes building. To circumvent or at least alleviate 

philosophical controversy, the “reality” in Figure 1 could also 

be seen as merely a user interface by skeptics who doubt the 

existence of space-time (Hoffman, 2019). 

Any vertical translation in Figure 1 involves an arbitrary 

human choice, i.e. facts are made (Latin: facere) and 

information is shaped (Latin: formare). So, facts and 

information do not follow from some computable coding 

operation, they involve arbitrary human choice. For example, 

observing is not just a mechanical decoding of sound or light 

waves, it also involves a specific interpretation. Likewise, 

predicting involves more than just computing an outcome 

(100101…).  

In conclusion, computing a “real” decision may be 

impossible because (i) it is fundamentally incomputable, (ii) 

it is too complex to compute in time, or (iii) the translation 

between “reality” and the syntactical computation is 

philosophically controversial. 

2.2. Maintenance decisions are incomputable 

A decision (Latin: cut-off) is the elimination of outcomes that 

would have occurred otherwise. A computation is a 

deterministic discrete operation that can be performed on a 

Turing Machine. In a way, a Turing Machine decides as it 

halts at a particular outcome (while eliminating all other 

candidate outcomes). So, syntactical decisions include the 

acceptance or rejection of a string as a well formed formula 

in a formal language. However, “real” decisions include a 

choice that causes a specific outcome, rather than any other 

outcome. 

The computation of a “real” decision requires translations 

between a syntactical Turing Machine and “reality” (Figure 

1). These translations are essential for data driven 

maintenance where computations from syntactical data 

should support “real” maintenance decisions. Generally, the 

engineering profession established a high degree of common 

sense regarding these potentially controversial translations. 

This common sense has been made explicit in guidelines that 

specify the computation of the quality of a design (CEN, 

2007), (IACS, 2024). Quality is defined by ISO (2015): 

The degree to which a set of inherent characteristics 

of an object fulfils requirements.  

So, quality reflects a margin between measurable inherent 

characteristics and subjective requirements. So, quality is not 

just a measurable “real” variable  (Figure 1), rather quality is 

the result of an arbitrary translation between a measurable 

reality and some subjective aspiration. Engineers showed a 

great ability to compute outcomes that (often) appeared to 

satisfy quality in practice. Also in this case, computations 

from syntactical data support “real” engineering decisions. 

The Church-Turing thesis states: 

If something is computable on a discrete device, 

then it is also computable on a Turing Machine. 

This implies that up until now, no one has been able to 

construct a discrete computing device for which an 

equivalent Turing Machine does not exist. Still, some 

computations that are computable on a Turing Machine in 

principle, may be too complex to compute on a practical 

device in time. Engineers showed great ability in constructing 

devices that autonomously compute “real” decisions as 

feedback control loops are ubiquitous. So, Von Leibnitz’s 
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dream often became attainable after all. As an example, the 

feedback controller (C) shown in Figure 2 autonomously 

computes an input signal (U) to the process (P) that yields an 

output (Y). This computation depends on the error (W) 

between the output (Y) and the set point.  

Still, the delimitations from section 2.1 remain unresolved 

implying that (i) engineering guidelines are occasionally 

improved by lessons learned from “real” disasters, or that (ii) 

the feedback control loop occasionally oscillates away from 

the set point. Where engineering computations fail, 

maintenance is often triggered. Maintenance is defined by:  

The combination of all technical and administrative 

actions, including supervision actions, to retain or to 

restore an item’s quality. 

This definition paraphrases CEN (2019) and IEC (2015). So, 

maintenance is considered as a decision to act, with the 

intention to cause a quality effect. Figure 2 shows a 

maintenance control loop that should correct the faults of an 

autonomous feedback control loop (Tinga et al., 2023). The 

maintenance control loop is typically triggered by the 

detection of a fault, i.e. an observation of some anomaly. 

Fault isolation is the assignment of a specific fault label that 

assists in the choice of the recovery action. Fault 

identification is an assessment of the (evolution in the) 

magnitude of the fault. Prognostics is an estimation of the 

remaining useful life. Finally, recovery is an action that 

causes quality. This maintenance control loop follows a Fault 

Detection and Isolation (FDI) convention (Isermann, 2006). 

Fault 

identification
Fault isolation Fault detection

Recovery

C PW
Y

Disturbance

U

Prognostics

 

Figure 2. Autonomous control loop extended with 

maintenance control. 

 

Although the maintenance control loop is thought to be 

human involved (as indicated by the person symbols in 

Figure 2), parts of it may still be computed. For example, the 

fault detection and the fault isolation may be computed before 

a human takes over. Then, this human may not need to 

troubleshoot the anomaly as this has been computed 

autonomously. 

In conclusion, engineers have developed a great ability to 

compute “real” decisions and to construct devices that could 

similarly do so autonomously. Still, engineering 

computations occasionally fail which triggers human 

involved maintenance. Therefore, computing autonomous 

maintenance is challenging, but parts of the maintenance 

control loop may still be supported by computations. For that 

reason, the title of this paper refers to data driven 

maintenance rather than autonomous maintenance. 

2.3. Maturity in data driven maintenance 

Data maturity models are widely researched (Al-Sai et al., 

2023) and applicable. Figure 3 shows a commonly adopted 

data maturity classification that includes monitoring, 

understanding, predicting, and deciding. 

Monitor

Understand

Predict

Decide

 

Figure 3. Data maturity model. 

 

A comparison of the data maturity model in Figure 3 with the 

maintenance control loop in Figure 2 reveals that data 

maturity grows as more steps in the maintenance control loop 

are being computed, i.e. monitoring corresponds with fault 

detection, understanding with fault isolation & identification, 

predicting with prognosis and deciding with recovery.  

Tiddens et al. (2023) observed a relation between an aspired 

maturity level and the required measurements. This paper 

intends to be more precise about this relationship by 

comparing two computations of fault detection and isolation 

that both provide a correct decision for a specific set of 

measurements. Still, these two computations will differ in 

attainable maturity as they translate to “reality” in a different 

way (Figure 1), i.e. the “real” causal implication of 

corresponding syntactical computations will be shown to 

differ. Then, the attainable maturity does not just rely on 

measurements, but also on a subjective translation. 

2.4. Causality 

This section will introduce two ways to address causality 

when computing a “real” decision (e.g. in the case study in 

the next section). In the experience based approach, a 

statistical association is computed and the causal assumptions 

are made separately. In the model based approach, the effect 

of setting a variable in an engineering (design) model of 
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equivalences is computed and the causality follows from the 

deterministic process of the computation itself. 

An equivalence is symmetrical, reflexive, and transitive: 

 𝑌 = 𝑎𝑋 + 𝑏 (1) 

A causality is only transitive: 

 𝑌 ← 𝑎𝑋 + 𝑏 (2) 

In Eq. (1) swapping the terms around the equivalence symbol 

does not change the meaning of the expression. However, in 

Eq. (2) swapping the terms around the arrow changes the 

meaning of the expression from “𝑋 causes 𝑌” to “𝑌 causes 

𝑋 ”. It is important to realize that statistical associations 

retrieved from measurements are equivalences, but they do 

not imply causality.  

Decisions rely on causality rather than on associations as a 

choice should bring about an effect that would not or less 

likely occur otherwise. To validate an individual decision, the 

effect of each choice would have to be observed whereas only 

the effect of the choice made is observable. Generally, the 

problem of observing the causal interactions in an individual 

experiment is that the counterfactuals remain unobservable. 

Therefore, the interventional distribution 𝑃𝑟(𝑌|𝑑𝑜(𝑋)) may 

wildly differ from the observed distribution 𝑃𝑟(𝑌|𝑋).  

Still, there are ways to strengthen a suspicion of causality 

across many experiments provided that the cause 𝑋 in Eq. (2) 

sufficiently varies. Fisher (1935) proposed random 

assignment of treatments to eliminate the effect of 

unobserved confounders and he suggested that unobserved 

confounders could explain the measured association between 

smoking and lung cancer (Fisher, 1958). The latter 

beautifully illustrates the delicacy to use a measured 

association to support a decision to smoke. Structural Causal 

Modelling (SCM) proposed by Pearl (2009) also applies to 

non-experimental research constructs. SCM subsumes 

Structural Equations Modelling (Wright, 1934), and the 

Potential Outcomes Framework (Rubin, 2005). The 

experience based approach to the case study in section 4 will 

use SCM to specify the independence assumptions needed for 

a specific causal explanation of a computed statistical 

association. 

Engineers typically use equivalence relations like bond 

graphs or finite element methods when designing a device. 

These equivalence relations are acausal, but the computation 

of their solution is a sequential process that introduces 

causality, i.e. if one variable in these equations has been set 

to a known value, the response of the other variables follows 

by computation. So, there is an intimate relationship between 

computing the solution of an engineering model and causality 

(Karnopp et al., 2012). The causal effect of a “real” decision 

to set one of these variables is similarly computable. The 

model based approach to the case study will use a bond graph 

to model the case study and the causality follows from the 

sequence in the computation itself. 

In conclusion, this subsection showed that causality could be 

assigned after the computation of a statistical association and 

that causality is just inherent to the process of computing. 

Both notions of causality will be applied to the case study. 

Now these four basic ingredients of data-driven maintenance 

decision making have been considered, the theoretical 

concepts will be converted to a practical application in the 

next two sections. 

3. AUTONOMOUS FAULT DETECTION AND ISOLATION 

This section will portray a typical construction of 

autonomous fault detection and isolation. Fault detection and 

isolation are the first “real” decisions in the maintenance 

control loop (Figure 2). A Fault Signature Matrix (FSM) will 

be used to assess the ability to detect or isolate faults. The 

rows in a FSM list the applicable faults (Table 1). A fault can 

be defined as an anomaly that precedes a failure (= 

nonconformity in quality). The columns in a FSM list the 

features (or symptoms) that indicate the faults (Table 1). The 

fields in a FSM indicate the relationship between the faults 

and the symptoms. A FSM could therefore support decisions 

to detect or to isolate faults (step 1 and 2 in Figure 2). For 

example, 𝐹𝑎𝑢𝑙𝑡0 in Table 1 is detectable and isolable by the 

feature 𝐹0. 𝐹𝑎𝑢𝑙𝑡1 and 𝐹𝑎𝑢𝑙𝑡2 are detectable but not isolable 

by the features 𝐹1  and 𝐹2 , while 𝐹𝑎𝑢𝑙𝑡3  is both detectable 

and isolable by these two features. 

 

An Experience Based (EB) and a Model Based (MB) 

approach to construct a FSM will illustrate two scenarios for 

the assignment of causality. It will become clear that an 

EB_FSM merely relates faults to associated symptoms and a 

causality assignment will require additional assumptions. For 

a MB_FSM, causality has already been settled in the process 

of its construction. The objective here is to explore the human 

involvement. The objective is not to review all existing 

approaches or to exhaustively review the computing of the 

fault detection and diagnostics. The presented FSM 

constructions just survey the essential steps to be taken in the 

Table 1: Example of a FSM. 

 
 

𝐹0 𝐹1 𝐹2 

𝐹𝑎𝑢𝑙𝑡0 1 0 0 

𝐹𝑎𝑢𝑙𝑡1 0 1 1 

𝐹𝑎𝑢𝑙𝑡2 0 1 1 

𝐹𝑎𝑢𝑙𝑡3 0 0 1 
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simple case study that is feed forward, linear and time 

invariant. 

3.1. Experience based fault signature matrices 

This section will outline the construction of an EB_FSM that 

will be used in the case study in section 4. 

Step 1: choose the faults (EB_FSM rows). 

The faults of choice should be both (i) relevant and (ii) 

present in the history of measurements. In principle, the 

relevance of a fault resides in the domain of an individual’s 

taste. However, engineering guidelines (ISO, 2016) may 

establish common sense about typical equipment-, 

component- (OREDA, 2002) or part level failure modes 

(Chandler et al., 1991). A Reliability Centered Maintenance 

(RCM) process may filter out the critical failures, while 

identifying the faults that may predict them.  

The history of measurements will often be collected by non-

experimental research which precludes control over the 

collection of all relevant fault states and operating regimes. 

By conceiving many fault states and operating regimes, the 

collection of the history of measurement may take too long 

(=complexity issue analogous to computational complexity). 

Moreover, faults are often a hidden variable. As already 

signaled by Tiddens et al. (2023), the history of 

measurements often delimits aspirations to compute fault 

detection and isolation. 

Step 2: choose the features (EB_FSM columns). 

The features of choice should be built from the history of 

measurements. A data scientist may generate an enormous 

amount of features from the library of signal features (Lu et 

al., 2023) while ignoring the choice of the faults. Burnham & 

Anderson (2002) already argued that even vague knowledge 

regarding related variables reduces the computational 

complexity of the model selection while avoiding spurious 

relations. Engineering guidelines may establish common 

sense about features (Isermann, 2011) that indicate a fault.  

Step 3: select a model 

Any regression or classification model may be considered to 

describe the data, but the shortest description is supposed to 

be the best one (Occam’s razor). However, the shortest 

description of a data string is fundamentally incomputable 

(Solomonoff, 1964). Therefore, model selection remains 

rather arbitrary. Still, a suboptimal approximating model 

could support a dithering decision maker accepting some risk. 

Step 4: explain the model 

To explain the selected model, i.e. to identify which features 

strongly relate to a fault, some arbitrary feature importance 

test may be chosen. However, feature importance scores do 

not indicate causality, while a decision maker who does not 

only seek support in deciding whether to act, but also in how 

to act, requires causality. Section 2.4 mentioned that 

Structural Causal Modelling (SCM) will be used to specify 

the independence assumptions. 

flow/ effort Y
Switch S1

open/closed

 

Figure 4. Example of a DAG. 

 

Figure 4 is a directed acyclic graph (DAG) that specifies the 

causalities in a universe of the variables (𝑆, 𝑌). By Bayesian 

Network Factorization, the joint probability distribution 

𝑃𝑟(𝑆, 𝑌) follows from the DAG in Figure 4: 

𝑃𝑟(𝑆, 𝑌) = 𝑃𝑟(𝑆)𝑃𝑟(𝑌|𝑆) (3) 

Eq. (3) specifies the potentially observable association to 

identify a causality provided that the DAG is true. For 

example, the causality 𝑃𝑟(𝑌|𝑑𝑜(𝑆))  is identifiable by the 

potentially observable association 𝑃𝑟(𝑌|𝑆) , provided that 

Figure 4 is true. The DAG may be highly controversial, but it 

is explicit at least (Pearl, 2009).   

3.2. Model based fault signature matrices 

This section will outline the construction of a MB_FSM that 

will be used in the case study. 

Step 1: construct an engineering model 

A device does not come from some natural phenomenon, it is 

the result of a deliberate design. Engineers typically compute 

their designs using the laws of physics. These laws of physics 

hold under idealized conditions and they should adequately 

approximate the “real” conditions. These approximations are 

usually reflected in engineering guidelines that prescribe 

safety margins. Laws of physics and engineering guidelines 

are arbitrary in principle as they are occasionally updated, but 

they generally reflect a very high degree of common sense.  

Step 2: choose the faults (MB_FSM rows) 

Faults should be phrased in terms of drifts in parameters in 

the engineering model. If other faults (beyond the parameters 

in the model) should be detected or isolated, the engineering 

model needs extension or an additional EB_FSM may be 

needed.  

Step 3: choose the 𝐴𝑅𝑅s (MB_FSM columns) 

From an engineering model of n equations the values of n  

variables are computable. As (some of) these variables are 

measured, less equations are needed which enables the 

formulation of Analytical Redundancy Relations (𝐴𝑅𝑅). An 

𝐴𝑅𝑅  is an equivalence consisting of measurements and 

parameters from the engineering model. An 𝐴𝑅𝑅  detects 

faults that have been defined as parameter drifts, and thus acts 

as feature or symptom in the FSM.  
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Step 4: construct the MB_FSM 

The faults (MB_FSM rows) have been defined at step 2. The 

𝐴𝑅𝑅s have been defined at step 3, and the fields trivially 

follow from the presence of the parameters in the 𝐴𝑅𝑅s. 

Therefore, the construction of the MB_FSM is autonomously 

computable from the previous steps. 

The 𝐴𝑅𝑅 s are acausal equivalence relations. However, 

computing the solution of the 𝐴𝑅𝑅s involves a sequential 

process where the values of the 𝐴𝑅𝑅 s follow from their 

variable and parameter values. Similarly, a “real” decision to 

set a variable or a parameter to a specific value causes the 

corresponding 𝐴𝑅𝑅s to change. As a fault in step 2 has been 

defined as a drift in some 𝐴𝑅𝑅 parameter, this fault causes 

the 𝐴𝑅𝑅 s to change within the universe of idealized 

conditions of the engineering (design) model from step 1.  

4. CASE STUDY 

This section will demonstrate fault detection and isolation by 

constructing an EB_FSM and a MB_FSM in an iconic case 

study of a linear time invariant system under feed-forward 

control. This case study involves the RRC circuit in Figure 5. 

10 kΩ

5V S1

V1

0,1 mF

10 kΩ

V0 V2

 

Figure 5. The RRC circuit. 

 

A pulse signal with a period of 20 seconds will trigger the 

switch 𝑆1. The lines in Figure 6 show the computed evolution 

of the voltages and the dots show the measured evolution of 

the voltages for a normal (healthy) state of the circuit. 

 

Figure 6. Evolution of the computed and the measured 

voltages at the healthy state. 

 

Figure 6 confirms that engineers are highly capable of 

deciding about the “real” behavior of the RRC circuit by 

computation. Occasionally, the “real” measurements may 

drift away from the engineering computation which could 

trigger maintenance. In this case study, two fault treatments 

have been applied: 

1. A decreased resistance 𝑅0 that is in between the voltages 

𝑉0, 𝑉1 in Figure 5. 

2. An increased capacitance. 

Fault detection and isolation would have been trivial if the 

resistance and the capacitance were directly observable. It is 

only due to the experimental setup of this case study that the 

presence and absence of the faults was certain. Therefore, 

fault labels in Figure 7 and Figure 8 just followed from a 

known experimental intervention. 

Figure 7 shows that in the faulty state (reduced resistance) the 

measured voltages respond faster to the switch than predicted 

by the engineering computation (for the healthy state). 

  

Figure 7. Evolution of the computed and the measured 

voltages at a decreased resistance R0. 

 

Figure 8 shows that the measured voltages respond slower to 

the switch at an increased capacitance than predicted by the 

engineering computation. 

 

Figure 8. Evolution of the computed and the measured 

voltages at an increased capacitance. 
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Note that the operating regime of a pulse signal highly 

influences Figure 6, Figure 7 and Figure 8 as the RRC circuit 

is known to operate as a low-pass filter. 

Section 4.1 and section 4.2 will explain the construction of an 

EB_FSM and a MB_FSM respectively. The focus will be on 

the possible obstructions (section 2.1) in computing fault 

detection and isolation and not on a quest for the optimal 

computation. 

4.1. Application of EB_FSM 

Let the faults (EB_FSM rows) be a reduced resistance and an 

increased capacitance. Let the features (EB_FSM columns) 

be the measured voltages 𝑉0, 𝑉1, 𝑉2 , the switch position 𝑆1 , 

and the time 𝑇 from Figure 6, Figure 7, and Figure 8. Note 

that the lines in the three plots are the predictions of an 

engineering (design) model that should be ignored here.  

Let the fields of the EB_FSM be the permutation importance 

scores of an arbitrary random forest classification. The 

permutation importance indicates the mean Gini impurity 

loss of the random forest classification after random 

resampling of a feature. Note that the EB_FSM fields do not 

only rely on aforementioned choices, but also on the history 

of measurements in Figure 6, Figure 7, and Figure 8.  

Then, the EB_FSM is given in Table 2. 

 

Table 2 shows that the voltage 𝑉1 entailed unique information 

about a decreased resistance as random resampling strongly 

affects the mean Gini impurity loss of the random forest 

classification. Similarly, the voltages 𝑉1, 𝑉2, and the time 𝑇 

entailed unique information about an increased capacitance.  

The EB_FSM may be used to reduce the complexity of the 

model selection as Table 2 implies that the random forest 

classification could still detect both faults when the switch 

position 𝑆1 is omitted from the history of measurements. 

As this paper is not about an improved model selection, 

details about the arbitrarily selected model will be omitted. It 

has just been verified that the model of choice correctly 

predicted all instances in a validation set comprising the same 

faults that occurred during the same operating regime. So, 

fault detection and fault isolation (Figure 2) is possible for 

this specific validation set. 

Let the DAG in Figure 9 apply to the EB_FSM (Table 2). 

This DAG asserts that changes in the resistance 𝑅0, in the 

capacitance 𝐶, or in the switch 𝑆1  cause some hidden flow 

and effort variables. However, these flow and effort variables 

are indicated by the voltages 𝑉0, 𝑉1, 𝑉2.  

Feature 

V0

Feature 

V1

Feature 

V2

Some flow/ 
effort Y

Resistance  

true/false

Capacitance  

true/false

Switch S

Open/closed
 

Figure 9. DAG with indicators. 

 

It has been presumed that the switch 𝑆1 in the DAG (Figure 

9) does not cause the faults and the EB_FSM confirms that 

the switch 𝑆1 neither associates with the faults. Similarly, it 

has been presumed that the time 𝑇 does not cause the faults 

(not in DAG) but the EB_FSM shows that the time 𝑇 still 

associates with the faults. Still, section 2.4 already mentioned 

that observed associations (in the EB_FSM) are not 

compelling for a DAG. A DAG merely specifies the 

independence assumptions (omitted arrows) of a specific 

causal explanation for the EB_FSM.  

Section 3.1 mentioned that a decision regarding the fault 

detection or isolation may be incomputable because it is 

fundamentally incomputable, it is too complex, or it is subject 

to philosophical controversy. In this case study, the latter 

prevailed as the DAG is merely postulated afterwards. 

Therefore, a compelling causal explanation of the computed 

fault detection and isolation is lacking. In other words, the 

causality is philosophically controversial. Common sense 

reflected in engineering guidelines (section 3.1) may alleviate 

this controversy. The effects of this controversy are: 

• Fault detection and isolation beyond the history of 

measurements (training set) is risky. 

• The applicability of the fault detection and isolation is 

unknown, i.e. it worked for a specific validation set, but 

it is unknown whether it will work at an unprecedented 

operating regime. 

• The features (like the time 𝑇) do not necessarily indicate 

the magnitude of the fault.  

Finally, the fault detection and isolation relied on the 

arbitrary choice of the classification model, and the feature 

importance score. Different results might have been obtained 

had other choices been made. 

4.2. Application of MB_FSM 

In advance of constructing a MB_FSM, an engineering 

(design) model will be posited. Let the case study be 

represented by the Hybrid Bond Graph (HBG) in Figure 10. 

Table 2: EB_FSM of the case study. 

 
 

𝑉0 𝑉1 𝑉2 𝑇 𝑆1 

Resistance 𝑅0   0,00 0,30 0,06 0,04 0,00 

Capacitance   0,04 0,18 0,12 0,16 0,00 

 

 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 66



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

8 
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R<< 𝑆 =  
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 𝑙𝑜  𝑑   =   

Figure 10. Hybrid Bond Graph of the case study. 

 

The switch has been modelled by a modulated transformer 

(MTF) as proposed by Borutzky (2012). Figure 10 shows 

four elements that convert power. As power is the product of 

an effort variable and a flow variable, the engineering model 

(Table 3) consists of eight variables and eight constitutive 

equations that follow from Ohm’s Law and Kirchhoff’s Law. 

In this case study, the effort of the source 𝑢𝑆𝑒 = 𝑉0, and the 

effort of the resistances 𝑢𝑅0 = 𝑉0 − 𝑉1, 𝑢𝑅1 = 𝑉1 − 𝑉2 have 

been measured which makes three of the equations in Table 

3 redundant. 

 

Let’s now construct an MB_FSM of the case study using this 

engineering model. Let the faults (MB_FSM rows) be a drift 

in the resistance 𝑅0 and a drift in the capacitance 𝐶. As a drift 

may include an increase as well as a decrease, these fault 

definitions are more generic than the ones in Figure 7 and 

Figure 8. Note that  the history of measurements (Figure 6, 

Figure 7 and Figure 8) is not needed for the construction of a 

MB_FSM. 

Let the features (MB_FSM columns) be defined by the 𝐴𝑅𝑅s 

that follow from the measured variables in the engineering 

model (Borutzky, 2021), (Samantaray et al., 2006).  

The 𝐴𝑅𝑅1 is given by:  

  =
𝑉0 − 𝑉1
𝑅0

−
𝑉1 − 𝑉2

𝑅1

 (4) 

The 𝐴𝑅𝑅1 follows from (ii), (iii) and (vi) in Table 3, and the 

voltages 𝑉0, 𝑉1, and 𝑉2.  

The 𝐴𝑅𝑅2 is given by:  

 = 𝑉0 − 𝑉2 − (𝑉0𝑥 − 𝑉2𝑥) ×  
− 
(𝑇−𝑥)×𝐶
𝑅0+𝑅1  (5) 

In Eq. (5), 𝑉0𝑥 , 𝑉2𝑥 represent the voltages at the time of the 

last switch transition. The 𝐴𝑅𝑅2 follows from (iv) and (v) in 

Table 3, the evolution in 𝑢𝑆𝑒 , and the measurements 𝑉0, 𝑉2, 

𝑇.  

Let the fields of the MB_FSM be given as shown in Table 4, 

revealing an indicator function on the presence of the drifting 

parameters in the 𝐴𝑅𝑅s.. 

 

Now, the MB_FSM could be used to evaluate the same 

validation set as the one used for the EB_FSM. Figure 11 

confirms that both 𝐴𝑅𝑅s drift away from zero at a decreased 

resistance as predicted in the MB_FSM (Table 4). 

 

Figure 11. Measured ARRs at a decreased resistance. 

 

Figure 12 confirms that only 𝐴𝑅𝑅2 drifts away from zero at 

an increased capacitance as predicted in the MB_FSM (Table 

4). By choosing a threshold value for the 𝐴𝑅𝑅s, the fault 

detection is autonomously computable. Figure 11 and Figure 

12 show that the 𝐴𝑅𝑅 s can only detect faults as the 

components in the RRC circuit exchange power shortly after 

a transition of the switch. The applicability of the fault 

detection and isolation under various switching regimes is 

straightforwardly assessable without any history of 

measurements.  
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Table 3: Engineering (design) model for case study. 

 

i 𝑢𝑆𝑒 = 5 ×   ;  ∈ { , } 

ii  = 𝑢𝑅0 −   4 × 𝑖𝑅0  

iii  = 𝑢𝑅1 −   4 × 𝑖𝑅1  

iv  = 𝑢𝐶 −   4 ×∫ 𝑖𝐶(𝑡)𝑑𝑡 

v  = 𝑢𝑅0 + 𝑢𝑅1 + 𝑢𝐶 − 𝑢𝑆𝑒  

vi  = 𝑖𝑅0 − 𝑖𝑅1 

vii  = 𝑖𝑅0 − 𝑖𝐶  

viii  = 𝑖𝑅0 − 𝑖𝑆𝑒  

 

 

Table 4: MB_FSM of the case study. 

 
 

𝐴𝑅𝑅1 𝐴𝑅𝑅2 

Drift in 𝑅0     

Drift in 𝐶     
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Eq. (4) and Eq. (5) specify the value of the 𝐴𝑅𝑅 at a given 

magnitude of the drift in 𝑅0 or 𝐶, i.e. a decision regarding the 

fault identification (i.e. severity of the fault) is partially 

computable. An autonomously computable fault 

identification implies a higher maturity in data driven 

maintenance support (Figure 2) than just isolating the fault. 

Moreover, the impact of the precision of the measurements is 

assessable at the stage of design. The precision of the 

measurements is important to define appropriate threshold 

values on the 𝐴𝑅𝑅s. 

 

Figure 12. Measured ARRs at an increased capacitance. 

 

Section 2.1 mentioned that a decision regarding the fault 

detection or isolation may be incomputable because it is 

fundamentally incomputable, it is too complex, or it is 

philosophically controversial. In this case study, the latter 

prevailed as the engineering model is not pertinently true. 

The fault detection and isolation relied on the applicability of 

the idealized conditions of the laws of physics that underlie 

the engineering model. Typically, physical laws are rather 

robust against changes in these conditions. Still, unmeasured 

operating conditions may become problematic. For example, 

large but unrecorded temperature fluctuations may trouble 

Ohm’s Law and consequently the fault detection and 

isolation (MIL-HDBK-217F, 1991). 

If the engineering (design) model were to be true, the MB 

approach would have resolved the concerns of the EB 

approach: 

• Fault detection and isolation beyond the history of 

measurements (training set) is decidable. The MB_FSM 

can even be constructed at the stage of design (without 

any training set at all). 

• The applicability of the fault detection and isolation to 

work is known. For example, it is known that the fault 

detection and isolation only works as power is being 

exchanged. 

• The 𝐴𝑅𝑅s indicate the magnitude of the fault. Therefore, 

the attainable maturity in data driven maintenance is 

potentially higher. 

Finally, section 3.2 mentioned that the engineering (design) 

model may just be incapable to detect or isolate a particular 

fault. As aspirations should meet capabilities, the engineering 

(design) model may need adjustments for the purpose of data 

driven maintenance. 

5. DISCUSSION 

This section will reflect on the case study. Section 5.1 will 

discuss the impact on the computability of “real” decisions, 

section 5.2 will discuss the impact on the maturity in data 

driven maintenance, and section 5.3 will discuss some 

practical implications.  

5.1. Impact on computing “real” decisions 

Section 2.1 mentioned that a decision may be incomputable 

because it (i) is fundamentally incomputable, it (ii) is too 

complex, or it (iii) is philosophically controversial.  

In this simple case study, the philosophical concerns 

appeared predominant as the translation between a 

syntactical computation and a “real” decision required 

arbitrary human involvement to choose: 

• The faults (EB, MB); 

• The measurements/ features (EB/MB); 

• A classification model (EB/MB); 

• A feature importance score (EB); 

• A causal explanation (EB); 

• An engineering (design) model (MB). 

The engineering profession established a high degree of 

common sense regarding this translation by formulating laws 

of physics and guidelines. This common sense lacks the 

solidity of a mathematical proof, and it has been subject to 

occasional improvement, but it has shown to be effective due 

to the wide application of engineered devices. Section 2.2 

stated that where engineers fail to compute “real” decisions, 

a human involved maintenance control loop is typically 

triggered. Still, parts of the maintenance control loop may be 

computed as shown in the case study. Cases where the 

computing of “real” decisions is challenging, are also 

expected to be of high interest to scientists. 

In the simple case study, complexity was not an issue. Still, 

complexity plays a role in other cases. For the EB approach, 

the inference of a high dimensional model from a large 

history of measurements may require excessive computing 

time. Section 3.1 stated that complexity may impede the 

collection of a history of measurements that includes all 

relevant system states. Particularly under a non-experimental 

research construct, the required time is uncontrolled. For the 

MB approach, the solving of a high dimensional engineering 

(design) model may similarly bump into complexity 

concerns. 
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Fundamental incomputability precluded the selection of a 

true EB_FSM model (section 3.1). Similarly, the truth of the 

engineering model (Table 3) was ultimately an incomputable 

postulate. Fundamental incomputability is also an issue in 

cases of software faults as there cannot exist a computing 

device that separates looping software from software that 

halts in the general case. If this computing device only had to 

separate software of some fixed number of input symbols, the 

computation rapidly becomes too complex to solve in time 

(Rado, 1962). 

5.2. Impact on maturity 

Growth in the data maturity model (Figure 3) coincided with 

the flow of the consecutive decisions in the maintenance 

control loop (Figure 2). This paper confirms that the 

computation of fault detection and isolation should be settled 

before addressing the computation of decisions further 

downstream the maintenance control loop. Similarly, 

maturity growth in data driven maintenance should start with 

computing fault detection and isolation. 

In the specific validation set of the case study, the EB 

approach and the MB approach were exchangeable in terms 

of missed and false alarms. Still, a decision maker should not 

be indifferent towards the approach because (i) causality is 

assigned differently, and (ii) the meaning of the features 

differs. Using the EB approach, causality was assigned 

afterwards using some arbitrary DAG and the features just 

described the state of the RRC circuit. Using the MB 

approach, causality was inherent in the solving of the 

engineering (design) model and the 𝐴𝑅𝑅s represented the 

magnitude of the fault. The latter is part of fault identification 

(Figure 2) which corresponds with a higher maturity in data 

driven maintenance. 

5.3. Practical impact 

The case study revealed that the “real” causal implications of 

some syntactical computation matter for the attainable 

maturity in data driven maintenance. In the cases study, both 

the EB and the MB approach appeared to be not entirely 

compelling for causality. Still, some references to 

engineering guidelines were given to alleviate potential 

controversy. Section 3.1 referred to some engineering 

guidelines for (i) the most relevant faults of specific devices 

and for (ii) typical features to detect these faults. Section 3.2 

referred to some engineering guidelines to establish common 

sense regarding the margins between the computed strength 

and the “real” strength.  

For this iconic case study, the construction of a MB_FSM 

was easy but for a more realistic case study, the construction 

of a MB_FSM could become complex. Typically, the 

knowledge of the engineering models is scattered over 

various agents who may be unwilling to share them. 

Consequently, much effort may be wasted on reconstructing 

design models that are in principle already available. Life 

cycle modelling as proposed in ISO (2014) is a precondition 

to apply a MB_FSM efficiently in practice. 

The EB approach and the MB approach do not compete as 

one may also consider a hybrid FSM that adds the 𝐴𝑅𝑅s to 

an EB_FSM. The EB approach that decides on associated 

symptoms may be an appreciable resort in the absence of a 

causal explanation. The MB approach demonstrated the 

potential of a more mature data driven maintenance under 

idealized conditions. 

6. CONCLUSION 

This paper argued that some decision problems cannot be 

solved by any autonomous computation and that maintenance 

decisions are prone to be computationally challenging. A 

maturity framework has been proposed that specifies the 

decisions in a maintenance control loop, and connects these 

to the aspects of human interpretation, computability and 

causality. An application of the lowest maturity level to an 

iconic case study showed that decision makers should not be 

indifferent to (two) models that provide equal decisions on a 

validation set in terms of missed and false alarms. Access to 

a true engineering (design) model allows achieving a higher 

maturity level in data driven maintenance but it has been 

observed that a true model cannot be computed from only a 

history of measurements. Where logic cannot decide, the 

common sense reflected in engineering guidelines provides a 

resort at an acceptable risk. 
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