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ABSTRACT 

Due to their location and related complexities, the offshore 

wind farms (OWF) have higher downtimes and operation and 

maintenance (O&M) costs compared to their onshore 

counterparts. Condition monitoring could help in bringing 

down the O&M costs of OWFs. The pitch system is one of 

the components most prone to failure. This paper details an 

approach for enhanced diagnosis of the electric pitch systems 

especially focusing on the induction motor drives (IMD) in 

wind turbines. The proposed method uses an extended Park 

vector approach (EPVA) in conjunction with a convolutional 

neural network (CNN) to accurately classify the condition of 

an IMD and localize the faults. The method is validated on 

data collected from a laboratory setup. The advantage of the 

proposed approach is that the condition of the IMD can 

accurately be classified, and faults localized in operating 

conditions with varying load and frequency without any 

additional information on the instantaneous operating speed, 

frequency, or load on the motor drives. This results in a non-

invasive diagnostic approach incurring least additional 

expenses to implement. 

1. INTRODUCTION 

Offshore wind farms (OWF) have significant potential to 

contribute towards global energy sustainability. However, 

they face unique operational challenges, mainly because of 

their remote locations and harsh marine environments in 

which they operate. To put this in perspective, while onshore 

wind farms are attaining a 95% to 97% availability for 

modern systems Pfaffel, Faulstich and Rohrig (2017), the 

availability of OWFs is relatively lower and highly variable. 

The data from earlier offshore wind farms suggest an 

availability of 67% to 85% (Feng, Tavner, & Long, 2010) 

with more latest estimates of 80% to 84% (Cevasco, 

Koukoura, & Kolios, 2021). The limited weather windows 

for performing necessary maintenance leads to longer 

downtimes, which explains the gap in operational availability 

between onshore and offshore wind farms. Furthermore, the 

operational and maintenance (O&M) costs constitute a 

significant proportion of the lifetime costs associated with 

OWFs with estimates ranging from roughly 23% on the lower 

end (Ren, Verma, Li, Teuwen, & Jiang, 2021) to 30% at the 

higher end of the spectrum (Hammond, & Cooperman, 2022). 

This represents a stark contrast to onshore wind farms, where 

the lifetime O&M costs typically account for approximately 

5% (Ren et al., 2021). Thus, implementing condition-based 

maintenance (CBM) strategies, and hence condition 

monitoring (CM) become vital in reducing the costs 

associated with O&M and helps in reducing the downtimes 

in maintenance activities.  

The pitch system of wind turbines is among the components 

most prone to failures and one that contributes significantly 

to a non-trivial amount of downtime. The results from 

ReliaWind project (Wilkinson et al., 2010) indicate the pitch 

system was responsible for nearly 15% of failures per turbine 

per year and close to 20% of total downtime hours per year 

across different manufacturers in their database. A more 

recent study (Walgern, Fischer, Hentschel, & Kolios, 2023) 

suggests a pitch system failure rate of 0.54 (hydraulic) and 

0.56 (electrical) per turbine per year. Pitch systems are also 

found to be the most critical subcomponent in the premature 

failure period (Santelo, De Oliveira, Maciel, & De A. 

Monteiro, 2022). This makes the pitch system an ideal 

candidate for enabling CM systems, particularly in OWFs 

because of the additional costs and downtimes associated 

with their reactive maintenance.  
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Although there have been some efforts to develop CM 

solutions for wind turbine pitch systems, the extent of these 

attempts has not been commensurate with their critical 

impact on downtime and failure rates. Cho, Gao and Moan 

(2016) developed a Kalman filter based method for 

diagnosing pitch sensor and actuator faults in floating wind 

turbines based on the NREL 5MW wind turbine model. 

However, the focus here was not on the incipient fault 

detection. Several machine learning-based techniques for 

fault diagnostics in pitch systems are also found in the 

literature. supervisory control and data acquisition (SCADA) 

data has been used to detect anomalies in the pitch system in 

tandem with Isolation Forest based anomaly detection 

models (Mckinnon, Carroll, Mcdonald, Koukoura, & 

Plumley, 2021). In this work, the authors developed different 

models of varying amounts of training data to detect 

anomalous patterns. Further, they experimented with varying 

lengths of post-processing window to see how it affects their 

model. Their results show that their method could notice 

signs of turbine failure 12 to 18 months ahead. Park, Kim, 

Dinh and Park (2022) used neural networks to find abnormal 

operations in the pitch system of a wind turbine. The authors 

define the abnormal operation for the pitch system using the 

deviation in the blade pitch angle, where a deviation of more 

than 4.95° in blade pitch angle was considered abnormal. 

Wei, Qian and Zareipour (2019) developed a condition 

monitoring and fault detection system for the wind turbine 

pitch system using optimized relevance vector machine 

regression. Their work leverages the SCADA data to detect 

faults in the pitch system particularly focusing on encoder 

failures, pitch controller failures, electric motor failures, and 

slip ring failures. Similarly Chen, Matthews and Tavner 

(2013) used SCADA data to develop an a-priori knowledge-

based ANFIS (APK-ANFIS) model to detect faults in the 

wind turbine pitch system. The authors identified four critical 

characteristics features (CF) of pitch faults after analyzing 

data in the developmental stage of a fault and that 

immediately after the maintenance has been carried out. 

These CFs have been used to develop the corresponding 

APK-ANFIS models, the results from which where 

aggregated to detect the fault in the pitch systems. Most of 

the studies in the literature reviewed are effective in detecting 

faults in the pitch systems, however, they fall short of 

delineating the fault diagnosis to a subcomponent level. 

A subcomponent level diagnosis of faults is essential as it 

contributes to efficient planning and implementation of 

maintenance activities, especially in OWFs, where precise 

planning is paramount. While SCADA data can be effectively 

used for preliminary fault diagnosis, it is less effective in the 

subcomponent level fault diagnosis. In this paper, we focus 

on fault diagnostics for the induction motor drive (IMD) of 

an electrical pitch system. Subcomponent level fault 

diagnosis for pitch motor drives using current signature 

analysis have been previously addressed by the authors 

(Kandukuri, Karimi, & Robbersmyr, 2016; Kandukuri, 

Senanayaka, Huynh, Karimi, & Robbersmyr, 2017) , and also 

proposed a two-stage fault classification scheme based on 

support vector machine (SVM), for large-scale deployment 

in OWFs (Kandukuri, Senanyaka, & Robbersmyr, 2019). 

The issue with classical current signature-based methods in 

fault detection is that there is an assumption of steady state 

operations in terms of speed and load. The wind turbine pitch 

systems on the other hand are operated intermittently and are 

exposed to varying speed and load profiles. This means that, 

either regions of steady state operations must be carefully 

detected for data acquisition or advanced signal processing 

techniques are to be employed (Benbouzid, M El Hachemi, 

2000; Bhole, & Ghodke, 2021; Liu, & Bazzi, 2017).  

Thus, in this paper, a novel solution is proposed by 

calculating the extended Park vector (EPV) current from the 

three-phase motor line currents and then extracting the time-

frequency representation using Short-Term Fourier 

Transform (STFT). The three-phase motor line currents for 

this purpose are observed at varying operating conditions: 

speed, and load. For detecting the condition of the IMD, these 

representations are subsequently converted into 

spectrograms, which are then used to train a convolutional 

neural network (CNN) for classification of the IMD’s 

condition. CNNs have earlier been reported focusing on 

diagnostics of gearboxes (Amin, Bibo, Panyam, & 

Tallapragada, 2023; Gecgel, Ekwaro-Osire, Gulbulak, & 

Morais, 2021; Jiang, Han, & Xu, 2020), bearings 

(Choudhary, Mian, & Fatima, 2021; Lu et al., 2023; Ruan, 

Wang, Yan, & Gühmann, 2023; Wang, Mao, & Li, 2021; 

Yuan, Lian, Kang, Chen, & Zhai, 2020), and IMDs (Junior et 

al., 2022; Khanjani, & Ezoji, 2021; Kumar, & Hati, 2022; 

Lee, Pack, & Lee, 2019; Skowron, Orlowska-Kowalska, 

Wolkiewicz, & Kowalski, 2020). However, most of these 

works depend on vibration sensors, or are specific to one type 

of fault. Further, most of them assume constant supply 

frequency and load. Skowron et al. (2020) warrants a special 

mention as they use motor line currents to detect faults in an 

IMD. They normalize these currents to create a vector that is 

then reshaped to form an RGB matrix corresponding to each 

of the three phases. While they were able to detect and 

differentiate between various kinds of stator faults including 

insipient faults, their work still deals with one kind of fault 

within the induction motor. 

Thus, what differentiates this work from other works are as 

follows: 

1. Fault diagnostics of IMDs operating under varying 

speed, frequency, and load conditions without 

needing any additional data on these parameters. 

2. Beyond identifying a single type of fault, the 

proposed approach is capable of fault localization 

using extended Park vector approach (EPVA) in 

conjunction with a CNN classifier. 
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3. The proposed approach, through EPVA, negates the 

need for additional sensors to be deployed. This 

makes it an economically viable option for wind 

turbines without vibration sensors, especially those 

that are nearing their end of designed life. Because 

while vibration sensor-based diagnostics are more 

widely applicable, they are expensive (Trajin, 

Regnier, & Faucher, 2010) compared to motor 

current signature analysis (MCSA). 

4. Since continuous monitoring of the WT pitch 

system is not required in this method, intermittent 

snapshots of the three-phase currents are sufficient 

for reliable diagnosis. Thus, reducing the data 

transmission load from each turbine. 

5. The proposed algorithm need not be implemented at 

each turbine, the proposed approach can contribute 

towards farm-level health management. 

While EPVA and similar MCSA methods have earlier been 

used for IM diagnosis and prognosis (Erik Leandro, Levy Ely 

De Lacerda De, Jonas Guedes Borges Da, Germano, & Luiz 

Eduardo Borges Da, 2012), to the best of authors’ knowledge 

this is the first time the diagnostics of the induction motor has 

been fully automated while using spectrogram of the EPVA 

in conjunction with a deep learning based classifier. The rest 

of the paper is organized as follows. In section 2, the 

induction motor faults under consideration and the reason for 

selecting these are discussed. This is followed by a brief 

explanation of theories of EPVA and CNNs in section 3. 

Section 4 details the laboratory setup used to collect the 

necessary data and Section 5 discusses the methodology of 

research and details about the CNN based classifier. Results 

from the classification scheme are discussed in section 6. The 

paper is concluded, and possible future directions are briefly 

highlighted in section 7. 

2. IMD FAULTS CONSIDERED 

Despite being robust, induction motors are not immune to 

failures. Stator faults and bearing faults are among the most 

reported components contributing to the total failures in an 

IMD (Benbouzid, M., 1999; Benbouzid, M. E. H., & Kliman, 

2003; Singh, & Ahmed Saleh Al Kazzaz, 2003; Thorsen, & 

Dalva, 1995) as shown in Figure 1. Nearly half of the total 

failures are the result of stator faults, making it one of the 

most important types of faults to be detected. This is followed 

by bearing faults which account for almost one-third of the 

total failures. Compared to those, a menial 10% of the failures 

are accounted for by rotor faults. These faults occur generally 

because of drive-generated harmonics, poor ventilation at 

low-speed operation, and abrupt load variations. 

Thus, in this study, we have considered the two components 

contributing the most to the total IMD failures: stator fault 

and bearing fault. A future study may be done including rotor  

 

 

Figure 1. Distribution of IMD faults 

bar faults such as different severities of broken rotor bar 

(BRB) faults. 

3. THEORY 

3.1. Extended Park Vector (EPV) Analysis 

The theory behind using MCSA for IMDs revolves around 

the concept that an induction motor, while operating in 

healthy state, is symmetrical across the three phases. A fault 

in the motor disrupts this symmetry causing a periodically 

recurring asymmetry in the motor’s operational 

characteristics. This periodic recurrence manifests as a 

particular frequency in the current known as “fault 

frequencies” or “signature frequencies.” 

These fault frequencies arise due to the interaction between 

the motor’s electrical and mechanical components influenced 

by the fault. For example, a stator fault, such as insulation 

failure, due to short circuits between the stator windings, or 

phase imbalance, causes an asymmetric distribution of 

electromagnetic fields (EMF) within the motor. This 

asymmetry causes variations in the magnetic effect on the 

rotor resulting in irregular rotor motion. The interaction 

between the EMF and the rotor’s motion produces specific 

frequency components in the motor’s currents called “stator 

fault frequencies”. These stator fault frequencies are then 

reflected in the MCSA as harmonics of the fundamental 

frequency, or appearance of specific sidebands around the 

fundamental frequency and its sidebands. In the case of a 

bearing fault, which can occur because of physical damage, 

wear and tear, inadequate lubrication, or external factors, 

leads to mechanical vibrations which modulate the EMF 

within the motor affecting the air gap flux density. This 

introduces specific frequencies in the motor’s current 

signature called “bearing fault frequencies”. The specific 

frequency of the bearing fault depends on several factors like 

bearing design, motor speed, and the nature of the fault. 

These signature frequencies are then used to diagnose the 

faults in MCSA. 

EPV analysis builds upon the foundational principles of 

MCSA and has been used for a while now in diagnosing 

motor electrical faults (Cardoso, Cruz, & Fonseca, 1997). 

The direct (id) and quadrature (iq) axis currents are initially 

calculated as a function of three phase motor currents (ia, ib, 

ic) as follows: 
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Figure 2. Schematic diagram of (a) an outer race fault, and 

(b) an inner race fault in a rolling element bearing. 

 

 𝑖𝑑 = (√2
√3

⁄ ) 𝑖𝑎 − (1
√6
⁄ ) 𝑖𝑏 − (1

√6
⁄ ) 𝑖𝑐  (1) 

 𝑖𝑞 = (1
√2
⁄ ) 𝑖𝑏 − (1

√2
⁄ ) 𝑖𝑐  (2) 

The extended Park vector (ip) is then calculated as follows: 

 𝑖𝑝 = |(𝑖𝑑 + 𝑗𝑖𝑞)| (3) 

Where, j is the imaginary unit defined as 𝑗2 = −1. 

When a stator turn fault (STF) occurs due to shorting between 

the phase windings, the three phase currents become 

imbalanced and the ideal values for direct and quadrature axis 

currents mentioned in Cardoso et al. (1997) doesn’t hold 

anymore. The result is that the stator turn fault can be 

identified only using the spectral component at twice the 

supply frequency, fs (Sahraoui, Zouzou, Ghoggal, & Guedidi, 

2010) in the spectrum of ip: 

 𝑓𝑆𝑇𝐹 = 2𝑓𝑠 (4) 

Figure 2 shows the schematics of an outer race fault (a), and 

an inner race fault (b) in a rolling element bearing. A bearing 

fault, as discussed earlier, causes spectral components at 

different frequencies as determined by bearing design, motor 

speed, and the nature of the fault (e.g., faults on the inner race, 

outer race, ball spin, or cage defects). This results in three 

additional spectral components in the spectrum of ip along 

with the fundamental component of the power supply (Zarei, 

& Poshtan, 2009) as: 

 𝑓𝐵𝑅𝐺 ∈ {𝑓𝑣, 2𝑓𝑣 , |2𝑓𝑣 − 𝑓𝑠|} (5) 

For an outer race fault, as shown in Figure 2 (a), the 

characteristic vibration frequency, fv, can be estimated using 

the following equation (Zarei, & Poshtan, 2009): 

 

 𝑓𝑣 ≈ 0.4𝑁𝑏𝑓𝑟 (6) 

 

where Nb is the number of rolling elements in the bearing, and 

fr is the shaft rotational frequency. 

Even though these frequencies (fSTF, and fBRG) can reliably be 

used for fault diagnosis in short time windows of constant 

operation, this fails in the case of a variable load and 

frequency because of the changes in the shaft rotational 

frequency, fr, and supply frequency, fs. 

Characterizing the time-frequency response of the extended 

Park vector, ip is critical in EPVA. The short-term Fourier 

transformations (STFT) is used to decompose the Park vector 

into its time-frequency components, which offers an in-depth 

view of how these frequency components evolve over time. 

This level of detail is more suitable for diagnosing the faults 

within motors operating under non-stationary conditions. 

STFT is a special case of Fourier transforms where the 

Fourier transform is applied in series to smaller slices of the 

signal. The assumption here is that for a shorter time window, 

the original non-stationary signal becomes stationary. The 

STFT of a non-stationary signal y(t) can be estimated by 

discretizing the continuous-time signal to a discrete-time 

signal, y(n), where n is the discrete time indices. Then the 

discrete STFT is calculated for the discrete-time signal as: 

 𝑌(𝜔, 𝑏) =∑𝑦(𝑛)𝑤(𝑛 − 𝑏)𝑒−𝑗𝜔𝑛 (7) 

where 𝑤(. ) is the windowing function and b is the window-

shifting time constant. The calculation of STFT is done using 

a fixed-size window, which means that if the window is 

longer, frequency resolution is better at the expense of time 

resolution and vice versa for shorter windows. Thus, deciding 

a window length for the STFT operation is crucial in 

accurately extracting the desired time-frequency information 

(Oppenheim, 1999) and thereby diagnosing the motor 

condition. 

3.2. Convolutional Neural Networks (CNN) 

Though there has been some precedents in computer vision 

research inspired by natural vision, CNNs developed by 

Lecun et al. (1989) were instrumental in the development of 

computer vision at scale. CNNs are similar to artificial neural 

networks or “vanilla neural networks” in that they are made 

up of neurons. However, CNNs generally consists of three 

types of layers, namely convolutional layer, pooling layer, 

fully connected layers, and an output layer. 

The convolutional layers are used to learn a feature 

representation from the inputs provided to create feature 

maps. In this layer, a learned kernel convolves with the input 

producing a feature map, the result of which is then passed 

on to an elementwise non-linear activation function to get the 

activation maps. Each element of the feature map is 

connected to a local subset of neurons in the previous layer 

or the input. The feature map element at (i, j) in the kth feature 

map of the lth layer can be calculated as: 

 𝑧𝑖,𝑗,𝑘
𝑙 = 𝒘𝑘

𝑙 𝒙𝑖,𝑗
𝑙 + 𝑏𝑘

𝑙  (8) 

where 𝒘𝑘
𝑙  and 𝑏𝑘

𝑙  are the weight vector and bias term of the 

kth filter of the lth layer, respectively. 𝒙𝑖,𝑗
𝑙  is the local subset of  
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Figure 3. Laboratory setup for motor diagnostics 

 

input to the convolutional layer centered at (i, j). An 

activation function such as rectified linear unit (ReLU) later 

introduces non-linearities helping the network to learn non-

linear features. 

The pooling layer, often placed between two convolutional 

layers, introduces shift-invariance to the feature maps. This 

is achieved by reducing the resolution of the feature maps. 

Usually, average pooling and max pooling layers are used 

depending on the task at hand. Higher-level feature 

representations are extracted eventually by stacking several 

convolutional and pooling layers. 

One or more fully-connected layers usually succeed in CNNs 

aiming to achieve high level reasoning (Simonyan, & 

Zisserman, 2014). The last layer of CNNs is an output layer, 

which uses a task appropriate activation function such as 

sigmoid function for classification or ReLU for regression 

problems. 

4. LABORATORY SETUP 

Figure 3 shows the laboratory setup built to study the 

common faults in the pitch motor drives and planetary gear 

boxes of a wind turbine. A 1.1 kW, three-phase induction 

motor served as the test motor. Another 2.2 kW three-phase 

induction motor was used to supply the loads in the setup 

through a bevel-planetary-helical gearbox. Both the motors 

were driven by commercial field-oriented control (FOC) 

drives. Further details of the setup can be found in Table 1. 

The selection of the current sensor for this setup has been 

influenced by the desire for a common industrial sensor 

which is economical for installation on multiple units. 

Further, the overall frequency content of the signal has been 

tested over ideal power source and showed excellent signal-

to-noise ratio. The speed and torque references for both test 

and load motors are provided to their respective FOC drives 

through a PC.  

 

Table 1. Details of the test setup 

Test Motor 

IM Rated Power  1.1 kW 

IM Rated Speed 1420 rpm 

IM Rated Torque 7.2 Nm 

  

Current Sensor 

Model LEM LTS-6NP 

Primary nominal RMS current, IPN 6 A 

Accuracy @ IPN, 25° C ±0.2 

  

Data Acquisition NI USB DAQ 

Acquisition rate 15 kHz 

  
Figure 4. Seeded motor faults: stator turns fault (left), 

bearing fault (right). 

 

The STF, and BRG faults were artificially seeded as shown 

in Figure 4. The STF was seeded by shorting 10% of a phase 

winding, while BRG was seeded as an outer race fault with a 

diameter of a ≈ 2mm through hole. 

5. METHODOLOGY 

Initially, the test motor was run in healthy condition, across a 

range of speeds varying between 850 rpm and 1420 rpm. At 

the same time, the loads were varied between no-load and 

full-load conditions at random to simulate the random 

loading on the wind turbine’s pitch system. The speed 

interval was used after consulting the motor loadability 

curves to ensure that the motor reaches neither an overload 

condition nor stall condition because of the random loading. 

The randomness of operational conditions was ensured using 

different random number generators with seeds refreshed 

every thirty second interval. The three-phase currents were 

recorded as snapshots of 30 seconds each. Similarly, records 

were made for the motor operating in faulty conditions as 

mentioned in Section 4. A total of nearly a thousand minutes 

of data was collected from the test setup for this purpose. 

Further, the Park vector, ip and its STFT has been calculated 

for each of the recorded snapshots using equations (1), (2), 

(3), and (7). Examples of the STFT results from each of the 

three conditions: healthy, STF, and BRG is shown in Figure 

5–7. Classical signal processing methods to detect faults from 

the STFT of the Park vector may fail here, however, from the 

figure, it can be noted that there is an increase in frequency 

content around 100 Hz in the STF condition, which is around 

2fs (Figure 6). A similar increase in frequency content can  
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Figure 8. CNN architecture 

 

also be observed in the case of BRG faults at around 500 – 

600 Hz (Figure 7), which is distinct from the healthy case 

(Figure 5). 

Around 2100 STFT images containing the time-frequency 

information associated with the operation of the motor in the 

three different states mentioned in the previous paragraph 

were then used to develop a CNN model. The entire dataset 

of images was split at random and 70% of the data was used 

in training while 15% each was used for validation and 

testing purposes. The STFT spectrum of the current, ip, is 

obtained as an RGB image, which was then resized to 360 x 

360. The architecture of the CNN that was developed for fault 

classification is shown in the Figure 8. The architecture 

consists of a convolutional layer followed by a max pooling 

layer, the output from which is flattened and forwarded to a 

fully connected layer. This fully connected layer learns high-

level features from the flattened inputs. The final layer serves 

as the classifier, which takes the output from the fully 

connected layer to classify the image into one of the three 

conditions previously mentioned. 

The CNN was trained on a system equipped with an Intel 

Xeon processor, NVIDIA Tesla V100-SXM3-32GB GPU on 

Python 3.10 using PyTorch 2.2. The model was trained over 

hundred epochs with a batch size of 256 and a learning rate 

of 10-3. The learning rate was arrived at after narrowing down 

the value by using a learning decay scheduler. Early stopping 

and L2 regularization were employed to mitigate the 

possibility of model overfitting to the training dataset. The 

early stopping algorithm checks for any improvements in the 

validation loss and stops training if no improvement is  

 

Figure 5. STFT of a Park vector, ip, of motor working in 

healthy condition. 

 

 

Figure 6. STFT of a Park vector, ip, of motor with STF fault. 
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Figure 7. STFT of a Park vector, ip, of motor with BRG 

fault. 

observed for 25 epochs. Since this is a multi-class 

classification problem, the cross entropy loss was used as the 

loss function and the Adam optimizer (Kingma, & Ba, 2014) 

was selected for optimizing the loss function. At the end of 

each epoch the model was validated with the validation 

dataset and results recorded, which is detailed in the 

following section. 

6. RESULTS AND DISCUSSIONS 

Figure 9 and Figure 10 illustrates the feature maps generated 

after the convolutional layer and max pooling layers of the 

trained CNN model in BRG and STF fault conditions, 

respectively. It is clear from the figures that the convolutional 

layer followed by the max pooling layer effectively identifies 

the specific locations within the spectrum associated with 

each fault condition. 

After training, the model was tested on a previously unseen 

test dataset. Inference on GPU takes slightly higher than 17 

seconds and that on CPU takes approximately 36 seconds to 

classify the 320 snapshots. Table 2 shows the confusion 

matrix of the model’s performance on this dataset. The STF 

fault was the most accurately classified among the three  

 

Figure 9. One of the feature maps after convolutional layer 

(left) and max pool layer (right) in BRG fault condition. 

 

 
Figure 10. One of the feature maps after convolutional layer 

(left) and max pool layer (right) in STF fault condition. 

 

Table 2. Confusion matrix of the model performance on test 

data. 

 Healthy STF BRG Percentage 

Healthy 94 0 3 96.9% 

STF 0 109 0 100% 

BRG 4 0 110 96.5% 

 

conditions with 100% of the cases being correctly identified 

as such. On the other hand, the model makes some mistakes 

while classifying the healthy and BRG fault conditions. 

Table 3 shows the performance of the developed model in 

classifying the three motor conditions. The model has an 

overall accuracy of 97.8%. Similarly high values of precision, 

recall, and F1-score are observed when the model encounters 

the test dataset. Such high numbers might raise the suspicion 

of overfitting or data leakage, which is the case where the test 

dataset was inadvertently used in training the model. Early 

stopping and L2 Regularization help in preventing overfitting 

of the model on the training dataset while the entire data 

pipeline has been verified manually to ensure that there is no 

data leakage. Thus, the performance as shown in Table 3 

highlights that the model has effectively learned the 

underlying pattern and can classify the three motor conditions 

effectively. Further, these high values in performance also 

indicate that the model is sufficiently complex to match the 

problem’s complexity.  

Table 3. Performance of the CNN model on test dataset. 

Metric Healthy STF BRG Overall 

Accuracy - - - 97.8% 

Precision 95.9% 100% 97.3% 97.7% 

Recall 96.9% 100% 96.5% 97.8% 

F1-Score 96.4% 100% 96.9% 97.78% 
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Figure 11. Histogram of predicted probabilities for each 

motor condition in test dataset. 

 

To further explore the inference pattern, a histogram of the 

predicted probabilities was drawn across different classes as 

shown in Figure 11. Histogram of predicted probabilities 

illustrates the confidence of the model in classification to 

different classes. The pronounced skewness towards the 

extremities of the probabilities indicates a high level of 

certainty in classification. This is especially true for the STF 

fault where the model has a hundred percent confidence if a 

given snapshot is indicative of an STF fault (probability = 

1.0) or not (probability = 0.0). On the other hand, the model 

is slightly less confident in identifying the healthy condition 

or the bearing fault as evidenced by relatively higher variance 

in the model’s predicted probabilities. 

7. CONCLUSION 

In this paper, we have successfully developed and 

demonstrated a method for enhanced diagnostics for IMDs 

used in wind turbine pitch system. In addition to detecting the 

operational state of the motor (healthy/faulty), this approach 

also helps in localizing the fault to the stator or the bearing of 

the IMD. The presented approach uses the extended Park 

vector approach (EPVA) and short-term Fourier transforms 

(STFT) to extract the time-frequency information from the 

three-phase induction motor currents taken as 30-second 

snapshots. These snapshots are then classified using a 

convolutional neural network. The high accuracy in 

classification of the conditions indicates that the model can 

accurately diagnose the state of the IMD in question. 

The advantage of the proposed method is that CNN requires 

only snapshots of 30 seconds each to determine the state of 

operation. Other than the sampling frequency, no additional 

information is required about the loading conditions or the 

frequency of operation, making it a suitable candidate for 

farm-level implementation. Further, as continuous 

monitoring is not required in this approach, it is ideal for WT 

pitch systems that operate intermittently. Since only 30-

second snapshots of motor currents are the requirement, the 

data transferred from the WTs will be minimal. 

The results presented here are tested on different motors of 

the same type, further validation of the methodology over 

different test motors could help strengthen the study in future. 

Additionally, at present two different fault conditions have 

been studied, more faults like broken rotor bar (BRB) faults 

or different stages of the STF could also be included in future 

works. 

While the CNN classifier can be used to determine the motor 

condition accurately, the bottleneck in this methodology is 

the STFT calculations, which are computationally intensive. 

Thus, as a next step, the authors intend to test different ML 

paradigms to bypass the STFT calculations and directly 

detect these conditions from the Park vector current, ip. 
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