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ABSTRACT 

Wind energy plays a vital role in meeting the sustainable 

development goals set forth by the United Nations. 

Performance of wind energy farms degrades gradually with 

aging. For deriving maximum benefits from these capital-

intensive projects, these degradation patten should be 

analyzed and understood. Variations in the capacity factor 

over the years could be an indication of the age-related 

degradation of the wind farms. In this study, we propose a 

novel data-driven model to estimate the capacity factor of 

wind farms, which could then be used to estimate its age-

related performance decline. For this, a 1-dimensional 

convolutional neural network (1-D CNN) is developed with 

a soft ordering mechanism under this study. The model was 

optimized using Huber loss to counteract the effects of 

outliers in data. The developed model could perform very 

well in capturing the underlying dynamics in the data as 

evidenced by a normalized root mean squared error 

(NRMSE) of 0.102 and a mean absolute error (MAE) of 

0.035 on the test dataset. 

1. INTRODUCTION 

The United Nations and its member states have set forth the 

sustainable development goals (SDGs), in which SDG 7 

outlines a commitment towards “ensuring access to 

affordable, reliable, sustainable, and modern energy for all” 

(Sachs, Kroll, Lafortune, Fuller, & Woelm, 2022). Five key 

targets have been identified towards attaining this goal. 

Targets 7.1 and 7.2 are of particular interest (Goal 7: 

Affordable and clean energy, 2024):  

• Universal access to affordable and clean energy sources 

prioritizing the transition to renewable energy and 

energy-efficient technologies by 2030 (Target 7.1).  

• Increasing the share of renewable energy in the global 

energy mix, encouraging the adoption of cleaner and 

greener alternatives to fossil fuels by 2030 (Target 7.2). 

Wind energy, with its meteoric growth in recent years, will 

play a significant role in contributing towards these targets. 

For example, the share of wind energy in the global energy 

mix has increased from 342 TWh in 2010 to 2, 125 TWh in 

2022 (International Energy Agency, 2023). With many large-

scale wind projects in various stages of development, this 

trend is expected to continue in the coming years as well.  

Wind turbines in a farm are often exposed to complex and 

harsh operational environments which adversely affects its 

health conditions and thereby its life expectancy. The average 

lifetime of wind turbines varies from 20 to 25 years, 

depending on the design features and operational 

environment (Adedipe, & Shafiee, 2021; Ziegler, Gonzalez, 

Rubert, Smolka, & Melero, 2018). During this period, wind 

turbines undergo gradual degradation in performance owing 

to the mechanical wear and tear over the years (Hamilton, 

Millstein, Bolinger, Wiser, & Jeong, 2020; Pan, Hong, Chen, 

Feng, & Wu, 2021), or the reduction in aerodynamic 

efficiency due to material erosion over the blade tips 

(Mathew, Kandukuri, & Omlin, 2022; Ravishankara, 

Ozdemir, & Weide; Sareen, Sapre, & Selig, 2014). It is 

estimated that, in Europe, nearly half of the wind turbines in 

operation will reach their end of designed life by 2030 

(Windeurope Asbl/Vzw, 2024). Thus, estimation of the long-

term performance of wind turbines in a farm is essential for 

identifying the possible system degradations over the years 

and thereby to plan   the maintenance strategies and end-of-

life decision support.  
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Figure 1. Age-related decline in capacity factor as reported by different studies. 

 

Despite the significance of understanding the health status of 

wind turbines through its performance degradation during its 

lifetime, most of the earlier studies   on condition monitoring 

focus solely on component level system reliability and 

availability (Staffell, & Green, 2014).  

Wind turbines have several components integrated within the 

system and several of such turbines work together with 

mutual interactions in a wind farm. Hence, an analysis at 

turbine and farm level would help in giving a wholistic 

picture of the degradation issues. With the extensive 

deployment of supervisory control and data acquisition 

(SCADA) systems, time series performance of wind turbines 

and farms can be analyzed using data-driven models. Further, 

the degradation pattern in wind turbines over their life span 

is highly site-specific in nature (Mathew et al., 2022). Thus, 

data-driven models can help in estimating the performance 

degradation in wind turbines accurately and accounting for 

site-specific factors leading to their degradation. The authors 

have earlier developed a site-specific degradation estimation 

model for a wind turbine operating in Norway (Mathew et al., 

2022). It was found that the reduction in performance of a 

wind turbine can be estimated using SCADA data and data-

driven models. Further, it was estimated that on average, the 

performance of the wind turbine under study declined 0.64% 

every year of its operation. Similar studies have been carried 

out for turbine-level estimation of performance degradation 

at Irish, and Italian sites (Astolfi, Byrne, & Castellani, 2021; 

Byrne, Astolfi, Castellani, & Hewitt, 2020), showing 

degradation estimates of 8.8% and 1.5% over 12 years of 

operation. Such wide variation in the performance 

degradations of wind turbines further strengthens the 

argument for their site-specific analysis. 

At a wind farm level, age-related decline in efficiency is 

quantified using the plant capacity factor (Cf), which is the 

ratio of the actual energy produced by the wind farm to the 

maximum possible energy it could have produced if it were 

operating at full capacity over the same period. In one of the 

earliest studies in estimating the wind farm level performance 

degradation, Hughes (2012) calculated the monthly capacity 

factor of wind farms operating in the UK and Denmark using 

10 years of operational data, which was used to estimate the 

decline in performance of 13% in the UK and 4% in Denmark 

over the course of its operation, respectively. Similar results 

were reported by several studies (Germer, & Kleidon, 2019; 

Hamilton et al., 2020; Hughes, 2012; Olauson, Edström, & 

Rydén, 2017; Staffell, & Green, 2014) in the literature as 

illustrated in Figure 1. In the figure, the age-related decline in 

performance of wind farms estimated using capacity factor is 

normalized to per year values as reported in these studies. 

These studies help in understanding the age-related 

performance decline in wind farm level and reiterate the 

regional and site-specific nature of the degradation 

phenomenon. However, most of these studies are based on 

cumulative data from different windfarms collected from 

public databases. Additionally, they depend on modelling the 

capacity factor based on meteorological reanalysis data and 

manufacturer’s power curve (MPC) of the wind turbine. 

Hence, these studies are not based on the data measured from 

the specific wind farm site under study. The site-specific 

dynamics play a significant role in the age-related 

performance degradation of wind turbines, and the 

performance estimated using MPCs generally differ 

significantly from field performance of the turbines (Veena, 

Manuel, Mathew, & Petra, 2020). This could adversely affect 

the accuracy of these analyses. A more systematic and 

accurate analysis of the wind farm level performance 

degradation can be achieved through models based on the 

site-specific data, derived from the SCADA systems. 

In this paper, we propose a deep neural network-based model 

to estimate the capacity factor of wind farms which can 

further be used for identifying the age-related performance 

degradation in wind farms. Apart from using the realistic data 

derived from SCADA for the site-specific analysis as 

discussed above, another novelty of the study is the use of 

convolutional neural network (CNN) model with the soft 

ordering mechanism. The remainder of the paper is organized  
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Figure 2. Schematic representation of modelling. 

as follows: Section 2 starts by explaining the rationale behind 

using CNNs. In Section 2.1, the theoretical framework behind 

CNNs is briefly explained. The soft ordering mechanism 

employed in order to transform the input data into appropriate 

inputs to the CNNs is introduced in Section 2.2. Section 2.3 

briefly discusses the 1-D CNN architecture and Section 2.4 

describes the methodology followed in training, validating, 

and testing this model. The results from this study are detailed 

in Section 3 and finally Section 4 concludes this work and 

traces the next steps in this ongoing study. 

2. METHODOLOGY 

The performance of wind turbines in a wind farm is 

significantly influenced by the high spatial and local 

correlation of wind speed at each of the turbines through site-

specific wake effects. But these correlations are further 

complicated due to the directional and stochastic nature of 

wind, making it harder for a straightforward analysis. Owing 

to their capability to extract salient feature representations 

from data with inherent spatial and local correlations, CNNs 

are a compelling approach to be explored. The overview of 

the methodology in estimating the capacity factor is shown in 

Figure 2. 

2.1. Convolutional Neural Networks 

The model for estimating the capacity factor in this study is 

based on CNN. CNNs are inspired by the natural vision in 

mammals and were popularized by Lecun et al. (1989) 

particularly for image recognition tasks. Even though the 

theoretical framework for CNNs predates this work, they 

used this architecture for automated extraction of features for 

vision related tasks. 

Convolutional layers are the fundamental building blocks in 

CNN. They serve as the feature extractors exploiting local 

connectivity, and spatial locality (Kiranyaz et al., 2021; 

Rawat, & Wang, 2017). In convolutional layers, a learned 

kernel convolves with the input producing a feature map. The 

property of local connectivity arises from the fact that each 

element in the feature map is connected to a local subset of 

neurons in the previous layer or the input pixels. Spatial 

locality, on the other hand, is the result of the high correlation 

between the local subset of input to the convolutional layer. 

The feature map element at (i, j) in the kth feature map of the 

lth layer can be calculated as: 

 𝑧𝑖,𝑗,𝑘
𝑙 = 𝒘𝑘

𝑙 𝒙𝑖,𝑗
𝑙 + 𝑏𝑘

𝑙  (1) 

where 𝒘𝑘
𝑙  and 𝑏𝑘

𝑙  are the weight vector and bias term of the 

kth filter of the lth layer, respectively. 𝒙𝑖,𝑗
𝑙  is the local subset of 

input to the convolutional layer centered at (i, j). However, 

when used for tabular dataset, convolutional layers expect 

spatial and local correlation between the features. Non-

linearity is generally introduced after convolution by using 

elementwise non-linear activation functions such as rectified 

linear unit (ReLU). ReLU outputs the input values as such if 

the input is positive and zero if the input value is negative. 

 𝑎𝑖,𝑗,𝑘
𝑙 = 𝑚𝑎𝑥(0,  𝑧𝑖,𝑗,𝑘

𝑙 ) (2) 

where 𝑎𝑖,𝑗,𝑘
𝑙  is the activation at position (i, j, k) in layer l after 

applying ReLU function. 

Pooling layers are an optional layer in CNNs which introduce 

shift-invariance to the feature maps produced by 

convolutional layers. Shift-invariance is achieved by 

reducing the resolution of the feature maps through average 

pooling or max-pooling depending on the task. The average 

pooling operation is given by: 
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Figure 3. Architecture of the proposed 1-D CNN with soft ordering mechanism.

where A is the activation map from layer (l-1), N is the 

number of elements in the pooling window Ri, j of dimension 

(m, n), and 𝑎𝑚,𝑛,𝑘
𝑙−1  is the activations from the pooling layer 

within the pooling window. 

Several convolutional and pooling layers are stacked in a 

CNN to extract higher level feature representations. Further 

one or more fully connected (FC) layers are used to achieve 

higher level reasoning in CNNs (Simonyan, & Zisserman, 

2014). The output layer is the final layer that uses task 

appropriate activation functions (e.g., sigmoid for 

classification or ReLU for regression). 

However, a key challenge is that CNNs are designed to work 

with data presented in a uniform grid-like structure akin to 

images. The wind speed input from the wind farm cannot be 

fed directly to the CNNs assuming each point as a “pixel” in 

the pseudo-image, as generated from the wind farm layout. 

This is because the layout of wind turbines in a wind farm is 

non-uniform, often dictated by the availability of wind and 

other external factors such as terrain, land use regulations etc. 

One solution for the irregular layout of wind farms is to pad 

the layout with zeros to make it a uniform grid like structure, 

which results in sparseness in the data. Sparseness in data 

may result in slowing down of training, reduction in model 

performance, and loss of spatial resolution.  

To overcome these limitations, in this study, we propose a 

novel application of soft ordering mechanism for CNNs in 

estimation of the capacity factor. Under this method, the wind 

data, which is in tabular form, is   reshaped into a multi-

channel image format. The advantage of this method is that 

the spatial or sequential relationships of the data are 

preserved without the need for following a rigid order. This 

makes the proposed method unique and more suitable for 

modelling wind farms, which normally have nonrigid 

geometries.  The proposed soft ordering 1-D CNN consists of 

two parts: a soft-ordering mechanism, and a 1-D CNN. 

2.2. Soft ordering mechanism 

Soft ordering is a technique to rearrange the data to introduce 

or preserve spatial or sequential relationships without 

following a rigid order. In this work, soft ordering is achieved 

by using an FC layer. The FC layer maps the input features 

into another higher dimensional feature space. This 

transformation helps in providing enough pseudo-pixels for 

the convolutional layers as well as to reorganize the features 

such that it mimics the spatial or sequential relationships in 

the data. The FC layer is followed by a non-linear activation 

function, ReLU in this work, for ensuring that the 

transformation can effectively learn a non-linear mapping.  

Finally, the newly rearranged features are reshaped into 

multi-channel pseudo-images. Thus, the convolutional layer 

extracts the features from a rearranged non-linear 

transformation of the original data, and the model learns to 

effectively rearrange the features adaptively. Thus, the entire 

model can be trained in an end-to-end manner without 

significant preprocessing steps. 

The soft ordering mechanism is shown in Figure 3, which 

takes in the input features and transforms them into non-

linear higher-dimensional representations of size 32768. 

These representations are then reshaped into 128 channels 

with a signal size of 256 to be fed into the 1-D CNN. 

2.3. 1-D CNN Architecture 

As opposed to CNNs used for image tasks, where the 

convolution is applied to a 2-D tensor, a 1-D convolutional 

layer takes in a single dimensional signal and applies a 

convolutional kernel of similar dimensionality, typically 

smaller than the signal. This makes it suitable for applications 

 𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑨)𝑖,𝑗,𝑘 =
1
𝑁⁄ ∑ 𝑎𝑚,𝑛,𝑘

𝑙−1

𝑚,𝑛∈𝑅𝑖,𝑗

 (3) 
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like natural language processing, audio signal processing, 

and time series analysis. 

In this work, the representations from the soft ordering 

mechanism are fed into the 1-D CNN. The 1-D CNN 

architecture is also shown in Figure 3. The first convolutional 

layer increases the number of feature channels to 256 while 

maintaining the size of each feature map at 256 by applying 

a convolution kernel of size 5. Subsequent adaptive average 

pooling layer reduces the feature map resolution to 128 x 1. 

The next three convolution layers apply a kernel of size 3 

with a stride of length 1 and output 64 channels of feature 

maps of size 128. A skip connection is also added from the 

output of the second convolutional layer to the output of the 

fourth convolutional layer as shown in Figure 3 to solve the 

problem of vanishing gradients and hence network 

degradation (He, Zhang, Ren, & Sun, 2016). A second 

average pooling layer further reduces the size of the feature 

maps while ensuring enough receptive fields to facilitate 

learning. Finally, the output from the average pooling layer 

is flattened and fed into a fully connected layer which makes 

the capacity factor estimations. ReLU activation function is 

used throughout the network to introduce non-linearity 

except to the outputs of the FC layer in the soft ordering 

mechanism, where continuously differentiable exponential 

linear unit (CELU) activation (Barron, 2017) has been used. 

CELU ensures that non-linearity introduced is smooth and 

continuous for all values and helps in capturing the negative 

values effectively avoiding dying ReLU problem (Lu, Shin, 

Su, & Karniadakis, 2019). 

Batch normalization has also been implemented to help the 

model learn faster and make training more stable by reducing 

internal covariate shift (Ioffe, & Szegedy, 2015). Further, 

weights normalization is also implemented to counteract 

vanishing or exploding gradients and improving 

generalization by preventing the weights from growing too 

large or too small (Salimans, & Kingma, 2016). 

2.4. Network Training 

The model was trained on a wind farm dataset operating at a 

Norwegian site, by collecting 13 years of operational data. 

Each of the twenty pitch-controlled wind turbines has a 2 

MW rated capacity. The turbines have cut-in, rated, and cut-

out velocities of 3 m/s, 18 m/s, and 25 m/s, respectively. The 

turbines had a rotor diameter of 82.4 m and were installed at 

a hub height of 70 m. The SCADA data from these turbines 

had a temporal resolution of 10 minutes (Under the non-

disclosure agreement, the data cannot be shared with this 

paper). The wind speeds and power generated by these 

turbines were collected from the data and cleaned for missing 

data and outliers. The initial four years of data from 2007 to 

2010 was used to train the model. 

The capacity factor of the plant was calculated which served 

as the target variable and the individual wind speeds served 

as the features. The data was divided into training, validation, 

and testing sets in the ratio 3:1:1. Huber Loss was used to 

calculate the losses for back propagation. Huber Loss is given 

by: 

𝑙(𝑦, 𝑥) =

{
 
 

 
 1

𝑁
∑0.5

𝑁

𝑛=1

(𝜖)2, 𝑖𝑓 |𝜖| < 𝛿

1

𝑁
∑𝛿

𝑁

𝑛=1

(|𝜖| − 0.5𝛿), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

where 𝜖 = 𝑦𝑛 − 𝑥𝑛 , is the residual, 𝛿  is the threshold for 

switching between the δ-scaled L1 and L2 losses, and 𝑦𝑛 is 

the model’s estimation of 𝑥𝑛 . The advantage of the Huber 

Loss is that it combines the benefits of both L1 loss (absolute 

error) and L2 loss (squared error) reducing the penalty for 

residuals less than the threshold and thereby making the 

model less sensitive to outliers than L2 loss. The Huber loss 

is sensitive to the threshold (δ) and was set as two times the 

standard deviation of the residuals from a basic regression 

model developed initially using inlier data. Additionally, L1 

losses and L2 losses across the training epochs were 

monitored to ensure that the model’s improvement on Huber 

loss is translated into real world improvement in the 

estimation of the model performance. Adam optimizer was 

used in this study for updating the parameters with 𝛽1 = 0.8 

and 𝛽2 = 0.999. The learning rate (LR) for the optimizer was 

empirically set to 8 × 10−4, with an exponential LR decay 

with 𝛾 = 0.9, meaning the LR would decay after each epoch 

gradually. This helps in having higher adjustments to the 

parameters in the beginning and relatively smaller ones 

towards the end of training. The model was trained over 200 

epochs implementing an early stopping mechanism that 

monitors the validation losses with a patience of 25 to avoid 

overfitting. Further, L2 regularization was implemented to 

reduce the chances of overfitting. While dropout layers were 

investigated for better generalization, it was found that the 

performance of the model was worse, and convergence was 

very slow. In the next section, we discuss the results of this 

experiment in detail. 

3. RESULTS AND DISCUSSIONS 

The various losses tracked during the training and validation 

phases are shown in Figure 4: (a) Huber loss, (b) L1 loss, and 

(c) L2 loss. As expected, the losses are high initially then 

quickly declining to a more gradual and stable loss condition. 

The validation losses in all three of the metrics show high 

variability across the initial epochs as the model begins to 

learn from the training data quickly stabilizing showing 

improvements in generalizability of the model. The best 

performing model was detected at the 94th epoch with a 

training and validation loss (Huber loss) of 3.1 × 10−3and 

1.6 × 10−3, respectively. The higher training loss observed  
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Figure 4. Various losses tracked during training: (a) Huber 

Loss, (b) L1 Loss, and (c) L2 Loss. 

across the epochs are a result of the regularization methods 

applied during training. The corresponding MAE and mean 

squared error (MSE) for the training and validation phase can 

be seen in Table 1. 

Table 1. Performance of the best model in training, 

validation, and test datasets. 

Loss Training Validation Test 

Huber loss 3.1 × 10−2 1.6 × 10−3 1.7 × 10−3 

MAE 5.6 × 10−2 3.5 × 10−2 3.5 × 10−2 

MSE 1.4 × 10−2 8.5 × 10−3 1.0 × 10−2 

 

 

 Figure 5. Comparison of the model predicted capacity 

factor to the measured capacity factor. 

The model thus finalized, was tested with test data, which 

was not used in the training or validation phases to measure 

the generalizability of the model. Figure 5 shows the 

performance of the model on the test dataset. The blue scatter 

indicates the model prediction compared to the calculated 

values and the distance of these points from the red line 

indicates the residuals of the prediction model. The training 

curves (Figure 4) and the comparison in Figure 5, highlight 

the generalizability of the model to new data and performance 

of the model on new data, respectively. 

The different error metrics in Table 1 quantifies this 

performance with a slightly higher Huber loss in predicting 

new datapoints. The normalized root mean squared error in 

predicting the capacity factor for the test dataset was 0.102. 

With only 0.363% of the test dataset having a residual value 

of more than 0.2, the model is found to be effective in 

capturing the plant capacity factor.  

Figure 6 shows the actual and predicted power over different 

months in a year. It is evident that the predictions and the 

calculated values are in close agreement with each other. The 

yearly capacity factor of the farm was calculated as 0.298 

against which the model prediction was 0.305. These results 

further support the argument that the model performs 

exceptionally well in predicting the wind farm capacity 

factor. 

In previous studies on the age-related performance decline of 

windfarms, instead of the real data collected from the sites,  

(a) 

(b) 

(c) 
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Figure 6. Comparison of actual and predicted power over 

different months in a year. 

the wind estimates from the numerical weather prediction 

(NWP) models are used for estimating the capacity factors. 

Though the errors due this approximation are not specified in 

these studies, obvious differences between the NWP wind 

predictions and the real velocities available for the turbines 

could bias the model and thereby adversely affect the 

reliability of the results. In contrast, real wind measurements 

are used in the present work which resulted in accurate 

capacity factor predictions as evident from the low errors 

values. Similarly, while comparing with some CNN based 

studies for wind farm performance predictions (Chen et al., 

2021; Kazmi, Gorgulu, Cevik, & Baydogan, 2023; Liu et al., 

2021), the proposed soft ordering approach could improve the 

performance of the capacity factor estimations. 

4. CONCLUSION 

Wind turbines operating in a farm are exposed to complex 

operational conditions, causing degradation in their 

performance over the years of their operation. This age-

related performance decline, if quantified at a wind-farm 

level, could contribute towards making efficient decisions at 

their end-of-life. As a first step towards this objective, we 

developed an intelligent algorithm for the estimation of wind 

farm capacity factor in this paper. 

To predict the capacity factor of a wind farm, a 1-dimensional 

convolutional neural network has been trained exploiting the 

local connectivity inherent in wind farms. However, to 

sidestep the irregularity in wind farm layouts, while still 

using CNNs to model their performance, a soft ordering 

mechanism is used. The soft ordering mechanism in addition 

to the 1-D CNN, was able to effectively capture the inherent 

spatial dynamics in the wind farm as evidenced by the results 

discussed in the previous section. The model developed in 

this paper has a normalized root mean squared error of 0.102. 

This indicates that the errors in the model predictions are 

approximately 10.2 % of the range of the target values. This 

indicates that the proposed method could predict the capacity 

factor of the wind farm with high accuracy. Further, the 

performance of the model on previously unseen dataset 

(MAE: 0.035, MSE: 0.010), shows that the model can 

generalize well to newer data coming from the wind farm 

even though it was trained on data from earlier.  

For developing the proposed model, high quality SCADA 

data are required, which may limit its applications in farms 

which do not have such systems in place.  Nevertheless, most 

of the contemporary wind farms have implemented the 

SCADA systems and with the availability of the required 

data, the soft ordering 1-D CNN model developed under the 

study could further be used to estimate the age-related 

performance degradation in wind farms. This will be 

demonstrated by the authors through their ongoing research 

where logs on the turbine maintenance will also be 

considered. 
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