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ABSTRACT 

Autonomous vehicles (AVs) are undergoing level 4 
technology development and should have a system that can 
be operated without driver’s intervention, so that it must be 
possible to diagnose failures and predict life cycle 
themselves. In this study, we propose a technology to 
estimate signal changes and sensor faults through transfer 
learning-based domain generalization (TLDG) using limited 
actual vehicle test information from LiDAR for autonomous 
vehicles. Because autonomous vehicles operate in various 
climate/weather conditions over the world, their mechanical, 
electrical and electronic components must also have stable 
performance in all environmental conditions. However, an 
electronic device, especially laser diode (LD), which is one 
of core components of LiDAR, shows various degradation 
aspects depending on environmental conditions. We acquired 
multivariate LiDAR performance data under various 
environmental conditions through an actual vehicle test 
driving of about 2,000 km in summer and winter, and based 
on this, we create the LiDAR fault diagnosis and performance 
prediction model generalized to the domain under various 
environmental conditions. Fault prediction and estimation 
model created through summer and winter data in the 
environment domain will also adapt to other environmental 
conditions such as spring and fall. To develop highly accurate 
performance estimation models under various environmental 
conditions based on limited data, it is very important to 
extract correlations and characteristics between data, 
including environmental conditions. We employ the data 
augmentation techniques to solve the problem of lack of 
training data and apply bi-directional Bayesian transfer 
learning to generalize data and models under uncertainty. To 
prove the effectiveness of the present study, the data from 

actual vehicle tests conducted at different temperatures will 
be divided into train data and test data, and the validity of the 
generalized degradation performance estimation model will 
be statistically validated. The proposed domain 
generalization method, i.e., TLDG can be utilized to estimate 
signal changes and sensor faults in LiDAR under 
unexperienced environmental conditions such as weather 
changes, and even freezing and hot regions. 

1. INTRODUCTION 

With the advancement of automobile technology, such as 
autonomous driving, the need for technology to diagnose and 
predict automobile failures is emerging. For example, there 
are AI-based vehicle big data analysis, pre-failure diagnosis 
and remaining life prediction of parts and systems, and 
predictive maintenance technology, and these technologies 
ultimately aim to improve vehicle safety and availability. In 
level 4 autonomous driving, there is no driver intervention, 
so the system must independently diagnose and predict 
failures to ensure safety. Real-time fault diagnosis of 
autonomous systems is being studied in a variety of ways 
using data-driven approaches.  

AV sensors are composed of composite materials and 
various electronic elements. As a result, the performance of 
the sensor may vary depending on the weather environment, 
and abnormal operation of the sensor may occur under severe 
conditions (Zhao et al., 2023). Abnormality diagnosis is 
possible by detecting and scoring abnormal information from 
changes in sensor performance. Real-time fault diagnosis of 
autonomous driving systems is being studied in a variety of 
ways, mainly using edge artificial intelligence (edge AI) and 
data-based approaches (Gültekin et al., 2022). Research on 
anomaly detection based on statistical and classification 
techniques has been active (Ahmed et al., 2016), and recently, 
research on AI technique-based methods such as adversarial 
learned denoising shrinkage autoencoder (ALDSAE) has also 
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been actively conducted in the field of autonomous vehicles 
(Fang et al., 2023). 

Failure prediction and evaluation using transfer learning-
based domain generalization presents an innovative approach 
to solving key problems in the automotive industry and 
robotics fields (Xu et al., 2019). Domain generalization 
techniques frequently provide solutions to rotating machinery 
fault diagnosis problems. The initial approach developed and 
verified the model under conditions where both training and 
test data were available. Recently, a method has been 
proposed to generalize learned knowledge to a new target 
domain without assuming the availability of test data (Li et 
al., 2020). Additionally, a new approach called cross-domain 
augmentation diagnosis, which enables robust defect 
detection even when the target domain is unknown, is also 
being studied (Li et al, 2023). However, previous research 
addresses domain generalization and domain expansion 
techniques for signals with repetitive operating patterns, such 
as rotating devices. This is difficult to apply in problems 
considering multiple stresses because only limited 
parameters are covered when performing domain 
generalization. Because automobiles are used all over the 
world, all systems must operate in a variety of temperature 
environments. Therefore, when developing safety 
improvement technologies such as failure prediction, they 
must be trained or verified considering the distribution of 
various climate environments. However, due to the 
considerable time and financial investments required for 
collecting data through sensor performance measurements 
across various temperature environments, there are inevitable 
limitations to the available training and test datasets. 
Moreover, since sensor components comprise various 
electronic elements and composite materials, they 
demonstrate different operating characteristics upon 
temperature fluctuations. Consequently, there is the potential 
for poor performance when diagnosing faults based only on 
limited training data. This problem can be solved through 
transfer learning-based domain generalization technology, 
and in this study, we aim to solve the fault detection problem 
of LiDAR sensors by applying this technology. 

In this study, we review the failure modes of LiDAR sensors 
and select target parameters necessary for failure diagnosis 
and prediction. The main contributions of the study are as 
follows: 

• Through FMEA analysis of LiDAR defects, we 
investigate the causal relationship of LiDAR failures that 
may occur in the vehicle environment, and this allows us 
to present a practical and versatile model as it deals with 
hardware level defects by selecting key parameters. 

• To solve the problem of accuracy degradation due to 
outliers encountered in domain generalization problems, 
we propose an Archimedes spiral-based preprocessing 
method based on the relationship between input and 
output data. 

• The proposed method provides considerable diversity 
and flexibility by allowing sensor faults to be predicted 
with minimal information under diversifying 
environmental conditions, and the same method can be 
easily applied for other failure modes. 

The rest of the paper is organized as follows. Section 2 gives 
a failure mode analysis to select key parameters for this study. 
Section 3 presents preprocessing techniques for outlier data, 
and Section 4 describes the domain generalization method. 
The experimentally study is shown in Chapter 5 and finally 
we conclude in Chapter 6. 

2. FAILURE MODE ANALYSIS 

LiDAR uses a laser light source to measure distance and 
recognize the surrounding environment and obstacles. It 
consists of various components such as laser diodes, 
thermoelectric elements, signal processing modules, optical 
lenses, and galvano scanners. In the driving environment, 
stresses such as heat, vibration, and electrical noise 
continuously occur, which can causes breakdowns of LiDAR 
sensors (Chang et al, 2023). The potential failure modes of 
frequency modulated continuous wave (FMCW) LiDAR are 
shown in Table 1. Thermal management of FMCW lidar 
sensors is directly related to sensor performance. When 

Table 1. Failure mode analysis of AV LiDAR sensor 
 

Components Potential failure mode Potential effects of failure Potential factors of failure 

Laser 
device 

Decrease light intensity Loss of distance information High temp/humid., Thermal fatigue 
Fail to detect a returned signal Increase in false detection High humid, Vibration 
Fail to keep managed temp. Non-operation of the sensor High/Low temperature 

Control 
board 

Open circuit Non-operation of the sensor Thermal fatigue, Vibration 
Short circuit Unintended operation Ingress of dust and moisture 

Lens 
Fail to focal length Increase in missed/ false detection Thermal fatigue, Vibration 
Surface contamination Increase in missed/false detection Ingress of dust and moisture 

Galvano- 
meter 

Poor responsiveness of actuator Decrease in sampling rate of scanning Low temperature, Vibration 
Optical axis misalignment Increase in missed/false detection Thermal fatigue, Vibration 
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analyzing design vulnerabilities through accelerated stress 
testing, a failure mode in which the laser output of the LiDAR 
sensor was suddenly cut off under high temperature 
conditions was identified. This failure mode occurs when the 
ambient temperature of the laser diode module rises above 
approximately 75°C. Considering the climate environment of 
hot weather regions and the sensor self-heating, it can be 
classified as a failure mode that requires management 
because it is a condition that can be sufficiently exposed. The 
laser diode module uses a Peltier-based thermoelectric cooler 
(TEC) and controls voltage and current to enable the laser 
diode to maintain a constant temperature. However, when the 
ambient temperature exceeds a certain range, TEC control 
ability is lost, and thermal runaway of the laser diode module 
occurs. 

3. OUTLIER DETECTION 

In this paper, a study is conducted using the data of the 
multivariate database acquired through actual vehicle driving 
test. In the case of actual vehicle driving test data, outliers 
occur due to uncertainty factors such as road environmental 
conditions, equipment defects, and frequency errors. To 
create a robust model, these outliers must be selected and 
processed in advance and used for training. 

As a study on outlier detection, a study has been conducted 
to propose a fast diagnostic method for internal short circuit 
(ISC) through local-gravitation outlier detection (Yuan et al, 
2023). There is also research on the performance 
improvement of mechanical failure diagnosis based on audio 
signal analysis (MFDA) based on outlier detection (Tang et 
al, 2022).  

We would like to propose a signal processing method 
through Archimedes spiral as a new outlier detection method. 
Using the following method, Archimedes spiral can be used 
to create a deep learning model that is generalized to the 
domain without overfitting. When Archimedes Spiral is 
expressed using a polar coordinate system, it can be 
expressed as Equations (1) using the real constant 𝑎,  𝑏 and 
the angle 𝜃. Changing the parameter b controls the distance 
between loops. Since we want to check that the output value 
changes for the input variable, we just need to check how the 
distance of the spiral changes at a specific angle set as the 
input variable. Here, when input data is 𝑥!"#$%  and output 
data is 𝑦&$%#$%, it can be expressed as Equation (2). Next, to 
solve the problem that is not visually clear by setting the 
starting point as the origin when drawing the spiral, the data 
was normalized between 2𝜋 and 4𝜋 at the start of the second 
spiral, as shown in Equation (3) and (4). When the data is 
sorted through this, data including the uncertainty factor 
appears as an area, and data processing based on the 
confidence interval is possible according to the data area.  

 

 𝑟 = 𝑎 + 𝑏 ∙ 𝜃 (1) 

 

 (𝑟, 𝜃) = (𝑥!"#$% ∙ 𝑦&$%#$%, 𝑥!"#$%) (2) 

 

 

 

𝑥"&'()*!+,- =
𝑥'). − 𝑥(!"	
𝑥()/ − 𝑥(!"

 (3) 

 

 

 

𝑥!"#$% = 2𝜋 ∙ 𝑥"&'()*!+,- + 2𝜋 

𝑦&$%#$% = 2𝜋 ∙ 𝑦"&'()*!+,- + 2𝜋 
(4) 

As illustrated in Figure 1, if you enter the temperature data 
of LiDAR in 𝑥 and the current TEC current to be estimated 
in 𝑦 , normal data and outlier data are distinguished. In 
addition, it is possible to statistically process the outlier of the 
data through the confidence interval. Ultimately, we want to 
create a regression deep learning model through the data 
classified as normal and generalize it to the domain. 

 
(a) 

 
(b) 

Figure 1. Archimedes spiral of LiDAR temperature to TEC 
current of laser diode, (a) Archimedes spiral, (b) 

Comparison of preprocessing results 
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4. TRANSFER LEARNING-BASED DOMAIN 
GENERALIZATION 

In this paper, we propose a transfer learning-based domain 
generalization method to overcome the limitations of data 
acquisition under various environmental conditions, 
including extreme conditions. It is known that transfer 
learning can improve predictive performance in terms of 
interpolation or extrapolation of the model by utilizing only 
a small amount of data from the target domain based on the 
model generated using the source domain (Weiss et al, 2016). 
However, domain generalization differs in predicting 
physical phenomena in the unseen domain region using 
improved models. We intend to gradually transfer a small 
amount of data to the target domain, use it to predict data in 
the new unseen area, and use it again as target data for 
transfer learning to generalize the domain. As illustrated in 
Figure 2, First, we created a regression model based on deep 
natural network (DNN) that predicts TEC current using 
temperature, humidity, current, and voltage data for the 
underlying source domain. Next, after importing the feature 
extraction area of the underlying source domain model to be 
untrainable, transfer learning was performed by adding new 
layers for transfer learning. 

 
Figure 2. Architecture of transfer learning 

5. EXPERIMENTAL STUDY 

5.1. Datasets 

In this paper, LiDAR data acquired through actual vehicle 
driving data in summer were used. Temperature, humidity, 
current, and voltage data were measured including TEC 
current of the Laser diode, and actual vehicle driving test data 
of more than 1000 km including city, country, and highway 
were acquired. The sensor used was the FMCW 4D LiDAR 
G-Series from Infoworks, and the internal and external 
temperatures of the sensor were measured using the SHT45-
AD1B temperature sensor from Sensirion. Actual vehicle test 
data was obtained by installing the LiDAR on a Hyundai 
Azera and collecting TEC current and temperature data under 
actual driving conditions. Through this, 283,706 data points 
were acquired every 0.25 seconds. As illustrated in Figure 3, 
The left axis represents temperature, and the right axis 

represents TEC current. The environmental temperature is 
28.96°C to 45.65°C, and in the case of TEC current, it may 
be confirmed that outlier exists. Among them, 268,402 data 
in which outliers were removed were selected through outlier 
detection based on Archimedes spiral. In addition, the ratio 
of training, validation, and test data was divided into 0.6, 0.2 
and 0.2, and normalization was performed and used for 
training and model evaluation. For training, the temperature 
range of the training data and the temperature range of the 
test data were set by setting the scenarios of interpolation and 
extrapolation, respectively. And for transfer learning, 0.5% 
of the test data was arbitrarily extracted and set as data from 
the target domain. 

 
Figure 3. Actual driving test data for temperature (°C) and 

TEC current (mA) 

5.2. Results 

This paper proposes a method for predicting data based on 
outlier detection and transfer learning using actual driving 
data. All data were utilized in a state where outlier detection 
was conducted by Archimedes spiral. This method shows 
superior performance compared to other preprocessing 
techniques. Specifically, when comparing accuracy using 
methods interquartile range (IQR) and Hampel filter, the 
outlier detection performance was 3.23% for method IQR and 
83.26% for method Hampel filter, while our proposed 
method demonstrated a performance of 100%. Before 
represents the result before performing transfer learning, and 
after represents the performance after transfer learning. First, 
looking at interpolation case 1, data from 35°C to 40°C were 
used as test data, and other data were used as training data. 
Although the error improved from 0.01 to 0.0009 based on 
mean absolute error (MAE), the r-squared of the DNN model 
was so good that the interpolation problem did not require 
transfer learning. This was also shown in the case of 
interpolation case 2. However, in the case of extrapolation, 
the performance error of the model before transfer learning is 
relatively large. However, if improvement is made through 
transfer learning, in case 3, it improved from 0.81 to 0.96 
based on r-squared, and MAE also improved from 0.027 to 
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0.010. Finally, in the case of case 4, which used only data up 
to 35°C as training data, it improved from 0.77 to 0.99 based 
on r-squared, and MAE also improved from 0.066 to 0.014. 
The results of case 4 are expressed visually through Figure 4.  
The prediction accuracy gradually decreases in the case of 
test data far from the area of the train data. However, after 
transfer learning, prediction accuracy has improved even in 
areas away from training data. 

 
Figure 4. Extrapolation result for Case 4 in Table 2 

6. CONCLUSION 

In this paper, we propose a transfer learning-based domain 
generalization model for FMCW LiDAR signals that change 
with external temperature changes. This introduces a new 
approach to predicting LiDAR sensor errors by allowing 
sensor behavior to be predicted in unseen regions. LiDAR 
failure mode analysis justifies the selection of TEC current as 
a predictor and experimentally demonstrates the nature and 
validity of this signal. Real-world driving data often contains 
outliers due to various errors, and using Archimedes Spiral-

based data preprocessing improves the prediction accuracy of 
the model. In the generalization task, temperature, humidity, 
current, and voltage data from the source domain were used, 
and transfer learning was performed using a DNN-based 
regression model and a new Dense Layer. The generalized 
model showed high accuracy and proved to be effective for 
extrapolation. Extensive training data covering a variety of 
climate conditions can further improve the accuracy of this 
model. The existing model was developed using only 
summer data, but future iterations will incorporate winter 
data to develop a domain generalized model that takes low-
temperature environments into account. Through 
interpolation methods, it may be possible to predict sensor 
failure under all climatic conditions in Korea. Our goal is 
failure prediction under severe weather conditions. This is an 
extrapolation technique, and we plan to develop a domain-
generalized model that can predict failures in hot areas like 
Phoenix or even in extreme cold areas like Minneapolis. This 
research could have important implications for diagnosing 
and predicting electronic component failures at the vehicle 
level and could be widely applied to other components as 
well. 
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