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ABSTRACT

Data-driven Prognostic and Health Management (PHM) is
gaining more and more popularity, to the point where it is
often seen as a potential solution for any maintenance prob-
lem. To the opposite, it is known that, when the physic of a
system is known and tractable, it is usually the most efficient
way to infer relevant indicators for detecting system beha-
viour changes. And sometimes, when the physic of a system
is not known, data-driven approaches can highlight critical in-
formation leading to the right physical assumptions, and then,
to the right health indicators.

This paper presents a real-life and successful such “reversed”
case study. With focus on the estimation of a measurement
system head degradation, a data-driven approach helped to
identify the right signal processing tools with which to ana-
lyse the data. Using spectral analysis with windowed Fourier
transform, the physics of the recalibration events could be hy-
pothesized, and then used for deriving the most relevant de-
gradation indicators. These indicators have been implemen-
ted online and so far used successfully on several machines
encountering degradation of their measurement head.

1. INTRODUCTION

This paper focuses on Prognostic and Health Management
(PHM) with the case study of a measurement head system.
High precision measurement heads combine usually two dif-
ferent position measurements to achieve high-accuracy. First,
an absolute grading (physical or magnetic) gives at regular
interval the precise position of the head. Second, in between
each reading, the head interpolates its location. This could
be done thanks to a Doppler-effect measurement or thanks to
electromagnetic interferences.

In many cases, these systems are used in industrial machines
achieving precise task: product measurement, cutting, print-
ing, etc... To the opposite of applications, like product meas-
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urement, were only the final position is necessary, for applic-
ations where machines perform their tasks continuously (like
3D printing for example), the position of the operating head
should be known with high precision at every time. This is
paramount to high-quality products and requires a very good
match between both the interpolated and the absolute posi-
tion. When the system is well-calibrated, this is usually the
case but events can threaten this calibration. Deteriorations
could arise among others, from a bad recalibration after a
maintenance task, from displacement after a shock or with
time or maybe from dirt masking the measurement head (if
operated in a dirty environment, or if manipulated with dirty
tools).

When such problems occur, the miss-match between the two
combined readings can have unexpected impacts on the sys-
tem, in particular through the feedback loop between the
reading and the control, and eventually, the job quality is de-
creased. To avoid such degradations, preventive maintenance
is often the answer but it has its known drawbacks, like the
risk of over-maintaining the system, leading to high mainten-
ance costs, or the lack of reaction when sudden changes oc-
cur. Therefore, the detection of these calibration problems is
an important challenge for the industry. Recent technological
advances have overcome most of the technical requirements
for real-time monitoring of fleet of systems, in particular, it
is much easier to connect the machines to the internet and to
analyse data sent from the customer sites in a single place.

In the rest of this paper, we present how we faced this prob-
lem, starting with as little knowledge on the physical system
as the one presented above. After a first attempt to solve the
problem with machine learning, applying neural networks in
Section 2, we identified the system well-defined behaviour in
Section 3 with signal processing and spectral analysis. This
lead us to propose a first health monitoring indicator. Re-
fining our understanding of the data, we propose additional
suitable health monitoring indicators and a implementation
framework in Section 4.
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2. FIRST APPROACH: EXTREME LEARNING MA-
CHINES

Previous works have shown that neural networks could be
used for health monitoring. In particular, Hierarchical Ma-
chine Learning (HELM) have proven to be efficient for learn-
ing “normal” conditions and then detecting any deviation
to these conditions (Michau, Palmé & Fink, 2017; Michau,
Yang, Palmé & Fink, 2018). Thus, as a first answer to the
monitoring of the measurement head health monitoring, we
trained a simple HELM. The reasons why HELM is a good
candidate are mainly twofold: First, HELM first layer is an
auto-encoder with sparse feature-to-variable connections (`1-
regularisation), making it efficient to handle a vast amount of
correlated inputs. It is thus a robust approach that does not
require much pre-processing or feature pre-engineering. As
the system we are working with, records over 50 variables
on 3 measurement heads at the same time, such efficient di-
mensionality reduction seemed necessary. The system is in
fact made of three engines used to move the machine, each
engine with one measurement head. For each head, many
variables are recorded, among others, position, speed, torque,
electric current,... The second reason lies in that the HELM
last layer is a one-class classifier, efficient to measure simil-
arities between the training and the testing data. Therefore, if
for any reason the testing data are behaving differently from
the training, it should be detected.

Figure 1a represents an illustration of the HELM architecture.
HELM is a superposition of stacked random neural networks
(or Extreme Learning Machines) with as many stacked auto-
encoder as one wishes and last, a classifier layer. In this case
study, the HELM we used is composed of one auto-encoder
and one one-class classifier.

Applying this HELM to laboratory experiments brought very
encouraging results. Training the HELM with well-calibrated
heads on a controlled movement plan led to very good de-
tection rates as soon as one of the three head was manually
deteriorated. Figure 1b illustrates the HELM output for this
first case study. The one-class classifier output can be inter-
preted as a distance to the normal class. A threshold is defined
based on a clean validation dataset. When the threshold is ex-
ceeded, this is considered as an anomaly detection. For the
three deteriorated datasets, the detection rate is very high (in
Figure 1b, most of the data-points are above threshold).

However, if it is known that HELM is very good at learning
the data it is trained with, it lacks, as many machine learn-
ing tools, of the capacity to extrapolate its learning to achieve
robustness toward slightly different operating conditions. In
Figure 1c, an additional dataset is tested. The head were well
calibrated but a different movement plan was used, with dif-
ferent speed settings. This dataset is detected as abnormal.

If there are some already existing trails for achieving better

robustness to various operating conditions or for fleet train-
ing of the HELM (Michau, Palmé & Fink, 2018), a charac-
teristic of the HELM output stroked. Zooming strongly on
the HELM output for deteriorated head datasets, highlighted
some periodic oscillations. It is not surprising that problems
in reading the position for a moving system would lead to
vibratory effects in the machine, it is actually, why such mis-
reading are problematic, but the period of these oscillations
made it worth to have a closer look from a spectral analysis
perspective.

3. SPECTRAL ANALYSIS: WINDOWED FOURIER
TRANSFORM

The vibratory behaviour of the HELM output, led us to have
a deeper look at the different available variables from a spec-
tral analysis perspective. In PHM, many machineries in-
clude rotary parts and therefore, vibrations are usually mon-
itored: they are usually both symptoms of developing prob-
lems, when the spectral composition changes over time, and
cause for potential additional problems if their amplitude in-
crease too much. This is particularly true for machines with
bearings. Therefore, in traditional PHM, vibrations of rotat-
ing parts have played an important role (Dalpiaz & Rivola,
1997; Goyal & Pabla, 2016; Jardine, Lin & Banjevic, 2006;
Newland, 1989; Scheffer & Girdhar, 2004). To the oppos-
ite, vibrations caused by feedback loops, as it seems to be the
case here, have been far less explored for condition monit-
oring. In most cases, focus is on preventing them from the
control (Mirafzal, Khorasani & Ghasemi, 2016).

In the following we revisit the theoretical foundation of the
Fourier Transform. If the theoretical tool has already been
well studied, as well as vibrations in condition maintenance,
it is used here for the understanding of the system behaviour.
In addition, highlighting the major strengths and limitations
of that tool, we propose a framework on how it can be applied
to our case study.

3.1. About the Windowed Fourier Transform

The Fourier Transform is a reversible mathematical opera-
tion, which consists in describing a time varying function
(signal) from a frequency perspective. If X(t) is a signal,
then its Fourier Transform F (ν) is given as

∀ ν ∈ R, F (ν) =

∫ +∞

−∞
X(t)e−2πiνtdt (1)

It has an direct physical interpretation and is reversible, giv-
ing a one-to-one correspondence between the time and the
frequency domain.

If in its primary formulation neither the frequency, nor time
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(a) (b) (c)

Figure 1. HELM: (a) Structure of an HELM. HELM consists in stacked auto-encoders for unsupervised learning with a last
supervised layer (regression or classification). (b) 1-class HELM output for four datasets with same movement profile. The
horizontal blackline represent the threshold above which abnormal movement conditions are detected. (c) HELM output for the
4 four same datasets and an additional dataset, from a clean head, but with a different movement profile and different parameters
of the machine.

domains are bounded, it can be adapted to sampled data as:

∀ ν ∈ R, F (ν) =
1

tend

+∞∑
t=−∞

X(t) · Itend
t=0(t) e−2πiνtδt (2)

=
1

tend

tend∑
t=0

X(t)e−2πiνtδt (3)

=
1

N

N∑
n=0

X(n)e−2πiν n
Fs (4)

where

∀t ∈ R, Itend
t=0(t) =

{
1 if t in [0, tend],
0 otherwise, (5)

the sampling increment is δt = 1
Fs

, with sample N , the last
at tend = N · δt.

The function F (ν) as defined here is periodic with period
Fs and, if X , the signal, is real-valued, F (ν) is in addition
symmetrical around Fs/2. With N sampling points for fre-
quencies ν ∈ [0, Fs/2], this leads to a frequency resolution:
ν = k

N · Fs where k ∈ [[ 1, N2 ]] .

The Discrete Fourier Transform for real signals is therefore:

∀ k ∈ [[ 1, N2 ]] , F (k) = 2
N

∑N
n=0X(n)e−2πik n

N (6)

Those two last points are actually highlighting the two most
important property of the discrete Fourier transform: First,
one can only sample frequencies up to Fs/2. Above this fre-
quency, there will be spectral aliasing. Second, the spectral
resolution depends only from N , the number of points from
which the signal is made. To achieve higher temporal resol-
ution of the spectrum, it is customary to use as input to the
Fourier transform part of the signal (or a window), yet this is
at the expense of spectral resolution. Convolving the signal

with a window function and applying the Fourier transform
leads to the construction of a spectrogram, whose temporal
resolution (resp. spectral) becomes higher (resp. lower) as
the windows becomes smaller.

The results of the windowed Fourier Transform depends
therefore on these three major points:

1. Events impacting the signal with frequencies below half
the sampling frequency only can be observed1.

2. High temporal precision in the spectrum is achieved with
small windows but at the expense of the spectral resolu-
tion (δν = 1

N ·Fs
).

3. The convolution with a function to create a window
is not a innocent operation: one can easily show that,
FT ((f ? g)(t)) = FT (f(t)) · FT (g(t)), where ? is
the convolution operation2. The spectral composition of
the window is multiplied with that of the signal, caus-
ing some artefacts in the spectrogram. If by default, the
Hamming windows is usually applied for its good spec-
tral localisation, this choice needs to be justified by the
case study. The choice of the window relies on a trade-off
between better frequency amplitude estimation, artefacts
and cut-off frequency (that is a frequency under which all
their Fourier coefficients are close to zero). We will see
that, in this paper, the rectangle Fourier transform might
later be preferred, despite its lack of spectral localisation,
as it better estimates the amplitude coefficients and as it
has a lower cut-off frequency.

The choice of the window is illustrated in Figure 2 for the

1This is actually intuitive: to observe a frequency, it requires at least two
points per period (one up, one down)

2(f ∗ g)(t) =
∫∞
−∞ f(τ)g(t− τ) dτ =

∫∞
−∞ f(t− τ)g(τ) dτ

3
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Figure 2. Spectrograms of the signal in Equation (7), with
Hamming windows (left) or rectangle windows (right). The
windows size are 5, 100 and 500 (top to bottom). Bigger time
windows bring better spectral resolution, but worse temporal
localisation of the frequency change. The rectangle windows
may have artefacts but give a better estimate of the signal
component amplitudes.

signal

∀ t ∈ [0, 1000], X(t) =

{
sin(2π t

10 ) + sin(2π t3 ) if t < 500,
sin(2π t

80 ) + sin(2π t3 ) if t ≥ 500.
(7)

The left column is when using a Hamming windows, the right
when using a rectangle windows. The first line is for a win-
dow of size 5, the second of size 100, and the third of size
500. As the windows size increases, localising the spectral
transition at t = 500 becomes harder, but the frequencies are
more and more detailed. In the left-column, where the Ham-
ming windows has been used, the spectrogram looks cleaner
than with the rectangle window (fewer artefacts) but the amp-
litude of the original signal components are under-evaluated.

3.2. Applying the Windowed Fourier Transform

By doing the spectrogram of the deteriorated head speed sig-
nal as represented in Figure 3, clear frequency patterns ap-
peared. These patterns could be matched with the speed
profile with a perfect linear correlation (cf. Figure 3, dashed
magenta line).

To explain this phenomenon, remember that the measurement
system is composed of two scales, one with absolute position

Figure 3. Spectrogram of the Speed signal. In dashed pink,
the speed profile superposed and stretched to match the ob-
servable patterns (1Hz = 10−3m/s).

reading and one induced by interpolation in-between absolute
readings. If we assume that, when the head deteriorates, its
interpolation loses accuracy, we could expect the system to
recalibrate its position at absolute readings. In fact, when the
head is moving at a local speed v, we could expect recalibra-
tion events to occur every δx

v where δx is the distance between
two absolute readings. By computing for small time windows
(e.g., , the one used to perform the spectrogram) the average
local speed as v̄(t), we can compute the expected recalibra-
tion frequency as

frec(t) =
v̄(t)

δx
(8)

If we set δx to 1mm, we have a perfect superposition of the
expected recalibration event frequency with frequency pat-
terns in the spectrogram(cf. Figure 3). This value for the ab-
solute scale has been confirmed by the system manufacturer.

Note that, if δx is 1mm and if Fs is 1000Hz, then the max-
imum frequency identifiable with the Fourier Transform is
500Hz, which bounds the value of v̄ to 0.5m/s.

As we now have identified a particular frequency of interest,
it justifies the use of rectangular windows. We are more inter-
ested by a correct estimation of the amplitude of this specific
frequency than by the exact spectral decomposition of the sig-
nal.

3.3. Estimating the recalibration

If our main assumption holds, that is, that deteriorations of the
head affect mostly the interpolated position, we could expect
a correlation between recalibration amplitude and the meas-
urement head degradation. Therefore, we extracted the part of
the spectrogram corresponding to the expected recalibration
frequencies and, reconstructed it by applying the Inverse Dis-
crete Fourier Transform. The extracted frequencies and the

4



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

(a)

High Deterioration
Small Deterioration
Small Deterioration 2
Clean Profile

(b)

Figure 4. Reconstructed recalibration signals: After extracting frequencies corresponding to expected recalibration frequencies
from the spectrogram (a), we apply the Inverse Windowed Fourier Transform (b).

reconstructed signals are represented in Figure 4 for various
experiments.

In Figure 4, two observations are important: First, we indeed
observe that deteriorated heads tend to increase the amplitude
of the recalibration signal. This could be a way to detect such
problems. Yet, the second observation is that the amplitude
of the recalibration events is varying over time. A simple
threshold based detection method might therefore miss some
problematic situations.

By comparing those amplitude variations with the speed pro-
file, again, it has been possible to find an additional clear lin-
ear correlation between the local average speed and the amp-
litude of the signal components at frequencies corresponding
to the recalibration events. Figure 6a illustrates this correla-
tion.

This led to the first major results of this study: There is a
double dependency between the recalibration events and the
speed of the measurement head: The frequency of the recal-
ibration events and the amplitude of those frequencies are
both linearly correlated with the local average speed. Tak-
ing into account these two dependencies, we proposed a first
threshold-based detection of problematic measurement: by
monitoring the linear coefficient between the Fourier Coeffi-
cient at frequencies corresponding to expected recalibration
events and the local average speed.

4. SIGNAL CLEANING: THE MEAN ABSOLUTE DEVI-
ATION

4.1. Cleaning the Spectrogram

The spectrogram in Figure 3 contains also frequencies lower
than that corresponding to expected recalibration events.

Figure 5. Spectrogram on the difference between control and
read speed. Most frequencies but the recalibration event fre-
quencies and harmonics disappeared

These frequencies could come from the windows but also
from the head movement profile. Fortunately, among the
available variables, the position and speed set by the con-
troller are also accessible. After shifting adequately the time
to compensate delays between controls and read speed, we
did the same analysis on their difference, using the control
speed for computing the local average speed v̄. The resulting
spectrogram is represented in Figure 5. Most of the frequen-
cies but the ones corresponding to the expected recalibration
events and their harmonics disappeared.

Going on with the same process as above led to very similar
but cleaner results, as illustrated in Figure 6b, and we could
thus suggest an improved indicator based on the Windowed
Fourier Transform Coefficient and the local average speed.
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(a) (b) (c)

Figure 6. Linear regression between the three proposed indicators and the average local speed. The Fourier Transform Coef-
ficient of the speed (a), the Fourier Transform Coefficient of the difference between control and read speed (b) and the mean
absolute difference (c).

4.2. Mean Absolute Deviation

In truth, looking more carefully at the spectrogram in Fig-
ure 5, it appears a posteriori that the only difference between
control and read speeds are the expected recalibration events.
If this holds, then it seems like the Fourier Transform is not
needed at all, one could simply compute the windowed mean
absolute difference (MAD). The MAD is defined as:

MAD(n) =
1

Nw

n+ Nw
2∑

k=n−Nw
2

|v(k)− v̂(k)|, (9)

where Nw is the length of the window, and v̂ is the control
speed.

Very similarly to the work done so far, a very good linear cor-
relation could be identified between the MAD and the local
average speed, and the amplitude of that correlation could
also be linked to problematic measurement situations, as il-
lustrated in Figure 6c. These results led us to propose a new
indicator for head measurement degradation detection as the
linear coefficient between MAD and local average speed.

In Figure 6 comparing the three discussed coefficients, there
seems to be, at low speed, a large scattering of the points,
especially in Figure 6a. This can be explained to the extent
that low speed has been shown to be equivalent to low recal-
ibration frequencies, which could cause a mixture between
signals components due to the movement profile with those
due to the recalibration. In fact, this scattering decreases with
the coefficients computed on the difference between control
and read speed. In any case, the density of outsiders is low, as
both linear and affine regression converges to the displayed
linear models. The remaining scattering can be due to an un-
even distribution of the recalibration event causes along the
head axis.

4.3. Theoretical Assumptions

The two last indicators, even if stemming from different sig-
nal processing tools, look very similar. This encourages us to
look for a physical model of the recalibration process, which
could explain both results.

Let us focus on a single measurement head and let us assume
it is trying to follow the profile p̂ set by the controller. If
we now assume that deteriorations on the measurement head
have for consequences an interpolation error on the position
with a coefficient α that only depends on the level of deterior-
ation, then we could expect that at each absolute reading, this
error is corrected by the system and brought back to zeros.
It could therefore be modelled with periodic function h of
period 1 such that the position of the head p(t) follows:

∀ t ∈ R, p(t) = p̂(t) + α · h (frect) (10)

Therefore we have:

∀ t ∈ R, v(t) = v̂(t) + α · frec · h′ (frect) , (11)

The MAD:
Equation (11), can be numerically integrated over N time
steps of size δt = 1

Fs
, and with the assumption that Nδt >>

1
frec

, have:

N∑
n=0

|v(n)− v̂(n)|δt ' α · frec ·
β

frec
· (Nδtfrec) (12)

where β
frec

is the integral of h′ over one period (of size 1)
and Nδtfrec is the number of period of h′ in N time steps.
Whether h is a sinusoid (h(x) = sin(2π · x)), a rectangle or
a triangle, we have β = 4.

6
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And the MAD is therefore

MAD = 1
N

∑N
n=0 |v(n)− v̂(n)|δt

' α · frec · β
' α v̄

1mm · β
(13)

The Fourier Transform:
Under the assumption that the error h is a periodic function,
it has a decomposition in Fourier Series:

∀ x ∈ R, h(x) '
+∞∑
n=0

Cne
−2iπn·frec·x (14)

Therefore

∀ x ∈ R, h′(x) =

+∞∑
n=0

2πnfrecCne
−2iπn·frec·x (15)

It is then easy to convince oneself that the Fourier Transform
coefficient of h′ at frequency frec (in the series, when n = 1)
is actually 2πfrecC1.

FT (h′)(ν = frec) = 2πfrecC1

' 2π v̄
1mmα

(16)

C1 being the amplitude of the main mode (n = 1), we expect
C1 ' α.

Finally, combining Equations (13) and (16), we found that,

α =


MAD
4000·v̄ ,

FT(|v−v̄|)(ν=frec)
2000π·v̄ .

(17)

As a last remark, when looking at Equation (10), one could
ask why the analysis is not directly done with the position
signal. From a computational point of view, the difference
would be minimal as speed is anyhow needed to compute the
expected recalibration frequency frec = v̄

10−3 . The second
reason is experimental, working with the speed always gave
us much cleaner and clearer results. Both ways, the results
were in any case consistent.

5. CASE STUDY SUMMARY

5.1. Results and Theory matches

The works and analysis so far led us to engineer three differ-
ent indicators for each head. Two are based on the Windowed
Fourier Transform and one is on MAD. The indicators them-
selves are the coefficient stemming from the linear regression
on the Fourier Coefficients or the MAD and the average local
speed (α above).

In laboratory-controlled experiments, we could find a good
match between results and the proposed theory. For ex-

Experiment 1
Experiment 2
Experiment 3
Experiment 4
Experiment 5
Experiment 6
Experiment 7
Experiment 8
Experiment 9
Experiment 10
Experiment 11
Experiment 12
Experiment 13
Experiment 14
Experiment 15
Experiment 16
Experiment 17
Experiment 18

Figure 7. Comparison of 18 different experiments with var-
ied level of deterioration. The three columns correspond to
the three way to estimate recalibration event amplitudes: Lin-
ear regression on (1) the Fourier Transform Coefficient of the
speed (FT), (2) the Fourier Transform Coefficient of the dif-
ference between control and read speed (FTd) and (3) the
Mean Absolute Difference (MAD).

ample, Figure 7 represents for many experiments ordered by
level of recalibration amplitude, the very good correspond-
ence between the three indicators, which also matched ob-
served behaviour. Thresholds could be proposed to separate
acceptable recalibration amplitudes (blue datasets), increased
but non-problematic recalibration amplitudes (green to yel-
low datasets) and problematic situations (orange to red).

5.2. Indicator Selection and Degradation Detection
Framework

If in laboratory-controlled experiments, we found an excel-
lent match between the three proposed indicators, they are
actually not equivalent. The Fourier Transform based indic-
ators have been designed to detect and quantify recalibration
events happening at a specific frequency frec, which is the fre-
quency at which we would expect those events to occur. As
such, they would probably not detect other anomalies with
different impacts. Yet, the two indicators seem redundant,
and as the one based on the difference between control and
read speed gave cleaner results, it was the one kept.

To the opposite, the MAD-based indicator relies on the obser-
vation that, in our experiments, the only difference observed
between control and read speeds, stemmed from recalibration
events. Nonetheless, any causes that would impact one of the
two speeds would make this indicator rise and we would de-
tect the abnormal situation.

As both indicators have different meaning, we proposed a
detection framework that would take advantage of all. This
framework is represented in Figure 8. First, for each head,
the read speed signal is cleaned thanks to high pass filter. If
control speed signal is available, a simple difference between

7
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Head
Comparator

Recalibration frequency
detector

Spectral analysis

High frequency 
anomaly detector

Signal comparison
MAD

Threshold
1

Divergence Threshold
2

Threshold
1

High-pass filter
command speed
moving average

Head 1 Head 2 Head 3

Input Signal
(speed)

Figure 8. Proposed and implemented framework: The speed
is filtered from “expected” mouvement thanks to control
speed or a moving average filter. Then both the Fourier Trans-
form based indicator and the MAD based indicator are com-
puted. In addition, these indicators are jointly monitored for
the three heads to detect growing divergences.

read an control is a way to remove any normal behaviour of
the signal. If the control speed is not available, we could also
show that removing from the read signal its moving average
would achieve very similar results. Second, the windowed
MAD and the coefficients of the Windowed Fourier Trans-
form are computed on this filtered signal, and a linear regres-
sion with the local average speeds is performed. This gives
two estimates of recalibration events, which are compared to
detection thresholds. If both the MAD and the Fourier Trans-
form indicators exceed the threshold, there is a recalibration
problem and the measurement head should be cleaned and re-
calibrated. If only the MAD indicator exceed the threshold,
then there is another problem, which is not likely a recalib-
ration problem. The Fourier Transform indicator should nor-
mally not be exceeded alone. As a last step, monitoring and
comparing the indicators on the three heads of the machine is
a way to detect growing divergence and the degradation pro-
cess of a single head. This information can later be used for
predictive maintenance.

This framework has been implemented for a fleet of machines
working in real condition and has been so far giving satisfying
results.

6. CONCLUSION

The process described in this paper demonstrated how ma-
chine learning first, then signal processing, could be used as
tools to understand a system and help design an efficient solu-
tion for a problem on which there was, at first, very little
knowledge. From a functional but not ideal machine learn-
ing solution, using Hierarchical Extreme Learning Machines,
we could identify behaviours in the data that led us toward
more adapted tools and processes. If at first it looked like the
difficulty of the problem at hand would be transfer learning
to detect abnormal measurements in various operating con-
ditions and for various machines, it appeared eventually that
well designed indicators, based on spectral analysis and on
data comparison could provide excellent results. This case
study is a strong reminder that powerful tools can be a solu-
tion, but they also can bring valuable information that would
help to design solutions more adapted to the problem at hand.

The solutions implemented here are only limited by the
physic of the system, that is the impossibility to detect in
a signal, a frequency above half that of the sampling fre-
quency. This corresponds in our case to 500 Hz, or 0.5m/s, a
speed easily attainable. The results are also dependent on the
right choice for the windows length on which to compute the
Fourier Transform and the Mean Absolute Difference. Hav-
ing already quite a strict limitation on the upper frequency
detectable, we also demonstrated that both the frequency of
interest and its amplitude are proportional to the speed. As
such, low frequencies (in particular under 50Hz) means low
speeds but also small amplitudes and higher scarcity of the
data (cf. Fig. 6). These two boundaries make the choice of
a window size very limited, and as such, not really a chal-
lenging decision. These strong constraints, both on the win-
dow size and on the frequency of interest (the recalibration
frequency only) made the use wavelets not deemed relevant,
although more powerful for spectral analysis (Peng & Chu,
2004)3.

Further research would aim at analysing more in depth the
root causes for data scattering and study what would be the
impact of errors in the read speed, so far considered as reli-
able, on the linear regression and on the detection reliability.
Such considerations could also be included in frameworks
comparing the head position distribution such as Matching
Pursuit or in probabilistic frameworks such as Bayesian in-
ference.
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Michau, G., Palmé, T. & Fink, O. (2017, October). Deep Fea-
ture Learning Network for Fault Detection and Isol-
ation. In Annual Conference of the Prognostics and
Health Management Society 2017. Annual Conference
of the Prognostics and Health Management Society
2017, St. Petersburg, Florida.
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