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ABSTRACT

Accurate estimation of the state-of-charge (SOC) in lithium-

ion batteries (LIBs) is paramount for the safe operation of bat-

tery management systems. Despite the effectiveness of exist-

ing SOC estimation methods, their generalization across dif-

ferent battery chemistries and operating conditions remains

challenging. Current data-driven approaches necessitate ex-

tensive data collection for each battery chemistry and operat-

ing condition, leading to a costly and time-consuming pro-

cess. Hence, there is a critical need to enhance the gen-

eralization and adaptability of SOC estimators. In this pa-

per, we propose a novel SOC estimation method based on

Regression-based Unsupervised Domain Adaptation. We eval-
uate the performance of this method in cross-battery and cross-
temperature SOC estimation scenarios. Additionally, we con-

duct a comparative analysis with a widely-used classification-

based unsupervised domain adaptation approach. Our find-

ings demonstrate the superiority of the regression-based un-

supervised domain adaptation method in achieving accurate

SOC estimation for batteries.

1. INTRODUCTION

Accurate real-time estimation of the state-of-charge (SOC)
in batteries holds paramount importance across various do-
mains, including electric vehicles and renewable energy stor-
age systems. The SOC represents the percentage of remain-
ing capacity, serving as a pivotal indicator of the battery’s
condition for facilitating effective operations.

Precise SOC estimation is imperative for optimizing energy
utilization and mitigating premature degradation, consequently
reducing maintenance costs and environmental impacts. How-
ever, SOC determination poses a formidable challenge due
to its dependence on multiple interconnected variables such
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as voltage, current, resistance, and temperature, complicating
precise estimation (Z. Wang, Feng, Zhen, Gu, & Ball, 2021).
Thus, the development of robust and adaptable SOC estima-
tion methods is essential to meet the escalating demand for
sustainable energy solutions. Conventional SOC estimation
approaches often falter in dynamic environments character-
ized by temperature variations, load fluctuations, and battery
aging. Compounding this challenge is the diverse array of
battery types with varying chemistries. Conventional meth-
ods necessitate significant investments in time and resources
to acquire labeled data specific to each battery variant for ac-
curate SOC estimation. Consequently, there arises a crucial
need for innovative, adaptable SOC estimation methods ca-
pable of addressing these challenges while reducing reliance
on expensive labeled data sources.

Numerous methodologies have been proposed for SOC es-
timation, employing diverse sensor data and modeling tech-
niques. Traditional approaches, such as look-up table meth-
ods and direct-counting methods, often rely on simple al-
gorithms but struggle with real-time estimation due to their
requirement for stable discharge currents (Shen, Li, Meng,
Zhu, & Shen, 2023). Conversely, model-based methods ad-
dress this limitation but demand prior knowledge of battery
characteristics, rendering them less suitable for dynamic and
varied operational conditions. Recent advancements have in-
troduced data-driven methods, which eschew reliance on do-
main knowledge and instead utilize battery parameters such
as current, voltage, and temperature measurements to develop
SOC estimators. Various data-driven techniques have been
proposed for battery SOC estimation. (Li, Wang, & Gong,
2016; Hu et al., 2014; Tong, Lacap, & Park, 2016; Khumprom
& Yodo, 2019; Chandra Shekar & Anwar, 2019). How et
al. offer a comprehensive review of SOC estimation methods
(How, Hannan, Lipu, & Ker, 2019). The primary drawback of
data-driven approaches lies in their dependence on substantial
training data, which can be expensive and time-intensive to
acquire. In response to the challenge of limited data, transfer
learning (TL) has emerged as a potent technique in machine
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Figure 1. Structure of the Proposed Deep Neural Network Architecture for SOC Estimation using Domain Adaptation.

learning.

In the realm of battery SOC estimation, transfer learning holds
promise by leveraging existing data from one domain (e.g., a
specific battery type or environment), known as the source
domain, to enhance SOC estimation performance in a differ-
ent, less well-characterized domain, referred to as the target
domain. Fine-tuning, the most popular TL approach, involves
further training a pre-trained neural network model, origi-
nally trained on a large dataset for a different domain, using
a smaller dataset specific to the target domain. Fine-tuning
has recently been applied to battery SOC estimation to trans-
fer knowledge between different ambient temperatures of the
same battery type (Y.-X. Wang, Chen, & Zhang, 2022), or be-
tween different battery types (Bhattacharjee, Verma, Mishra,
& Saha, 2021). However, fine-tuning necessitates access to
labeled examples from the target domain, which may not al-
ways be readily available. In the case of lithium-ion batteries
(LIBs), obtaining reliable labeled data under real-world con-
ditions is particularly challenging.

To address the challenge of lacking labeled data for the tar-
get domain, machine learning researchers have introduced
Unsupervised Domain Adaptation (UDA). Originating in the
computer vision domain, UDA tackles the broader issue of
transferring knowledge from a source domain to a target do-
main where labeled data is scarce (Long, Cao, Wang, & Jor-
dan, 2015). This is particularly pertinent in scenarios where
the characteristics of the target domain evolve over time, di-
verging from the source domain, and making traditional su-
pervised learning approaches inadequate. Batteries are sub-
jected to diverse environmental conditions, undergo degra-

dation over time, and witness frequent introductions of new
battery chemistries. A central strategy of UDA techniques is
to generate domain-invariant feature representations by align-
ing feature distributions between domains (Wilson & Cook,
2020). This facilitates model adaptation to new and dynam-
ically changing environments, enabling effective generaliza-
tion without access to labeled data in the target domain.

A common approach for generating domain-invariant feature
representations is to minimize a divergence measured as the
distance between distributions. Maximum mean discrepancy
(MMD) (Borgwardt et al., 2006), multi-kernel MMD (MK-
MMD) (Gretton et al., 2012), and lastly, correlation align-
ment (CORAL) (Sun & Saenko, 2016) are among the popu-
lar divergence minimization techniques. Recently, there has
been growing interest in applying UDA techniques to esti-
mate battery SOC (Shen, Li, Liu, Zhu, & Shen, 2022; Bian,
Yang, & Miao, 2020; Oyewole, Chehade, & Kim, 2022; Ni,
Li, & Yang, 2023; Meng, Agyeman, & Wang, 2023). While
these UDA techniques were initially developed for classifica-
tion tasks, SOC estimation poses a regression task. A signif-
icant distinction between regression and classification prob-
lems is that regression problems are less robust to feature
scaling, potentially impacting model robustness when align-
ing feature distributions with UDA methods (Chen, Wang,
Wang, & Long, 2021).

To address this challenge, a specialized domain adaptation
method for regression problems has emerged. DARE-GRAM
(Nejjar, Wang, & Fink, 2023) is one such recent domain adap-
tation regression (DAR) technique motivated by the closed-
form solution of ordinary least squares (OLS). Unlike pre-
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Figure 2. Measured Current, Voltage, and Battery Temperature During LA92 Drive Cycle. (a) Panasonic LiB and (b) LG LiB.

viously discussed classification-based methods that directly
align features, DARE-GRAM aligns the inverse Gram ma-
trix of the features. The authors demonstrated the capability
and robustness of this method through experiments on three
benchmark computer vision regression datasets.

In this paper, we explore the application of unsupervised do-
main adaptation (UDA) techniques within the framework of
transfer learning (TL) to enhance the precision of battery State
of Charge (SOC) estimation. We conduct a comparative study
between a well-established classification-based domain adap-
tation method (CORAL) and DARE-GRAM, a regression-
based method, marking the first application of a regression-
based UDA method to battery management tasks, to the best
of our knowledge. We examine their efficacy across a range
of TL tasks and settings, aiming to provide comprehensive
insights into their performance and suitability for addressing
the complex challenges posed by evolving battery landscapes
and diverse operational conditions.

The remainder of this paper is organized as follows. Section
2 presents the proposed methodology. Section 3 elucidates
the LiB datasets and implementation details. Section 4 offers
the experimental results and discussion. Finally, Section 5
concludes the paper.

2. METHODOLOGY
2.1. Problem Statement

We begin by defining the problem of cross-battery state-of-
charge (SOC) estimation. The source domain D? represents
the battery type with labeled data X° = {xj, (H ?;1, where
ns denotes the number of source samples. Conversely, the
target domain D? represents the battery type with unlabeled
data X* = {z}}7~,, where n, represents the number of tar-
get samples. 7 and x§ are the temporal measurements of
voltage, current, and temperature for both source and target
batteries until the current time-step, each with a length of [.
Additionally, y; represents the SOC at the current time-step

for sample j. Specifically, each sample comprises previous

voltage, current, and temperature measurements from time-
step kK — [ + 1 to the current time-step &k as input, with the
SOC of the current time-step % as the label. This paper aims
to establish an SOC estimation model to predict the SOC of
the target battery y§ utilizing source data X ° and target data
X, assuming the existence of a distribution discrepancy be-
tween the source and target data.

2.2. Deep Neural Network

Our approach leverages a deep neural network architecture
to tackle the intricate task of state-of-charge (SOC) estima-
tion. The architecture of our proposed network is depicted
in Figure 1, comprising two main modules: a feature ex-
tractor and a predictor. The feature extractor plays a pivotal
role in capturing the temporal dynamics and patterns inher-
ent in the battery data, facilitating the extraction of informa-
tive features crucial for precise SOC estimation. This module
may encompass convolutional layers in convolutional neural
networks (CNNs), recurrent layers in recurrent neural net-
works (RNNs), or fully connected layers in feedforward neu-
ral networks. Each type of feature extractor possesses distinct
strengths and weaknesses, and their performance can vary de-
pending on the specific problem at hand. Subsequently, the
extracted features are propagated through a fully-connected
layer with a single output node, tasked with mapping these
features to the SOC estimation.

2.3. Domain Adaptation

Unsupervised Domain Adaptation (UDA) techniques can be
instrumental in mitigating the domain discrepancy between
source and target domains. These methods facilitate the align-
ment of feature distributions across domains, thereby enabling
the effective transfer of knowledge from the source domain
to enhance state-of-charge (SOC) prediction in the target do-
main. Metric-based UDA methods aim to alleviate cross-
domain distribution discrepancies by applying static criteria.
In this study, we leverage a classification-based UDA method,
CORAL, and aregression-based UDA method, DARE-GRAM.
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Table 1. Results of BiGRU Network for Different Domain Adaptation Methods: Panasonic Battery as Source Domain and LG
Battery as Target Domain

NoTL CORAL DARE-GRAM
Source Temp. | Target Temp. MSE | MAE | MSE | MAE | MSE | MAE
-20°C 0.093 | 0.252 | 0.103 | 0.266 | 0.031 | 0.143
-10°C 0.156 | 0.342 | 0.097 | 0.270 | 0.018 | 0.105
-20°C 0°C 0.368 | 0.522 | 0.182 | 0.342 | 0.017 | 0.106
10°C 0.354 | 0.513 | 0.195 | 0.357 | 0.091 | 0.260
25°C 0.358 | 0.516 | 0.184 | 0.348 | 0.090 | 0.260
-20°C 0.089 | 0.257 | 0.025 | 0.134 | 0.018 | 0.110
-10°C 0.031 | 0.148 | 0.037 | 0.161 | 0.016 | 0.100
-10°C 0°C 0.134 | 0.305 | 0.016 | 0.107 | 0.009 | 0.075
10°C 0.354 | 0.513 | 0.040 | 0.150 | 0.008 | 0.071
25°C 0.356 | 0.514 | 0.007 | 0.075 | 0.086 | 0.256
-20°C 0.049 | 0.167 | 0.046 | 0.162 | 0.034 | 0.146
-10°C 0.015 | 0.106 | 0.007 | 0.07 | 0.008 | 0.066
0°C 0°C 0.018 | 0.114 | 0.013 | 0.101 | 0.005 | 0.057
10°C 0.018 | 0.099 | 0.004 | 0.05 | 0.011 | 0.077
25°C 0.028 | 0.131 | 0.003 | 0.044 | 0.02 0.122
-20°C 0415 | 0.56 | 0.164 | 0.344 | 0.102 | 0.28
-10°C 0.376 | 0.53 | 0.153 | 0.324 | 0.067 | 0.219
10°C 0°C 0.366 | 0.521 | 0.046 | 0.192 | 0.013 | 0.091
10°C 0.03 | 0.154 | 0.028 | 0.151 | 0.003 | 0.046
25°C 0.009 | 0.071 | 0.005 | 0.065 | 0.006 | 0.068

Correlation Alignment (CORAL) (Sun & Saenko, 2016) stands
as a potent domain adaptation technique designed to align
the second-order statistics of both the source and target do-
mains. Its primary objective is to diminish the distribution
discrepancy between these domains by matching their covari-
ances. This process involves whitening the source and target
data to eliminate disparities in variances and subsequently
re-coloring the source data to align with the color (covari-
ance) of the target data. By aligning these statistical proper-
ties, CORAL effectively enhances the similarity between the
source and target distributions, thereby bolstering the trans-
ferability of models from the source domain to the target do-
main. CORAL demonstrates particular efficacy in scenarios
where distribution shifts predominantly stem from alterations
in data covariances.

DARE-GRAM (Nejjar et al., 2023) harnesses the power of
the inverse Gram matrix to align the feature space, taking into
consideration the discriminative capability of the final linear
layer. This approach prioritizes angle alignment and scale
alignment to foster greater compatibility between the source
and target domains. The underlying motivation is to identify
a feature space conducive to facile learning by a shared lin-
ear regressor. Leveraging the ordinary least-squares (OLS)
closed-form solution, the method estimates the parameters of
the linear layer for regression purposes. By emphasizing the
alignment of the angle and scale of the inverse Gram matrix,
DARE-GRAM presents a more stable and robust approach
compared to direct feature alignment. DARE-GRAM loss
function is expressed as follows:

LDAREGRA]V[(Fsa Ft) = aLcos(Fs; Ft) + ’yLscale(Fsa Ft)
(H

where F and F; are extracted features from the source and
target domains, respectively. « and ~ are hyper-parameters
governing the influence of angle and scale alignment, respec-
tively. Lcos(Fs, Fy) corresponds to angle alignment, aiming
to maximize the cosine similarity between the F and Fj.
Meanwhile, Lg.q.(Fs, F}) represents the scaling alignment
term, endeavoring to minimize the discrepancy between the
k-principal eigenvalues, where k is selected using a specified
threshold.

2.4. Training Process

During the training phase, we leverage both source and target
data to cultivate domain-invariant representations. The net-
work is guided by two distinct loss functions: the SOC pre-
diction loss, aimed at minimizing the disparity between pre-
dicted and actual SOC values in the source domain, and the
domain alignment loss, which mandates the resemblance of
feature distributions between the source and target domains.
The synergy of these loss functions ensures that the network
acquires both precise SOC prediction capabilities and domain-
invariant features, thereby augmenting SOC estimation accu-
racy in the target domain. The total loss of the deep network
in an end-to-end training scenario is subsequently computed
as follows:

2

Ltotal = LSOC + LDomainAdaptation

where Lsoc denotes the prediction loss, and L pomain Adaptation

represents the domain adaptation loss. Since both Lgo¢c and
L pomainAdaptation 10sses are equally critical to the success
of the model, we set equal weights to both losses to prevent
either loss from dominating. We employ two domain adapta-
tion methods introduced in the previous section to calculate

Page 441



Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN — 978-1-936263-40-0

the domain adaptation loss. 0.5

3. EXPERIMENTAL SETUP 0.4

3.1. Dataset Description

-0.3
In this study, the efficacy of the proposed method is evalu-

ated using two publicly available LiB datasets: 1) the Pana-
sonic 18650PF dataset (Kollmeyer, 2018) acquired from the
University of Wisconsin—-Madison, and 2) the LG 18650HG2
dataset (Naguib, Kollmeyer, & Skells, 2020) obtained from
McMaster University in Hamilton, Ontario, Canada.

Source

-0.2
0.1

For the Panasonic 18650PF dataset, testing involved brand- 0.0

new 2.9Ah Panasonic 18650PF cells in an 8§ cu.ft. thermal
chamber, utilizing a 25 amp, 18 volt Digatron Firing Cir-
cuits Universal Battery Tester channel. Similarly, for the LG
18650HG?2 dataset, testing was conducted with brand-new
3Ah LG HG2 cells in an 8 cu.ft. thermal chamber, employ-
ing a 75 amp, 5 volt Digatron Firing Circuits Universal Bat-
tery Tester channel. Both datasets encompassed a series of
drive cycles, including US06, HWFET, UDDS, and LA92,
performed for each battery. Notably, the battery tests in both
datasets were conducted at discrete ambient temperatures rang-
ing from -20°C to 25°C. Figure 2 illustrates the voltage, cur-
rent, and battery temperature measurements of the two batter-
ies during the LA92 drive cycle.

Source
-10 -20

0

10

3.2. Implementation Details

The Panasonic and LG batteries are designated as the “source” Target

and “target” batteries, respectively. Specifically, each exper- b)
iment involves one Panasonic battery type under a particular
ambient temperature serving as the source domain, while LG
battery type under a different ambient temperature acts as the
target domain. The target data is evenly partitioned into train-
ing and testing sets, with the training set utilized for domain
adaptation and the testing set employed for performance as-
sessment. As our objective is to assess the efficacy of various
unsupervised domain adaptation methods for near-real-time
State of Charge (SOC) estimation, we restricted the input sen-
sor data history to the ten most recent observations, ensuring
a balanced evaluation across methods without sacrificing gen-
erality.

Source

0.01 0.00

In the deep neural network architecture, we employ Bidirec-

tional Gated Recurrent Unit (BiGRU) modules as feature ex-

tractors. GRUs are well-suited for tasks involving sequen-

tial information as they efficiently capture temporal depen-

dencies while maintaining a simpler and more streamlined Figure 3. Heatmap of Target Mean Squared Error (MSE)

architecture compared to Long Short-Term Memory (LSTM)  for Different Domain Adaptation Methods under Different

networks. Moreover, initial experiments conducted as part of ~ Source and Target Temperatures (°C). a) No TL, b) CORAL,

our model development phase demonstrated that GRUs out- ~ and €) DARE-GRAM.

performed LSTMs in terms of both prediction accuracy and

training efficiency. In addition, (Ye & Yu, 2021) demon-

strated the efficiency of BiGRU for battery state-of-health ~ prediction. We run an initial set of experiments to determine
the best hyper-parameters to be used in the deep learning
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Figure 4. Comparison of Domain Adaptation Methods in State-of-Charge (SOC) Estimation. (a) Target MSE, (b) Target MAE,
(c¢) Training Time (s), (d) Target MSE for Different Temperatures of the Target Battery when the Source Battery is Panasonic
in 0°C, (e) Target MSE for Different Temperatures of the Target Battery when the Source Battery is Panasonic in -20°C

, and (f) Target MSE

model. The architecture of the feature extractors comprises
five layers, each containing 200 hidden units, with a fully-
connected (FC) layer consisting of 400 neurons. Addition-
ally, L2 regularization and dropout techniques are applied to
enhance the model’s generalization and robustness. The num-
ber of training epochs is set to 25 for all experiments, with
Mean Squared Error (MSE) serving as the loss function for
the SOC prediction module.

In addition to utilizing the DARE-GRAM method, we also
conduct experiments using the CORAL technique, a well-
established classification-based domain adaptation approach,
for performance comparison purposes. Furthermore, we per-
form experiments without any domain adaptation, denoted as
the ”No TL” model. In ”No TL” model experiments, the
training process excludes the utilization of target data, with
the testing set of target data reserved solely for evaluating the
performance of the trained model on the source data. This
article utilizes mean-square error (MSE) and mean absolute
error (MAE) as the performance evaluation metrics.

4. RESULTS AND DISCUSSION

We conduct a thorough analysis of cross-battery state-of-charge
(SOC) estimation, comparing the performance of regression-

Over Training Epochs.

based and classification-based domain adaptation methods.
We present the results of our experiments, focusing on the
SOC estimation achieved by the BiIGRU network with differ-
ent domain adaptation methods.

Table 1 and Figure 3 summarize the SOC estimation out-
comes. In each experiment, the Panasonic battery serves as
the source domain, while the LG battery serves as the target
domain. While no single domain adaptation method outper-
forms all others across every experiment, the DARE-GRAM
method consistently demonstrates superior performance. Out
of the 20 transfer learning tasks conducted, DARE-GRAM
outperforms other methods in 15 tasks. Figures 4a,b illus-
trate box plots for the Mean Squared Error (MSE) and Mean
Absolute Error (MAE) values across all tasks for different do-
main adaptation methods, further highlighting the superiority
of the DARE-GRAM approach.

However, it is worth noting that despite its superior perfor-
mance, the DARE-GRAM method demands more training
time. As depicted in Figure 4c, the average training time of
the model for DARE-GRAM method is approximately 40%
longer compared to other methods. This disparity in compu-
tational costs can be attributed to the computation of the do-
main adaptation loss function. While DARE-GRAM yields
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Figure 5. Comparison of Domain Adaptation Methods in

SOC Estimation for Panasonic Battery at 10°C to LG Battery
at 10°C Task.

impressive results, its computational overhead may pose prac-
tical considerations in certain contexts.

While the DARE-GRAM method demands a relatively longer
training time over a fixed number of epochs, it exhibits a no-
tably faster convergence, requiring significantly fewer train-
ing epochs to reach a stable state. Figure 4f shows the MSE
of the target domain for different domain adaptation methods
and the "No TL” model over the training epochs for one trans-
fer task (Panasonic -10°C to LG -10°C). This plot shows that
with only one epoch, SOC estimations of the target domain
for the DARE-GRAM model are significantly more accurate
than other methods.

Figure 4d,e shows the results of two different temperatures of
the source battery. In each plot, the MSE values of different
domain adaptation methods and the "No TL” model are de-
picted over different temperatures of the target battery. These
two plots indicate that cross-battery SOC estimation using the
measurements of the source battery under -20°C temperature
is significantly more challenging than 0°C. Another impor-
tant finding is that as the difference between the temperatures
of the source and target domains increases, the transfer learn-
ing task becomes more rigorous.

Figure 5 illustrates the SOC estimation using different do-
main adaptation methods for a specific task (Panasonic 10°C
to LG 10°C). While the performance of the CORAL method
closely resembles that of the "No TL” model, the DARE-
GRAM method yields more accurate SOC estimations. DARE-
GRAM estimates are somewhat inferior to the other methods
when the battery is at full SOC.

The results reveal that for certain transfer tasks, such as Pana-
sonic at 0°C to LG -10°C, even the "No TL” model achieves
satisfactory performance. This suggests that at under certain
settings, the model trained solely on the source data can effec-
tively estimate the state-of-charge (SOC) for the target data
without the utilization of any domain adaptation or transfer
learning methods in general.

5. CONCLUSION

In this work, we introduced a regression-based unsupervised
domain adaptation method, DARE-GRAM, for SOC estima-
tion. Through a series of experiments, we assessed the per-
formance and effectiveness of DARE-GRAM in cross-battery
SOC estimation, comparing its results with those obtained us-
ing the classification-based UDA method, CORAL. Our find-
ings consistently demonstrate the superiority of the DARE-
GRAM method in achieving accurate SOC estimation. DARE-
GRAM consistently outperformed CORAL, showcasing its
robustness and adaptability across various battery domains.
Moreover, DARE-GRAM exhibited the ability to prevent neg-
ative transfer, ensuring that knowledge transfer did not com-
promise SOC estimation performance. Furthermore, our re-
sults underscored the influence of ambient temperature on
model transferability. When the ambient temperatures of both
the source and target batteries were similar or closely aligned,
the transferability of the model was notably enhanced, lead-
ing to improved SOC estimation accuracy. Overall, our study
highlights the effectiveness of DARE-GRAM as a powerful
tool for enhancing SOC estimation in diverse battery manage-
ment scenarios, offering valuable insights for future research
in the field.

REFERENCES

Bhattacharjee, A., Verma, A., Mishra, S., & Saha, T. K.
(2021). Estimating state of charge for xev batteries
using 1d convolutional neural networks and transfer
learning. /EEE Transactions on Vehicular Technology,
70(4), 3123-3135.

Bian, C., Yang, S., & Miao, Q. (2020). Cross-domain
state-of-charge estimation of li-ion batteries based on
deep transfer neural network with multiscale distribu-
tion adaptation. IEEE Transactions on Transportation
Electrification, 7(3), 1260-1270.

Borgwardt, K. M., Gretton, A., Rasch, M. J., Kriegel, H.-
P., Scholkopf, B., & Smola, A.J. (2006). Integrating
structured biological data by kernel maximum mean
discrepancy. Bioinformatics, 22(14), e49—e57.

Chandra Shekar, A., & Anwar, S. (2019). Real-time state-of-
charge estimation via particle swarm optimization on a
lithium-ion electrochemical cell model. Batteries, 5(1),
4.

Chen, X., Wang, S., Wang, J., & Long, M. (2021). Represen-
tation subspace distance for domain adaptation regres-
sion. In Icml (pp. 1749-1759).

Gretton, A., Sejdinovic, D., Strathmann, H., Balakrishnan,
S., Pontil, M., Fukumizu, K., & Sriperumbudur, B. K.
(2012). Optimal kernel choice for large-scale two-
sample tests. Advances in neural information process-
ing systems, 25.

How, D. N., Hannan, M., Lipu, M. H., & Ker, P. J. (2019).

Page 444



Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN — 978-1-936263-40-0

State of charge estimation for lithium-ion batteries us-
ing model-based and data-driven methods: A review.
leee Access, 7, 136116-136136.

Hu, J., Hu, J,, Lin, H,, Li, X,, Jiang, C., Qiu, X., & Li, W.
(2014). State-of-charge estimation for battery manage-
ment system using optimized support vector machine
for regression. Journal of Power Sources, 269, 682—
693.

Khumprom, P., & Yodo, N. (2019). A data-driven predictive
prognostic model for lithium-ion batteries based on a
deep learning algorithm. Energies, 12(4), 660.

Kollmeyer, P. (2018). Panasonic 18650pf li-ion battery data.
Mendeley Data, V1. doi: 10.17632/wykht8y7tg.1

Li, Y., Wang, C., & Gong, J. (2016). A combination kalman
filter approach for state of charge estimation of lithium-
ion battery considering model uncertainty. Energy,
109, 933-946.

Long, M., Cao, Y., Wang, J., & Jordan, M. (2015). Learning
transferable features with deep adaptation networks. In
International conference on machine learning (pp. 97—
105).

Meng, Z., Agyeman, K. A., & Wang, X. (2023). Lithium-
ion battery state of charge estimation with adaptability
to changing conditions. IEEE Transactions on Energy
Conversion.

Naguib, M., Kollmeyer, P., & Skells, M. (2020). Lg
18650hg?2 li-ion battery data. Mendeley Data, V1. doi:
10.17632/b5mj79w5w9.1

Nejjar, 1., Wang, Q., & Fink, O. (2023). Dare-gram: Unsuper-
vised domain adaptation regression by aligning inverse
gram matrices. In Proceedings of the ieee/cvf confer-
ence on computer vision and pattern recognition (pp.
11744-11754).

Ni, Z., Li, B., & Yang, Y. (2023). Deep domain adaptation
network for transfer learning of state of charge estima-
tion among batteries. Journal of Energy Storage, 61,

106812.

Oyewole, 1., Chehade, A., & Kim, Y. (2022). A controllable
deep transfer learning network with multiple domain
adaptation for battery state-of-charge estimation. Ap-
plied Energy, 312, 118726.

Shen, L., Li, J., Liu, J., Zhu, L., & Shen, H. T. (2022). Tem-
perature adaptive transfer network for cross-domain
state-of-charge estimation of li-ion batteries. I[EEE
Transactions on Power Electronics, 38(3), 3857-3869.

Shen, L., Li, J., Meng, L., Zhu, L., & Shen, H. T. (2023).
Transfer learning-based state of charge and state of
health estimation for li-ion batteries: A review. IEEE
Transactions on Transportation Electrification.

Sun, B., & Saenko, K. (2016). Deep coral: Correlation
alignment for deep domain adaptation. In Computer
vision—eccv 2016 workshops: Amsterdam, the nether-
lands, october 8-10 and 15-16, 2016, proceedings, part
iii 14 (pp. 443-450).

Tong, S., Lacap, J. H., & Park, J. W. (2016). Battery state of
charge estimation using a load-classifying neural net-
work. Journal of Energy Storage, 7, 236-243.

Wang, Y.-X., Chen, Z., & Zhang, W. (2022). Lithium-ion
battery state-of-charge estimation for small target sam-
ple sets using the improved gru-based transfer learning.
Energy, 244, 123178.

Wang, Z., Feng, G., Zhen, D., Gu, F, & Ball, A. (2021).
A review on online state of charge and state of health
estimation for lithium-ion batteries in electric vehicles.
Energy Reports, 7, 5141-5161.

Wilson, G., & Cook, D. J. (2020). A survey of unsupervised
deep domain adaptation. ACM Transactions on Intelli-
gent Systems and Technology (TIST), 11(5), 1-46.

Ye, Z., & Yu, J. (2021). State-of-health estimation for
lithium-ion batteries using domain adversarial trans-
fer learning. IEEE Transactions on Power Electronics,
37(3), 3528-3543.

Page 445



