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ABSTRACT

Prognostics and Health Management (PHM) plays a crucial
role in maximizing operational efficiency, minimizing main-
tenance costs, and enhancing system reliability. Predicting
Remaining Useful Life (RUL) is a key aspect of PHM, in-
herently incorporating uncertainty. This paper focuses on
uncertainty quantification (UQ) within Data-Driven Models
(DDMs), particularly Machine Learning (ML), such as Long
Short-Term Memory (LSTMs), and stochastic models namely
Hidden Markov Models (HMMs). While ML models empha-
size accuracy, stochastic models offer a different paradigm
for prognostics, directly addressing uncertainty. Traditional
categorizations of uncertainty as aleatory and epistemic face
challenges in practical implementation. This paper explores
how, in prognostics, HMMs primarily tackle aleatory un-
certainty, whereas LSTMs predominantly address epistemic
uncertainty. It also discusses the complexities of uncer-
tainty management in prognostics and analyzes further an al-
ready proposed alternative approach to categorize uncertain-
ties. Despite theoretical advancements, practical implemen-
tation remains challenging, especially for DL models due to
their limited interpretability. This study sheds light on UQ
challenges and offers insights for future research directions
in prognostics.

1. INTRODUCTION

Prognostics and Health Management (PHM) is a field that
provides users with a thorough analysis of both the current
and future health condition of a system. PHM has gained
attention during the last years due to the potential that it has
to maximize the operational availability, reduce maintenance
costs, and improve the system reliability.

Prognostics, as part of the PHM field, aim at predicting the
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Remaining Useful Life (RUL) of a given engineering system
while it is in operation. By definition, the prediction of RUL
incorporates uncertainty. Therefore, it is imperative to model
RUL as a random variable rather than a deterministic one to
account for the inherent uncertainties in prognostics. The pre-
diction of RUL is then used by a decision-making module,
which will make health management decisions to fulfill PHM
goals.

Nonetheless, uncertainty quantification (UQ) is a challenge
within prognostics. In particular, when prognostics are per-
formed with Data-Driven Models (DDMs), which only rely
on historical sensor data, UQ can become a greater challenge
depending on which type of prognostic DDM is used. Hence,
this paper will solely focus on UQ for DDMs, given their ex-
tensive use in prognostics and their sensitivity to uncertainty
sources related to the data.

As previously mentioned, DDMs use historical sensor data
to predict the RUL of the engineering system, and there are
different types of DDMs. For the purposes of this paper, we
would consider Machine Learning (ML) and stochastic mod-
els as the two main categories of DDMs. ML models, which
include decision trees, Support Vector Regressor (SVR), and
Deep Learning (DL) models, among others, have gained at-
tention in prognostics because of the high accuracy of the
RUL predictions.

In contrast to ML, stochastic models offer a different
paradigm for data-driven prognostics. Stochastic models,
such as Hidden Markov Models (HMMs) and Wiener pro-
cesses, model the degradation process of the engineering
system based on the sensor data, i.e. unsupervised learn-
ing, unlike ML models that can find complex relationships
between the sensor data and RUL, i.e. supervised learning.
Thus, ML models find patterns in the data which allows them
to have a good performance when trained with large and
labeled datasets but struggle with outliers.

Another important difference between ML models and

Page 908



Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN — 978-1-936263-40-0

stochastic models is UQ. In stochastic models, UQ is di-
rect since the output of the model is a probability density
function (pdf) of the RUL prediction. For ML models, UQ
is a challenge given that ML models are deterministic by
nature, i.e. they provide a single-point prediction for RUL.
There are techniques to perform UQ, but these might not be
suitable for a prognostic application, as will be discussed in
Section 3.

It is important to know that UQ is not the ultimate goal, but
it is a key step towards uncertainty management. Uncer-
tainty management is defined as the identification of sources
of uncertainty and the reduction of uncertainty by leveraging
data to characterize better the inherent prognostic uncertain-
ties. Hence, reducing their impact on RUL predictions, which
is necessary for the decision-making process (Sankararaman,
2015).

The question is then, which are the sources of uncertainty?
The classical categorization considers two sources of uncer-
tainty, aleatory and epistemic. Aleatory refers to the uncer-
tainties that are intrinsic randomness of a phenomenon. Epis-
temic uncertainty is caused by a lack of knowledge, thus, it
is the uncertainty that comes from the model itself (Der Ki-
ureghian & Ditlevsen, 2009). Another way to look at them is
that aleatory uncertainty is irreducible, since there is no con-
trol over the randomness of the phenomenon, and epistemic
uncertainty is reducible given that the model can be changed.
Consequently, to perform uncertainty management epistemic
uncertainty needs to be addressed.

Nevertheless, even if we manage to identify epistemic un-
certainty effectively, how can this information be used to per-
form uncertainty management in prognostics? Aside from the
variability of the data, i.e. aleatory uncertainty, there is uncer-
tainty in the identification of the current state of the system’s
health or the future loading operation that the system will be
subjected to. By considering all these different sources as part
of “epistemic uncertainty”, it is unclear what actions need to
be taken to reduce the RUL uncertainty.

For that reason, it has been claimed that the aleatory and
epistemic categorization is not suitable for prognostics
(Sankararaman & Goebel, 2013) and a more suitable catego-
rization has been proposed, which will be further explained
in Section 5. Although this categorization has been presented
in different publications, it has not been applied, to the best
of the author’s knowledge, to a real-life scenario. Until now,
the few prognostics publications that identify sources of
uncertainty continue to use the classical categorization.

This paper presents both an stochastic model and a DL model
under the same case study. To understand the use of stochas-
tic models, an HMM presented. With the HMM, a new ex-
pression for RUL prediction is introduced in this study and is
compared with the state-of-the-art RUL expression in terms

of UQ. For DL models, a Long-Short Term Memory (LSTM)
is used, given that it has been argued as the one with the best
performance in terms of accuracy for several engineering ap-
plications. The LSTM is analyzed by using different param-
eters for UQ.

Therefore, by the use of these models this paper aims to pro-
vide an understanding of uncertainty in prognostics, and how
different types of DDMs deal with UQ. As well as to offer a
discussion in terms of future perspectives to address the UQ
challenge, ultimately aiming towards the goal of uncertainty
management.

The paper is organized as follows, Section 2 offers the theo-
retical background of HMMs and the new prognostic expres-
sion and Section 3 details the UQ methods for DL models,
as well as DL model approaches in prognostics. The case
study, including the data prepossessing and results, is pre-
sented in Section 4. Section 5 offers a discussion about the
future perspective on UQ for prognostics. Finally, the paper
is concluded in Section 6.

2. HIDDEN MARKOV MODELS

HMMs are a widely used stochastic model for different engi-
neering applications. In the context of prognosis, it has been
used for composites (Eleftheroglou, 2020; Eleftheroglou et
al., 2024), lithium-polymer batteries (Eleftheroglou et al.,
2019), turbofan engines (Giantomassi et al., 2011), and sim-
ulated fatigue crack growth (Le et al., 2014). In each one
of these publications, different variants of HMM are used. A
multi-branch HMM is used in (Le et al., 2014) to take into ac-
count the multiple degradation modes that can occur. A more
complex version of HMM is used in (Eleftheroglou, 2020;
Eleftheroglou et al., 2019), called the Non-Homogeneous
Hidden Semi Markov Model (NHHSMM). When applied
to composites the author used an adaptive approach of the
NHHSMM that allowed the model to predict the RUL for
testing data that had gone through unexpected phenomena.

Thus, HMMs have demonstrated their applicability through
the use of different variants of it. In this paper, the classical
HMM will be used, and a new definition for prognostic is
presented.

HMMs can model a sequence of observations, which in this
case is the data coming from the sensors. It is used in pro-
cesses in which the state of the engineering system cannot
be directly observed, hence, they are hidden. The engineer-
ing system is modeled as a Markov process, meaning that
the probability of transitioning from one state to another de-
pends only on the current state. The sojourn time of each
hidden state is defined by an exponential distribution (contin-
uous case) or a geometrical distribution (discrete case). Each
state emits an observation with a certain probability distribu-
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tion. Below, the parameters that describe an HMM are de-
tailed (Rabiner, 1989).

e N: number of states. Individual states are denoted as .S =
{51, 52, ..., Sn }, and the state at time ¢ as g;.

e M: number of distinct observation symbols per
state. Individual observations are denoted as V =
{’Ul, V2y eeny UM}.

» State transition: the state transition probability distribu-
tion is denoted as A = {a;;}, where a;; = Plg4+1 =
Sjlg: = S;]. This expression is the probability that the
state at time ¢ + 1 is equal to the hidden state .S; given
that the current state g; is equal to the hidden state S;.

* Observation distribution: the observation symbol prob-
ability distribution in state j, B = b;(k), where b; =
Plug attlgy = S;], with1 <j < Nand1 <k < M.

* Initial state: the initial state distribution 7 = {7; } where

The complete parameter set of the model is denoted as A =
(A, B,m). To train an HMM it is necessary then to adjust
the model parameters A to maximize P(O|)), meaning that
the parameters are optimized to best describe the observation
sequences, which in the case of prognostics are the degrada-
tion histories. Since there is no possible way of analytically
calculating P(O|\), the iterative algorithm Baum-Welch can
locally maximize it.

In the particular case of prognostics and this paper, some as-
sumptions are made. First, the last state is not hidden but
observable and it represents failure. Second, in the failure
state, only one observation value is emitted. Third, only left-
to-right transitions are allowed, meaning that while in hidden
state ¢, it is only possible to remain in state ¢ or to transit to
state ¢ + 1. This last assumption is valid only when mod-
eling a degradation process independently from maintenance
actions.

Once the model parameters A are estimated and we have an
observation sequence O = O105...Op, two questions arise.
First, what is the probability of the observation sequence
given the model P(O|X)? The second question is, which is
the most likely sequence of hidden states Q = g1¢qs2...q7?

The answer to the first question, the Forward-Backward al-
gorithm is used. The forward part calculates the likelihood
of being in a hidden state at a certain time point given the
available observations. The result of the forward part is then
P(O])), which answers the first question. The backward part
is then used to answer the second question since calculates the
likelihood of observing the remaining data, given the current
hidden state. The result of the complete Forward-Backward
algorithm is the posterior distribution which is the probability
of being in each state at each time, given the entire sequence
of observed data.

However, to answer fully to the second question it is nec-
essary to find the single best state sequence that maximizes
P(Q|O, \) that is equivalent to maximizing P(Q, O|)\). The
maximization is done via the Viterbi algorithm. After the
Viterbi has estimated the most likely sequence of hidden
states, it is possible to calculate the RUL. In the state-of-
the-art, a time-invariant (TT) (Dong & He, 2007a) prognostic
measure used is defined in (1). The variables a; ; and a; ;41
represent the probability of remaining in the current hidden
state or transitioning to the next hidden state, respectively.
The variable D;(d) represents the pdf (or pmf for the discrete
case) evaluated in the probability of transition to the same
state 7, i.e. a;;.

RUL! = a; ;(D;i(d) + RUL;+1) + a;,;+1(RUL;+1) (1)

In this paper, a new time-dependent (TD) prognostic measure
is introduced in (2). This TD prognostic measure is expected
to improve accuracy of the RUL prediction and to reduce the
spread of the confidence intervals, which can be calculated
by the weighted spread of uncertainty (WSU) presented in
Appendix A.

RUL! =d], < Z Dy(d) + N (1, e))
i=k+1
dl < Z Dy(d +N1e)> 2)
k=i+1

The notation for this expression is as follows. RUL!, is the
RUL in the state ¢ and time step ¢. Once again, D; (d) rep-
resents the pdf (or pmf for the discrete case) evaluated in the
probability of transition to the same state 4, i.e. a;;. The vari-
able 7 is the time spent in the current state ¢. Therefore, the
term D;(d — 7) represents a shift in the pdf making this RUL
expression time-dependent. The variables dsz 41 and dZTZ are
derived from the transition matrix and are defined as shown
in (3) and (4), respectively.

di iy =P(d< 7|8 =) (3)
di; =1—dl;y, 4)

The result of the expression 2 is the pdf of RUL per time step.
Therefore, the confidence intervals can easily be obtained by
calculating the cumulative density function (CDF) and, later,
choosing the confidence level, usually 95%.

However, even if the HMM has a closed form for the pos-
terior distribution, the distribution captures aleatory uncer-
tainty, including uncertainty propagation and quantification
via the prognostic measure. In state-of-the-art prognostics,
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including the publications mentioned above, the HMMs pre-
sented usually address only aleatory uncertainty. Yet, epis-
temic uncertainty can be included in HMMs through a time-
consuming sensitivity analysis, which traditionally has been
used for accounting for epistemic uncertainty in stochastic
models. In (Xie et al., 2016) a Generalized Hidden Markov
Model (GHMM) is introduced that can identify both epis-
temic and aleatory uncertainties by using imprecise probabil-
ities. The results show that the GHMM can make more robust
decisions because the uncertainties can be differentiated. Yet,
it is a computationally expensive model.

3. DEEP LEARNING MODELS

For DL models, as well as for any ML model, uncertainty
quantification is a challenge since they are by nature de-
terministic, i.e. a single-point value for RUL prediction.
Bayesian Neural Networks (BNNs), which are an extension
of Neural Networks (NNs), overcome this by providing a pdf
as a result. However, BNNss still have a problem when quan-
tifying uncertainty since they offer an approximation of the
posterior distribution (Abdar et al., 2021). The posterior dis-
tribution cannot be directly calculated because it is intractable
to calculate the marginal distribution. Therefore, there is no
close-form expression for the posterior distribution.

BNNs can provide a pdf as an output because they have distri-
butions over the weights parameters and not deterministic val-
ues as in the case of NNs. These distributions in the weights
parameters are learned over Bayesian inference, which uses
the Bayes rules as shown in equation (5). In this expression,
P(w|X,Y) is the posterior distribution, P(w) is the prior dis-
tribution, P(X,Y|w) is the likelihood and P(X,Y) is the
marginal distribution.

P(X,Y|w)P(w)

PlX,Y) = =555

&)

Once again, it is computationally intractable to calculate
P(X,Y). Thus, these models offer an approximation of
P(w|X,Y) by using Variational Inference (VI). VI approxi-
mates the posterior distribution by using a variational parame-
ter gp(w). The distribution gy is approximated by minimizing
0 with the Kullback-Leibler (KL) divergence.

KL((Je(w)IIP(w|X7Y)):/qe(w)logpgueg;)ndw
(6

However, KL minimization is still intractable because it
needs the posterior distribution that it was impossible to ob-
tain in the first place. By rearranging KL into the evi-
dence lower bound (ELBO), the need to have the posterior

is avoided.

Lvr(0) = / golog P(Y|X, w)dw — K L(gs(w)||P(w))
(7

However, even though VI offers a good approximation of the
posterior it is still challenging to implement given their com-
putational cost (Nastos, Komninos, & Zarouchas, 2023). As
a result, other techniques have arisen, such as Monte Carlo
(MC) dropout, Deep Gaussian Processes, and Markov Chain
Monte Carlo (Abdar et al., 2021).

MC Dropout has been introduced as a technique to quantify
epistemic uncertainty and is the most used one due to its sim-
ple implementation (Gal & Ghahramani, 2016). This tech-
nique approximates the posterior by randomly switching off
neurons, given a dropout probability. The same architecture
is run multiple times and each dropout configuration corre-
sponds to a different sample from the approximate posterior
distribution.

However, MC dropout struggles to approximate complex pos-
terior distributions, which may lead to good approximations
only in certain regions of the posterior distribution but poor
approximations in others (Fort, Hu, & Lakshminarayanan,
2019). Even more, it has even been questioned the fact that
MC dropout is Bayesian since it fails sanity checks and is
a design artifact since the posterior distribution converges
to different values depending on the dropout probability as-
signed by a user (Folgoc et al., 2021). Hence, these tech-
niques although easy to implement, do not always provide
a good approximation of the desired distribution. The latter
leads to uncertainty about the posterior distribution approx-
imation that is already quantifying RUL uncertainty, adding
up to uncertainty propagation of the entire prognostic model.

In the context of prognostics, these types of models have been
applied with Bayesian LSTMs since LSTM, in general, pro-
vides the best results in terms of accuracy metrics. However,
in (Peng, Ye, & Chen, 2019) and in (Xiahou, Wang, Liu, &
Zhang, 2023) a point estimation of the final RUL value is
made, instead of a prediction of RUL through the operation
time. Nevertheless, (Xiahou et al., 2023) includes a RUL pre-
diction during the operation time by including a credible in-
terval. The results are promising, yet the main drawback of
this approach is the complexity of the model and its optimiza-
tion, as the authors have claimed to be “extremely intractable
and time-consuming”’.

Other Bayesian approaches such as (Caceres, Gonzalez,
Zhou, & Droguett, 2021) perform UQ including both aleatory
and epistemic uncertainty. However, it is not reported in the
results how much each source contributes to the confidence
intervals, which are also quite volatile. Epistemic uncertainty
is quantified with MC dropout with a probability dropout
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value of 0.25, which is considered lower than the standard
value of 0.5.

In (Pei et al., 2022) a Bayesian RNN is used with the dropout
technique, however, they use a value of dropout between 0.05
to 0.2, which once again is considered low given that the stan-
dard dropout value. Low dropout values lead to narrow con-
fidence intervals, meaning less estimated uncertainty in the
RUL predictions. Thus, the choice of low dropout values can
cause an underestimation of uncertainty that can be prejudi-
cial for decision-making.

When it comes to aleatory uncertainty in DL models, it is
split into two categories: homoscedastic and heteroscedas-
tic. Homoscedastic uncertainty corresponds to the noise in
the data and it remains constant through the whole data set,
while heteroscedastic uncertainty corresponds to the noise
that varies with the input (Nemani et al., 2023). The few
DL models that include aleatory uncertainty, include only one
part of it. For example in (Li, Yang, Lee, Wang, & Rong,
2020) a Bayesian DL framework is developed that takes into
account heteroscedastic aleatory uncertainty. In the already
mentioned work of (Caceres et al., 2021), only heteroscedas-
tic aleatory uncertainty is address and it is also assumed to
follow a Gaussian distribution.

4. CASE STUDY

To perform a comparison between a stochastic and a
DL model, the C-MAPSS (Commercial Modular Aero-
Propulsion System Simulation) dataset is used (Frederick,
DeCastro, & Litt, 2007). The C-MAPSS dataset is used as a
benchmark within the prognostics community. This dataset
is composed of four sub-datasets of simulated run-to-failure
degradation histories from turbofan engines, with informa-
tion from 21 sensors. Each sub-dataset considers a variety of
operational conditions and injects different fault modes. For
this paper only the sub-dataset FD0O1 is used, which consists
of 100 training degradation histories. This dataset is divided
into two in a random manner to have a training set of 80
degradation histories for training and 20 for testing. Addi-
tionally, sensors 1, 5, 6, 10, 16, 18, and 19 were eliminated
from all the analyses since the values were fixed for every
time measurement.

4.1. Pre-processing and training phase

For the HMM, only one feature can be used given the capa-
bilities of the library used in Matlab. Therefore, sensor 11
is chosen since it is the sensor with the highest correlation
to RUL. The sensor data is then discretized into 20 clusters
using K-Means. The number of clusters was chosen based
on the monotonicity index (MI), which allows to identifica-
tion of the optimal number of clusters that can reasonably
represent the degradation process. Once the data has been
pre-processed, the optimal number of states is identified as

10, via the Bayesian Information Criterion (BIC). The ex-
pressions and results of both the MI and the BIC are shown in
Appendix A, along with the estimated transition and emission
matrices.

For the LSTM, first, an analysis of the importance of the
sensors with respect to RUL was done. The sensors were
selected based on their absolute Pearson Correlation Coeffi-
cient (PCC) with respect to RUL. Table 1 shows the results
for all the sensors under analysis. The sensors selected were
the ones with an absolute PCC higher than 0.6. Thus, sen-
sors 2,4, 7,11, 12, 15, 17, 20, and 21 were used to train the
LSTM. It is important to keep in mind that the LSTM is being
trained with more data than the HMM, which only uses data
coming from one sensor.

LSTMs need to receive sequences that have the same length,
thus, the degradation histories were modified to fulfill this re-
quirement. A sequence length of 362 was selected and values
zeros were added in the RUL column, while for the sensors
the last measurement was repeated. Thus, the shape of the
training set tensor is (80, 362, 9).

The architecture of the LSTM is displayed in Figure 1. The
last layer, which corresponds to a Dense layer, uses a linear
function as activation. The model was trained using Adam as
an optimizer, with a Mean Squared Error (MSE) loss function
for 30 epochs.

Table 1. Sensor correlation to RUL values for dataset FD0O1
in C-MAPSS.

Sensor | PCC
2 -0.61
3 -0.58
4 -0.68
7 0.66
8 -0.56
9 -0.39
11 -0.7
12 0.67
13 -0.56
14 -0.31
15 -0.64
17 -0.61
20 0.63
21 0.64

4.2. Results and Discussion

The results are examined individually because the uncertainty
captured by the HMM pertains to aleatory uncertainty, while
that captured by the LSTM corresponds to epistemic uncer-
tainty. While it is feasible to incorporate epistemic uncer-
tainty for HMM, most publications employing this model
overlook it. Therefore, this paper focuses on analyzing the
impact of the prognostic measure on aleatory UQ.

Similarly, for LSTM, MC Dropout is often employed as a
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Figure 1. LSTM architecture for prognostics.

methodology to address uncertainty, hence, only epistemic
uncertainty is considered. Though it is plausible to include
aleatory uncertainty for LSTM, the few publications that do
so, only address heteroscedastic aleatory uncertainty and dis-
regard homoscedastic aleatory uncertainty. Consequently,
this paper exclusively analyzes epistemic uncertainty via MC
Dropout, a common methodology for UQ in LSTM:s for prog-
nostics.

4.3. HMM

The results for HMM both with the TI and TD prognostic
measure are shown in Table 2. The results correspond to the
average RMSE error and the average spread of uncertainty
measured by the metric WSU, for the testing set.

Table 2. Average values of the test dataset for the prognostic
performance metrics considering the TI and TD expressions
of RUL for the HMM.

RUL Expression | RMSE WSU
TI 45.00 | 3328839.60
TD 43.10 | 2978334.12

To visualize confidence intervals, engine #13 is utilized as
an example. Figure 2 shows the RUL prediction alongside
uncertainty quantification when employing an HMM with TI
and TD prognostic measures. It is evident from the visualiza-
tion that the TD approach provides results with reduced un-
certainty and higher accuracy. Thus, the choice of prognostic

measure significantly influences how aleatory uncertainty is
quantified, as it propagates the aleatory uncertainty captured
inherently by the HMM. Even with a simple model, as the
HMM is, an improvement can be achieved merely by adopt-
ing a different prognostic measure. Therefore, for HMMs in
prognostics, one course of action for managing uncertainty
could be the development of new prognostic measures that
mitigate the tendency to over-propagate inherent aleatory un-
certainty captured by the HMM.

300 — True RUL
\ — = Mean Predicted RUL TD
-~~~ Lower Bound (95% CI) TD
- ---- Upper Bound (95% CI) TD
it ] —- Mean Predicted RUL T
—— Lower Bound (95% CI) I
—— Upper Bound (95% CI) TI

Remaining Useful Life

Figure 2. HMM RUL prediction for testing engine #13.

While higher performance is expected with more complex
variants of HMMs, such as with a Hidden Semi Markov
Model (HSMM) (Dong & He, 2007b) or the NHHSMM pre-
viously mentioned in Section 2. However, this paper offers
a new time-dependent prognostic measure for the classical
HMM that can be extended to other variants in future work.
Furthermore, the goal of this paper is not to analyze RUL pre-
diction accuracy but to discuss the challenges and potentials
of different DDMs in terms of uncertainty.

44. LSTM

The results for LSTM with MC Dropout are summarized in
Table 3 for dropout values 0.3, 0.6, and 0.9. The results show
high accuracy in terms of RMSE for all three dropout values
used, with a slightly better performance for lower dropout
values. In terms of epistemic UQ, the value of WSU is higher
for higher dropout values as expected.

Table 3. Average values of the test dataset for the prognostic
performance metrics considering different dropout values for
LSTM.

Dropout value | RMSE WSU
0.3 1.19 150187.81
0.6 1.57 24793542
0.9 1.63 645949.41

Figure 3 shows the RUL predictions and confidence inter-
vals for engine #13 (the same engine used for visualization
for the HMM). For clarity, only the RUL predictions with
dropout values 0.3 and 0.9 are presented. The confidence in-
tervals of the RUL predictions with the LSTM remain approx-
imately the same throughout the degradation history since
only the epistemic uncertainty is considered. Additionally, as
explained in section 3, it has been claimed that MC Dropout
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is not even Bayesian and the posterior distribution converges
to different values depending on the dropout probability cho-
sen by the user. In these results, it can be seen that according
to the dropout values different model uncertainties are cal-
culated. The question arises then on which is the best value
to converge to the right posterior distribution of the model,
meaning that there is an uncertainty on how to calculate the
epistemic uncertainty.

— True RUL

~== Mean Predicted RUL p = 0.3
-~ Upper Bound (95% CI) RUL p = 0.3

---- Lower Bound (95% Cl) RUL p = 0.3

— - Mean Predicted RUL p = 0.9

—— Upper Bound (95% CI) RUL p = 0.9

Lower Bound (95% CI) RUL p = 0.9

7

Remaining Useful Life

Time

Figure 3. LSTM RUL prediction for testing engine #13 with
dropout probability value of 0.3 and 0.9.

5. FUTURE DIRECTIONS IN UNCERTAINTY QUANTIFI-
CATION FOR PROGNOSTICS

The case study analyzed how UQ is commonly performed
in prognostics for HMMs and LSTMs. While for HMMs in
most cases only aleatory uncertainty is taken into account,
in LSTMs only epistemic uncertainty is addressed via MC
Dropout due to its simple implementation. However, even
if both models could consider both aleatory and epistemic
uncertainty, despite the concerns rising for both approaches,
can uncertainty management be performed? Let us remem-
ber that epistemic uncertainty is reducible because it comes
from the lack of knowledge. Nonetheless, it has been stated
that aleatory and epistemic uncertainties often coexist, which
makes it difficult to separate them (Nemani et al., 2023). By
consequence, uncertainty management would not be feasible.

Hence, a different categorization of uncertainties is needed
to allow differentiation. The categorization must be based
on the variable of time, inherent in prognostics. This cate-
gorization should be subjective and focus on characterizing
uncertainties specific to the studied system rather than un-
certainties in the population. The need of a different cat-
egorization of the sources of uncertainty has been already
mentioned in (Sankararaman, 2015), where the author identi-
fies four sources of uncertainties: present, future, model and
prognostic measure. The categorization was further extended
in (Eleftheroglou, 2020) where a fifth source of uncertainty
was included, past uncertainty.

To further explain, the five sources of uncertainty proposed
are the following: first, past uncertainties are the ones that
come from the manufacturing or assembly process and ma-
terial quality. Second, present uncertainty refers to the lack
of knowledge of the true state of health of an engineering

system. Third, future uncertainty is the most difficult and im-
portant one to deal with. The future is unknown, and it is
not possible to foresee the environmental conditions, loading
profile, etc. Another source of uncertainty is the one from the
model and it compromises several parts such as model param-
eters, biases, etc. The last source is the prediction method un-
certainty, which is related to the uncertainty coming from the
prognostic measure. In the case of supervised techniques, i.e.
ML models, the model uncertainty and the prediction method
uncertainty become one source.

A remark here is done for past uncertainties since they are not
an uncertainty in the present, once uncertainty management is
performed. For example, if sufficient data is gathered about
the manufacturing process, it can be possible to manage past
uncertainties and take them into account when predicting the
RUL.

To the best of the author’s knowledge, this categorization has
not been applied to a real case study and it has only been
introduced theoretically. However, an attempt to provide a
better understanding on how this categorization can be im-
plemented for HMMs is offered briefly in this section.

For HMMs, past uncertainties can be addressed by the ini-
tial parameters distributions 7. Present uncertainty can be re-
flected by the hidden state with the highest probability at the
current time step by using the forward probabilities. Future
uncertainty, as already mentioned, is the most challenging
one. Based on training data, loading profiles can be identi-
fied and the probability of changing from one loading profile
to another one can be calculated. To account for unexpected
phenomena a loading profile can be included that considers
an extreme degradation rate, to give an example. Model un-
certainty can be addressed by imprecise probabilities or by a
sensitivity analysis, as mentioned in Section 2. Finally, the
prediction method uncertainty is already considered by the
prognostic measure.

DL models remain more challenging to implement under the
alternative UQ categorization for prognostics due to the lack
of interpretability that has already been mentioned in other
publications such as (Fink et al., 2020). Given their black-box
nature, the parameters of DL models do not hold a physical
meaning making it intractable to connect them to each one of
the five sources of uncertainties.

6. CONCLUSIONS

This paper explores uncertainty in prognostics, focusing on
two main models: HMMs and LSTM networks. It finds that
while HMMs primarily deal with aleatory uncertainty (inher-
ent randomness), LSTMs predominantly address epistemic
uncertainty (uncertainty from lack of knowledge).

For HMMs, results show the importance of understanding
how different prognostic measures affect UQ by broaden-
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ing the confidence intervals by introducing a new prognostic
measurement that is time-dependant. Similarly, for LSTMs,
when using the MC Dropout technique, the results show the
importance of the parameter selection of the dropout proba-
bility value. Even more, from the theoretical background it
has been claimed by other authors how a different dropout
probability can lead to not converging to the posterior distri-
bution needed to calculate epistemic uncertainty.

However, this paper also opens the discussion about how
UQ can be used for uncertainty management in prognos-
tics. Despite attempts to categorize uncertainty, such as
distinguishing between epistemic and aleatory uncertainty,
challenges persist, particularly in effectively reducing uncer-
tainty. Future directions advocate for a different approach that
considers five sources of uncertainty, such as past, present,
and future uncertainties, model uncertainties, and prediction
method uncertainties.

This alternative approach aims to offer a more comprehensive
understanding. However, the prevalence of epistemic uncer-
tainty poses challenges in disentangling from each one of the
sources of uncertainty. Even when attempting to quantify past
or model uncertainties, the presence of epistemic uncertainty
persists due to data limitations and knowledge gaps. While
theoretical discussions on implementing alternative catego-
rizations for HMMs exist, practical implementation is con-
strained. Managing uncertainties in HMMs requires address-
ing multiple dimensions, encompassing past, present, and fu-
ture uncertainties, as well as model and prediction method
uncertainties. Conversely, implementing this alternative ap-
proach on UQ in DL models remains challenging due to their
limited interpretability, raising questions about their efficacy
in real-world prognostic applications.
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APPENDIX A
Weighted Spread of Uncertainty (WSU)

The weighted spread of uncertainty (WSU) metric is shown
in 8. It calculates the area between the confidence intervals
while penalizing wider confidence intervals at the end of the
lifetime. The penalization is considered because the longer
time that has passed, the more information is available. Vari-
able t; is the time unit, RU L"PP¢" is the RUL value of the
upper confidence interval and RU L!*¢" is the value of the
lower confidence interval.

T-1
RULPY" + RUL;PP"
WSU =Y (tip1—t il :
;( i+1 1)( < 5 )
RULéower +RULéower
(e N
Monotonicity

The equation for the MI is provided in 9 with y(¢;) as the
feature value at time measurement ¢; and DD as the number
of measurements. The results in Figure 4 show that after 20
clusters the monotonicity index converges and remains stable.

Monotonicity vs Number of Clusters
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Number of clusters

Figure 4. Monotonicity index versus the number of clusters
for the sensor 11.
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Bayesian Inference Criterion

In equation 10 M; is the candidate model, y(k) is the sensor
data from K degradation histories, Q(¥) the state sequence
for the kth degradation history, H is the number of estimated
parameters of model M;, and n the number of all the samples
from the K training sessions. Figure 5 shows the results of
the BIC, from which 10 states are proven to be the optimal
number.

K
BIC(M;) = log(P(y™®), @™ |M;)) — w% log(n)
k=1 10)

Bayesian Information Criterion
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Figure 5. BIC to select the number of optimal states.

After training the HMM, the transition matrix A and the emis-
sion matrix B are estimated. The values of the elements of the
matrices have been approximated

0.9646 0.0354 O 0 0 0 0 0 0
0  0.9648 0.0352 0 0 0 0 0 0 0
0.9709 0.0291 0 0 0 0 0 0
0 0 0 0.97350.0265 0O 0 0 0 0
A= 0 0 0 0 0.9591 0.0409 0 0 0
0 0 0 0 0 0.9417 0.0583 0 0 0
0 0 0 0 0 0 0.9323 0.0677 0O 0
0 0 0 0 0 0 0 0.9281 0.0719 0
0 0 0 0 0 0 0.8941 0.1059
0 0 0 0 0 0 0 0 0 1
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