
 1 

On the Feasibility of Condition Monitoring of Belt Splices in Belt 

Conveyor Systems Using IoT Devices* 

Henrik Lindström1, Johan Öhman2, Vanessa Meulenberg3, Reiner Gnauert4, Claus Weimann5, and Wolfgang Birk6 

1,2,3,6 Predge AB, Västra Varvsgatan 11, 97234 Luleå, Sweden 

{Henrik.Lindstrom,Johan.Ohman ,Vanessa.Meulenberg, Wolfgang.Birk}@predge.se 

6 Automatic Control, Luleå University of Technology, 97187 Luleå, Sweden 

Wolfgang.Birk@ltu.se 

4,5 HOSCH Fördertechnik GmbH, Am Stadion 36, 45659 Recklinghausen, Germany 

{Reiner.Gnauert, Claus.Weimann}@hosch.de 

 
ABSTRACT 

This paper investigates fully automated condition monitoring 

of belt splices within operational belt conveyor systems, 

using IoT devices to predict and inform on potential belt 

breakage or tearing. Such events cause production stops and 

potentially harm workers. Belt splices are laminated belt 

connections subject to deterioration during operation and are 

usually weak spots. The proposed scheme circumvents 

manual inspection efforts and uses the HOSCHiris 

DISCOVER IoT device for sensing and data acquisition. 

Each belt conveyor is equipped with one individual IoT 

device acquiring the motion signal of the scraper which is 

used to learn signal patterns of the pulley and the belt to 

identify both location and deterioration of the individual 

splices. Deterioration is characterized from an initial healthy 

condition to a severe condition of the splice to inform on the 

potential need for action. To assess the feasibility of the 

scheme, several tests are designed and performed in an 

industrial belt conveyor system. The results indicate that the 

scheme can provide valuable insights into the splice 

condition and its degradation.  

1. INTRODUCTION 

Belt conveyor systems are widely used to transport material 

and are an essential component in many industry sectors but 

are often critical assets in a production chain of bulk material, 

like in e.g. mining. Unexpected breakdowns of belt conveyor 

systems render production stops, losses, and can severely 

harm workers in close perimeter of such events.  

The belt usually consists of several pieces, vulcanized 

together to achieve sufficient length. The vulcanized joints 

are called splices. In Figure 1, a simplified sketch of a belt 

conveyor is shown, and how splices could be distributed 

along the belt. The condition of these splices deteriorates 

during operation, leading to breakage or tearing. To 

preventively detect damage, all splices are regularly 

inspected. For this, the belt is run empty and at low speed to 

visually assess the belt surface and splices by a worker, 

leading to frequent downtimes in production. The quality of 

this manual condition assessment depends on the workers’ 

expertise to identify issues on a moving belt, while keeping 

sufficiently attentive and tracking the splice locations. Such 

a campaign can last for several hours for longer belt 

conveyors, and thus human errors are not uncommon. To 

circumvent the problem of production losses, there is a need 

for monitoring solutions that work during normal operation. 

 

Figure 1: Sketch of the belt conveyor system with two splices 

and a scraper unit equipped with the sensing device 

generating the output 𝒛(𝒕). 

Various methods have been proposed for monitoring steel 

cord belt splices. Min (2010) suggests using Hall effect 

sensors to measure belt deformation and bending moment 

equations to assess the tensile force. However, concrete 

results validating this technique are lacking. Harrison (1985) 

and Kozłowski et al. (2020) propose methods based on 

measuring magnetic fields generated by belt reinforcement 

steel cords. Kozłowski, et.al. (2020) found that through a 
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variability analysis, the magnetic current can be compared to 

an estimated pattern. With this method, the cords could be 

monitored. Bancroft et al. (2017) used a camera and encoder 

to visually inspect mechanical splices and could determine 

the splice condition. Alport et al. (2001) developed artificial 

neural networks for splice monitoring using conveyor belt 

video footage, achieving splice identification accuracy of at 

least 89%. However, further development is needed for 

monitoring splice degradation and internal defects. Roxon 

Oy's HX products utilize laser scanning for surface damage 

and for monitoring the belt thickness that could detect splice 

elongation (Roxon, 2024). 

The solutions discussed above require splices with steel cord 

reinforcement or mechanical splices that are easily visible. A 

camera installation or laser scanner, even though it has 

potential, requires the additional installation of equipment, 

resulting in increased maintenance costs. Moreover, the 

methods described above frequently lack definitive results 

regarding their accuracy.  

The contribution of this paper is an analytics solution for 

condition monitoring of belt splices utilizing the 

displacement data from one individual belt scraper, as 

patented by Weimann and Kiel (2020). The benefit of this 

approach is that it can be used for all belt configurations, 

while in operation and with material on the belt. Since only 

the displacement of the scraper is analyzed, no additional 

equipment is required, making it a cost-effective solution.  

The paper is structured as follows. First, a problem definition 

and description of the approach is given, followed by a 

summary of the scraper sensing solution. Next, the analytics 

solution is described, including belt speed estimation, 

transformation to distance domain, belt signature estimation, 

splice re-identification and degradation, and condition 

estimation. Thereafter, the proposed method is applied and 

tested in a real-life setting and the results are presented and 

discussed. Finally, the work is concluded. 

2. PROBLEM DEFINITION AND APPROACH 

Splices are fixed locations on a belt which means that the 

individual splice locations need to be re-identified in 𝑧(𝑡), 

which is the displacement of the scraper (Figure 1). While 

𝑧(𝑡) is time-based, the splice itself has a spatial location and 

structure along the belt. The problem of the condition 

monitoring of a splice over time is therefore to identify the 

passage of an individual splice at the sensor and to assess its 

degradation based on the signal that is acquired during the 

passage of the splice at the sensor. Moreover, the belt speed 

is not constant and needs to be treated as unknown. Using an 

individual IoT device combined with the scraper to measure 

𝑧(𝑡) would avoid any integration of the sensing solution with 

the control system or IT infrastructure, making deployment 

easy and fast. 

The approach to address the problem is as follows: The 

HOSCHiris DISCOVER System is selected as the IoT device 

measuring the displacement 𝑧(𝑡)  of the scraper. From the 

measurement and using design information of the pulley, the 

belt speed is estimated. Thereafter, the measurement signal 

𝑧(𝑡)  is transformed into the spatial or distance domain, 

denoted 𝑧(𝑑), where 𝑑 denotes the distance that is covered. 

The annotated locations of the splices in the distance domain 

can then be re-identified in 𝑧(𝑑) requiring the detection of 

complete belt revolutions in the data. For every revolution of 

the belt, the splice locations can then be assessed, and their 

change can be tracked over the number of belt revolutions or 

time. Using the change in 𝑧(𝑑𝑖) for splice 𝑖 at location 𝑑𝑖 , 

condition indicators are derived and then mapped into 

actionable insights for decision making on maintenance or 

stopping of the belt conveyor. 

Some challenges to this approach must be addressed. First, 

the measurement signal is affected by noise, which come 

from the surface structure of the belt and the pulley, but also 

from the scraping action to remove material from the belt. It 

is also not uncommon that material can get stuck between the 

scraper and the belt for some time which can lead to a 

temporary large displacement signal. How these effects will 

be managed is described in Section 4. 

Moreover, the solution is intended to work independently of 

a control system or any integration into the IT infrastructure 

of the belt conveyor owners. The solution is therefore 

implemented in a cloud-based architecture as depicted in 

Figure 2. There, the IoT device connects with the HOSCH 

cloud to ingest the data and makes it accessible for the 

analytics in the partnering Predge cloud. All front-end 

functionalities are collected in HOSCH cloud, like 

configuration, alarming, visualization of actionable insights 

on the splices, and dashboards for the decision making of the 

user. 

 

Figure 2: Cloud architecture to acquire the IoT device data, 

store and process it to provide actionable insights. 

3. SENSING SOLUTION 

In this section, a short description is given of the sensing 

solution, based on the patent by Weimann et al. (2020). 

Figure 3 depicts a sketch of the scraper at the drive pulley on 

the belt, including the sensor. The pulley has a lining 

generating a high friction surface that is in contact with the 

belt. In the current setup, the high friction surface consists of 

three segments. The scraper is fixed to an axle where it can 

rotate. Connected to the scraper is a spring rod to adjust the 
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tension at which the scraper is in contact with the belt. The 

spring rod will move proportionally to the scraper. Opposite 

the spring rod, there is a sensor mounted to the housing which 

measures the distance between the sensor and a magnet 

attached to the end of the spring rod.  

 

Figure 3. HOSCH HD PU pre scraper connected to the pre-

tensioning spring and sensing device. 

In Error! Reference source not found., the raw sensor s

ignal is displayed showing approximately 16 meters of the 

belt passing by the sensor, where the speed was increased at 

12:22:07. The recurrent sinusoidal-like motion originates 

from the surface structure of the pulley where the drum is 

equipped with a lining composed of several segments. It is 

important to note that the pulley surface is a disturbance in 

the signal and may mask the belt surface changes. When the 

speed is increased the pulley rotational speed is increasing 

which leads to an increase in the frequency of the sinusoidal-

like disturbance. 

 

Figure 4. Raw sensor signal for a short time where the 

conveyor belt is run at two different speeds. 

The sensor is connected to the IoT measurement system that 

samples the sensor signal and pre-processes it. It is thereafter 

locally stored and transmitted to the cloud wirelessly.  

4. ANALYTICS SOLUTION 

In this section the analytics solution to determine the 

condition of splices on a belt is presented.  

4.1. Overview 

The condition monitoring of splices using the scraper 

displacement measurement 𝑧(𝑡)  requires several steps, as 

shown in Figure 5. One reason for this is that the splices are 

not as prominent in the sensor signal as the joined effect of 

all disturbances, like sensor noise, surface structures of pulley 

and belt, and displacement due to material removal from the 

belt. Consequently, the algorithm needs to recover the 

displacement that is attributed to the splices. In addition, the 

displacement needs to be correctly assigned to an individual 

splice to assess the surface change at the splice location.  

 

Figure 5. Block diagram for the condition monitoring of 

splices. 

To ensure that surface changes are correctly assigned, the 

measured displacements need to be associated with specific 

locations along the belt. By estimating the belt speed from the 

measurement signal, transforming it into the distance domain 

and then identifying complete revolutions of the belt, it is 

possible to associate displacement measurements with 

specific coordinates along the belt. The identification of 

complete revolutions is done using an estimate for the belt 

surface signature, denoted 𝑏𝑠(𝑑).  

After an initial learning of a reference belt signature 𝑏𝑠𝑅(𝑑), 

it is possible to match a complete revolution. Since splices 

are fixed locations 𝑠𝑝𝑖 along the belt with an overestimated 

length 𝜏, a distance series can be extracted from the aligned 

raw data 𝑧𝑎(𝑑), reflecting the splice location, denoted 𝒛𝑠,𝑖 . 

Since the pulley rotation and belt rotations are not aligned, 

the displacement induced by the pulley surface structure 

needs to be compensated for rendering 𝒛′
𝑠,𝑖 . Now the change 

in the surface can either be assessed in absolute terms or 

relative to a nominal 𝒛′
𝑠𝑅,𝑖 , which is learned from data or 

provided by the user. The surface change can be assessed in 

different way and renders a condition indicator 𝐶𝑠,𝑖 . An 

advantage of this approach is that local belt damages are not 

confusing the association of splices to specific data series 

which enables the detection of new monitoring locations. 
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4.2. Speed estimation 

To analyse the splice condition, the belt speed 𝑣(𝑡), needs to 

be estimated. The edges of the lining segments on the pulley 

introduce a distorted sinusoidal structure to the displacement 

data 𝑧(𝑡). This reoccurring structure in the signal is utilized 

when estimating the speed of the belt, by measuring the time 

between two registered edges and converting the time to a 

velocity. The displacement data 𝑧(𝑡) is split into five second 

batches of data 𝑋(𝑡), such that small changes in speed can be 

registered. 𝑋(𝑡) is now assumed to be a stationary process 

and can be normalized as  

𝑋′ =
𝑋 − �̅�

σ
 (1) 

where �̅� is the mean and σ is the standard deviation of 𝑋. The 

normalization in (1) is done such that when computing the 

autocorrelation function (ACF) of the batch, there will not be 

any variance offset present. The ACF for a stationary process 

is defined as 

𝑟𝑋′(τ) =  ∫ 𝑋′(𝑡)𝑋′(𝑡 + τ)dt
∞

−∞

. (2) 

The ACF in (2) is used here because of the repetitiveness of 

𝑧(𝑡). The ACF will show local maxima at distances away 

from zero corresponding to the time it takes for the next lining 

segment to appear. Let 𝑖′  be the solution to the following 

minimization problem that searches for the index in 𝑟𝑋′(τ) 

that corresponds to the first local maxima. 

Minimize 𝑖 ∈ dom(𝑟𝑋′)  

s. t. 𝑖 ≥ 𝑚  

 𝑟𝑋′(𝑖) ≥ ℎ (3) 

 ∇𝑟𝑋′(𝑖) = 0  

 ∆𝑟𝑋′  (𝑖) < 0  

In (3), 𝑚 is a lower limit of 𝑖 , ℎ is a lower limit of 𝑟𝑋′  at 

index 𝑖 and the third and fourth criterions requires 𝑖 to be at a 

local maximum to  𝑟𝑋′ . The solution 𝑖′   to (3) is then the 

smallest index which satisfies all the criterions for (3). The 

velocity of the belt is calculated as  

𝑣 =
𝐷

3𝑖′
 (4) 

where 𝐷 is the circumference of the pulley. The calculations 

in (2), (3) and (4) are done for each batch, resulting in a vector 

of speed estimations that will later be used for transforming 

the time series into a distance series.  

4.3. Transformation to distance domain 

If the average speed in the speed vector was greater than 0.2 

m/s, 𝑧(𝑡)  is transformed into a distance series, 𝑧(𝑑) . The 

time series signal is sampled at a fixed rate at instance 𝑘 

independent of the belt speed. The covered distance 𝑑𝑘 by the 

belt is a multiplication of the time instances 𝑡𝑘  by the belt 

speed 𝑣(𝑡𝑘). The resulting distance dependent series  𝑧(𝑑𝑘) 

is not sampled equidistantly. By applying a linear 

interpolation with a fixed distance sample rate of 1 cm, an 

equidistant distance series is found. The benefit of 

transforming the time series into a distance series is that it 

enables the comparison of splice data regardless of the belt 

speed, since the position of the splices and the pulley will 

always be the same.  

4.4. Estimating the Belt Signature 

Now that the measured signal is available as a distance series, 

it is possible to relate a specific position on the belt with a 

specific point in the distance series, if the starting point of the 

belt in the distance series is known. It is not necessary to 

know an exact starting point, but it should be known where a 

revolution of the belt starts and ends. The belt itself has a 

surface structure that will produce displacements at the 

scraper. This displacement will occur repeatedly in the 

distance series. However, the distance series is affected by 

disturbances, like e.g. the pulley surface structure, damage to 

the belt and operation related disturbances. Understanding 

the stochastic nature of the disturbances, the sinusoidal 

disturbance behavior of the pulley, and assuming the belt 

surface is smooth a Kalman filter can be employed to 

estimate the belt surface and its derivative 𝑑𝑏𝑠(𝑑). Note that 

the Kalman filter is not realized in the time domain but in the 

distance domain. 

The underlying model for the Kalman filter is defined as a 

sinusoidal motion which is biased by the surface signature 

𝑥𝑘+1 = [

1 𝑑𝑆 1 0

−𝜔2𝑑𝑆 1 0 0
0 0 1 𝑑𝑆

0 0 0 1

] 𝑥𝑘 + 𝜈𝑘

𝑧𝑘 = [    1    0 0  0  ]𝑥𝑘 + 𝜂𝑘

 (5)  

where 𝜔 is the spatial frequency of the sinusoidal-like motion 

induced by the pulley structure, 𝑑𝑆 is the spatial sample rate, 

𝜂 and 𝜈 are normally distributed noise terms, and 𝑘 denotes 

the sample instance. Further, the state vector is defined as 

𝑥 = [𝑧
𝜕𝑧

𝜕𝑑
𝑏𝑠

𝜕𝑏𝑠

𝜕𝑑
]

𝑇

  (6) 

The Kalman filter as described by Gustafsson (2000) is 

implemented using (5) as the model, initial conditions 𝑥0 =
[𝑧0 0 0 0]𝑇, and the variance of the sensor signal as 𝑅. Setting 

the covariance matrix 𝑄 reflecting 𝜈 and initial conditions for 

the state covariance matrix 𝑃 , is usually difficult and 

dependent on the situation. Here, 𝑄 is chosen as a diagonal 

matrix 𝑄 = 𝑑𝑖𝑎𝑔(10−1, 10−1, 10−7, 10−9)  and the initial 

condition 𝑃0 = 100 ⋅ 𝑄. 

To identify belt rotations, the derivate 𝑑𝑏𝑠(𝑑) of 𝑏𝑠(𝑑) is 

used in relation to a reference signature. Performing the 

estimation on several belt rotations enables the learning of a 
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reference signature by deriving the median of all recorded 

repetitions of the signature, denoted 𝑑𝑏𝑠𝑅(𝑑) . Note, the 

reference derivative signature d𝑏𝑠𝑅(𝑑) can have an arbitrary 

starting point on the belt. To identify a complete revolution 

of the belt in the estimated signature, an optimization 

problem can be solved that identifies the position of 𝑏𝑠𝑅(𝑑) 

in the currently estimated 𝑑𝑏𝑠(𝑑) , by minimizing the 

deviation between the two series. The localization and 

identification of the splices and other points of interest 

(POI’s) for monitoring is then solved as a lookup. The 

identification of the start of a belt revolution is describe here. 

Define 

𝐿′ =
argmin

𝐿
 
1

𝑁
∑(𝑑𝑏𝑠(𝑖 + 𝐿) − 𝑑𝑏𝑠𝑅(𝑖))2

𝑁

𝑖= 0

 (7) 

where 𝑁 is the number of datapoints in 𝑑𝑏𝑠𝑅. The solution 𝐿′ 

to (7) will be an index where the reference 𝑑𝑏𝑠𝑅 is the most 

alike 𝑑𝑏𝑠 and will describe where a new belt rotation is taken 

place. By having a knowledge of the splice locations in belt 

reference 𝑑𝑏𝑠𝑅(𝑑) , it is now possible to also localize the 

splice locations in 𝑧(𝑑𝑘). 

4.5. Splice and Pulley References 

Similar to having reference distance series for the belt 

signature, references for the splices and the pulley can be 

derived. Moreover, the pulley surface structure is a dominant 

disturbance of high magnitude and the rotation of the pulley, 

and the belt are only rarely aligned. Thus, one and the same 

position on the belt will be affected by different disturbances 

due to the pulley surface structure. Nevertheless, by having a 

pulley reference and aligning it with the recorded distance 

series, it is possible to remove it by subtraction from the 

distance series. As a result, the distance series representing 

the changes in the belt surface can be recovered. The 

remaining signal components are then 𝒛′
𝑠,𝑖 and its reference  

𝒛′
𝑠𝑅,𝑖.  Using these two series it is possible to quantify the 

change in the belt surface and as a result calculate condition 

indices, that quantify the change over the number of 

revolutions of the belt.  

4.6. Condition indices 

The condition of the splice or any POIs on the belt can be 

characterized by two main parameters, the vertical 

displacement of the surface and the longitudinal extend of the 

area of change. Since the belt is composed of laminated layers 

of rubber and reinforcement materials, the lamination can 

degrade and variations in thickness can occur. Damages can 

also lead to lose parts or bubbles that can be filled with 

material. Typical condition indices include: 

||𝒛′
𝑠,𝑖 − 𝒛′

𝑠𝑅,𝑖
||

2
 (8) 

max (|𝒛′
𝑠,𝑖

− 𝒛′

𝑠𝑅,𝑖
|) (9) 

min (|𝒛′
𝑠,𝑖

− 𝒛′

𝑠𝑅,𝑖
|) (10) 

These indices can be tracked over time and their change can 

be predicted if the change is smooth over the number of 

revolutions of the belt. These condition indices can then be 

used as actionable insights for decision making on 

maintenance and stop of operation. 

5. RESULTS & DISCUSSIONS 

This section will present the results from tests that have been 

conducted at an industrial site. For this end, the solution was 

implemented in a cloud-based architecture as depicted in 

Figure 2. Two HOSCHiris DISCOVER units were installed on 

two belts with lengths of approximately 550 m and the splice 

condition monitoring scheme was adapted to the pulleys and 

belt. The tests were conducted to assess the speed estimation, 

belt signature estimation, and the condition monitoring. 

For the condition monitoring specific tests were conducted, 

where rubber patches were glued to the belt surface. The 

splice areas themselves were newly vulcanized, which means 

they should not be estimated to a severe condition. 

5.1. Speed Estimation 

The estimated speed estimates were derived from the raw 

data signal by the algorithm. The displacement data is shown 

in Figure 6a where the belt starts from a stand still. The belt 

speed is then increased to 30%, 50%, 70%, 80%, 90%, 100%, 

and back to 30% of the maximum speed (3.3 m/s).  

 
Figure 6. Speed estimation. 

In  Figure 6b, the estimated speed is shown. Shortly before 

13:10, the speed is incorrectly estimated to be 0 m/s, which 

could be due to the loss of data in that time frame. There are 

also two spikes in the speed estimation at around 12:05 and 

13:17, usually in high acceleration events when the belt is 

started or stopped. Using data from the control system, the 

speed estimation was validated rendering an error of 4% 

during the tests.   
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5.2. Belt Signature Estimation 

For the belt signature estimation, no direct validation was 

possible, as the fine structure is estimated. Instead, the 

recurrence of the belt signature was used to assess the 

validity, by checking if the localization of the splices using 

the signature is correct. 

In Figure 7a, a randomly picked sequence from normal 

operation is shown, where the displacement data is already 

transformed into the distance domain using the estimated 

speed. The estimated derivative belt signature 𝑑𝑏𝑠(𝑑), with 

its unique features can be seen in Figure 7b. The data shows 

two full revolutions of the belt and the noticeable similarity 

of the pattern before and after 60000 cm.  

 
Figure 7. Transformation of displacement data to signature 

belt surface derivative 

Using the pattern matching algorithm to align the belt 

rotations, the splices could be correctly localized within one 

meter of accuracy. 

5.3. Condition monitoring of glued patches 

To validate the condition assessment, artificially introduced 

POIs in the form of rubber patches glued to the belt surface 

were analyzed. For each belt, four patches of 100 x 200 x 1 

mm were glued to the belt surface. The idea of the test was to 

track how the patches are degraded over the passages by the 

scraper and finally stripped from the belt surface. 

To achieve this, references were created for each patch area 

and the already existing belt signatures and pulley references 

were utilized, which are generally true in the monitoring 

scheme. The belt conveyors were then operated as usual.  

For the condition assessment of the patches the index in (9) 

is used and shown in Figure 8. The degradation of the patch 

is clearly distinguishable at about 13 belt rotations, and after 

about 21 rotations, it is no longer visible as it was removed 

from the belt by the scraper. This shows that POIs can be 

monitored and that changes in their behavior are estimated by 

in the monitoring scheme. However, the intensity of the patch 

degradation is not constant nor monotonically increasing 

each revolution and there is also some variation in the 

condition index. 

 
Figure 8. Maximum deviation of the belt before, while and 

after a patch was added. 

Since the patches have sharp front edges, the collision 

induces an impulse on the scraper with subsequent 

movement. At the same time the scraper movement is 

sampled at a rate of 100 Hz. Depending on the alignment of 

the impulse with the sampling of the sensor signal and the 

belt speed, the maximum displacement might not be 

recorded, yielding a variability and error in the condition 

index. Nevertheless, the degradation phase of the patch is 

clearly captured by the scheme. 

5.4. Condition monitoring of the splices 

As already noted, the splices were newly vulcanized yielding 

a very smooth surface, which requires operation to take place 

over a long period of time (usually longer than a year). It was 

therefore expected that the splices would not generate any 

impact on the condition index. For the test, sequences from 

normal operation of the belt conveyor are used and 

information from inspections was collected. 

Again, the maximum deviation index as given in (9) was used 

to assess the condition. The expectation from the test was that 

the index would not show any high values. In total 150 belt 

revolutions were assessed, which were received in batches of 

10 minutes. 

 
Figure 9. Maximum deviation of the belt for a splice area. 

In Figure 9 it can be seen that no higher peaks are visible and 

that the condition index varies around a low value, which is 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 684



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

7 

comparable to the lower value ranges that can be seen in 

Figure 8. The inspections during the normal operation also 

confirmed that the splices are in good condition throughout 

the test period. It can therefore be concluded that the 

monitoring scheme is not generating false indications during 

normal operation and replicates the condition of the splices 

correctly. 

6. CONCLUSION 

In this work, the fully automated condition monitoring of belt 

splices within operational belt conveyor systems was 

investigated. It is shown how the belt speed can be estimated 

from a signal displacement signal, how a point of interest on 

a conveyor belt can be localized and its degradation can be 

monitored. For this end, typical statistical and Bayesian 

filtering approaches are applied together with simple learning 

schemes that provide data driven models of the belt, pulleys, 

and normal conditions of the points of interest.  

Based on the conducted tests and their assessment it can also 

be concluded that the condition monitoring of the belt surface 

using the displacement signal of a single HOSCHiris 

DISCOVER IoT device is feasible and that actionable 

insights on the degradation of the belt can be provided to 

operators and maintenance staff to ensure safe operation. The 

proposed solution is now online and part of the normal 

operation in an industrial plant. 

 Future work will target the collection of experience from the 

solution in normal operation, the benchmarking of used 

methods with other approaches, and assessing the 

effectiveness in capturing degradation events early on and in 

good time for decision making on operation and maintenance. 
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