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ABSTRACT

This paper presents a method for constructing a health in-
dicator to detect neutron-generator faults in a multifunction
Logging-While-Drilling (LWD) service and predict mainte-
nance requirements due to wear. The method is based on ex-
tracting features from selected channels that hold information
about the subsystem degradation with time. These features
are used to build a decision-tree model which estimates the
tool condition from the recorded data. The model demon-
strates excellent value for both maintenance and field engi-
neers due to the fact that in just a few minutes the physical
condition of the neutron generator can be determined with
high confidence. This work is part of a long-term project with
the aim to construct a digital fleet management for drilling
tools.

1. INTRODUCTION

EcoScope (Figure 1) is a multifunction Logging-While-Drilling

(LWD) tool developed for oilwell drilling applications (Hansen
& White, 1991). It is typically used in conjunction with other
LWD equipment during the drilling phase of oil and gas ex-

traction. It comprises an integrated suite of formation-evaluation,

well-placement and drilling-optimization measurements into
a single housing. The key differentiator that elevates this
LWD service above all other competitors in the industry is
the inclusion of a Pulsed Neutron Generator (PNG) which is
a self-contained particle accelerator that produces neutrons
using a fusion reaction. The PNG eliminates the need for the
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traditionally required Americium Beryllium (AmBe) chemi-
cal source. The PNG usage substantially reduces the trans-
portation and wellsite health and safety risks and provides
additional, advanced measurement (Figure 2). The PNG is
fundamental to the LWD service provided to clients to deliver
porosity, density and spectroscopy of the drilled formation.
Yet it is an extremely complex piece of sensitive equipment,
which is required to operate in particularly harsh environmen-
tal conditions.

Figure 1. Multifunction LWD service

A typical usage cycle is around 100 hours operating at tem-
peratures up to 150degC and pressures of 20,000psi, with
significant levels of shock and vibration from the aggressive
cutting of rock at depths of several kilometers beneath the
sea floor. Onboard sensors, electronics and memory acquire
and store roughly 1000 channels of critical tool information
which not only includes drilling and formation information
for the client, but also tool diagnostic information for the
Original Equipment Manufacturer (OEM). After each job, the
tool is sent to a maintenance base where technicians use the
acquired tool data to decide what level of maintenance is re-
quired before the tool is ready to perform the next job. A
critical part of this decision-making process is analyzing the
diagnostic information of the PNG and its subsystem to de-
termine, whether the downhole conditions have had any detri-
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mental effects on the operability.

Figure 2. Pulsed Neutron Generator

Due to the complexity of the system, analysis of this vast
amount of data is very time consuming and prone to error
if performed manually. Furthermore, the electrical and phys-
ical complexity leads to a large number of potential failure
modes, many of which are intermittent or only evident under
the extreme stress of downhole conditions and are nearly im-
possible to reproduce in a maintenance base. Main reported
failures are mechanical damage of PNG inside components,
leakage, shortcut or open circuit and electronic boards solder-
ing issues or component delamination. The PNG functional-
ity is critical to the core tool measurements, so that any failure
can have catastrophic consequences. Therefore, fault detec-
tion of the PNG is of utmost importance for operation (Zhan
et al., 2010).

An automated diagnostic tool, which can determine the health
of the PNG system with minimal user input, removes variabil-
ity, eliminates human error and provides an efficient decision
on the required maintenance in a fraction of the time. There
are situations at the rigsite, where a LWD tool must be run
two or more times without being sent back to the base for
maintenance. In these cases, the field engineer must make the
re-run decision, often under critical time pressure. Here, the
fault detection application provides a useful aid to determine
the tool’s reliability for the next run (Isermann, 2006). The re-
liability benefits are clear and provide significant cost savings
both for the client in terms of reduced Non-Productive Time
(NPT) at the rigsite and for the OEM in terms of reduced
Materials and Supplies (M&S) during maintenance and trou-
bleshooting.

We present a data-driven fault detection method for the PNG
subsystem in this LWD tool. The idea is to construct a Health
Indicator (HI) from sensor data acquired from the PNG sub-
system which can be used as a fault detection model. This
method generates a statistics summary of selected channels
to reduce computation time. The resulting features are used
to extract the first principal component (eigenvalue). Then
empirical mode decomposition algorithm is used to decom-
pose the generated first principal component into successive
intrinsic mode functions and a residual signal (Huang et al.,
1998). The residual signal is retained because it shows rate
of change in variance with time and therefore the develop-
ing degradation of the subsystem. A decision-tree model is

trained on HIs of different runs labeled as healthy or faulty
by a domain expert.

This paper is structured as follows. Section 2 presents a de-
scription of the PNG subsystem. The method and the results
for the fault detection model are presented in section 3 and 4,
respectively. Finally, section 5 concludes the paper.

2. PULSED NEUTRON GENERATOR (PNG)

Generators of high energy neutrons have been used for a long
time for neutron-gamma ray or neutron-neutron logging (Tittle,
1961). A neutron generator has multiple advantages over tra-
ditional chemical sources. The ability to turn off the PNG
means there is a negligible radiation risk when the genera-
tor is not downhole in a well. A higher yield of neutrons
is available, enabling better measurement statistics, and the
ability exists to control the yield of neutrons. The yield of
neutrons from a generator can be either in bursts or continu-
ously. Commonly in logging operations, the neutron gener-
ator has a controllable yield of neutrons in burst. PNGs are
used in wellbore formation evaluation tools to evaluate how
neutrons interact with the drilled formation. Porosity, salin-
ity, formation density, hydrogen content, formation elemental
fractions, etc., can all be determined by measurements of in-
teraction products of high energy neutrons from a PNG with
such formations.

The PNG is a self-contained particle accelerator that produces
neutrons using a fusion reaction (Figure 3). A high-voltage
potential accelerates ionized deuterium and tritium isotopes
of hydrogen toward a target doped with tritium.

Pulsed Neutron Generator
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Figure 3. Architecture of PNG

The fusion reaction produces a 4He nucleus and a neutron as
shown in Figure 4. The reaction energy is transferred into
the kinetic energy of the two particles and is dissipated as
heat when the particles are stopped in matter. The neutrons
leave the reaction with very high speed, having kinetic energy
of approximately 14.4 MeV of the total 17.6 MeV released.
When the main power is disconnected, the PNG produces no
neutrons.
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Figure 4. Fusion reaction inside the PNG

Most nuclear logging measurements are carried out by emit-
ting pulses of neutrons which irradiate the earth formations,
and by detecting the radiation (neutrons or gamma rays) re-
sulting from the interaction of earth formation atoms and the
emitted neutrons. Thus, it is critical to have a good knowl-
edge of the characteristics of the neutron pulse, such as the
neutron output (number of neutrons emitted) and the pulse
timing. Such knowledge means having control over these
characteristics. It is highly desirable to generate neutron pulses
having a substantially square shape with a short rise time (to
reach the plateau value) and a short fall time (once the volt-
ages are turned off). These features require the following el-
ements:

e Neutron detector to control the output neutron flux
e Electronic timing board for pulse output neutron flux shap-
ing

e Three electronic power supply boards to permit nuclear
fusion reaction

e Electronic acquisition board to control the neutron output
flux

The PNG subsystem consists of the generator, a monitor de-
tector, a timing board, acquisition board and three power sup-
ply boards as presented in Figure 5.
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Figure 5. Pulse neutron generation subsystem

Known failure modes for the PNG subsystem are:

e High Voltage (HV) leakage due to improper insulation

e Broken inside components as filament or cathode
e Harnesses discontinuity

e Damage or broken component on acquisition boards or
power supply boards

e Inefficient or broken detector for neutron flux regulation
e  Wear of the target

Such failures modes affect the overall function of the PNG
and lead eventually to failure. In the next subsection we
present a method to extract HIs from selected channels that
hold information about degradation of the PNG. Such HIs are
then used to build a machine learning model to estimate the
physical condition of the PNG subsystem.

3. PROPOSED METHOD

The idea is to construct a health indicator from recorded chan-
nels that hold information about the PNG subsystem degra-
dation. This health indicator is then modeled using a deci-
sion tree model, which can be used to discriminate between
healthy and failed tools. The method is divided into four main
steps presented in Figure 6.

Channel
Selection

.| Health Indicator
Construction

A4

»| Preprocessing Modeling

Figure 6. The method’s general scheme

3.1. Channel selection

After each run acquired tool data contain an immense num-
ber of data channels generated at a record rate, which re-
sults in millions of data points from a single run. Not all
of those channels hold information about the degradation of
the PNG subsystem over time. Removing channels that hold
no information about the degradation should result in a bet-
ter HI while increasing the efficiency of the algorithm. Do-
main knowledge of nuclear physics and nuclear instrumen-
tation determines the channels that contain relevant informa-
tion about the degradation. Therefore, Subject Matter Experts
(SME) select the most important channels for the health sta-
tus. For the PNG subsystem the following channels are se-
lected:

e Detector output
e Input and output currents
e Input and output voltages

These channels shall be used to construct the HI; the remain-
ing channels can be ignored.
3.2. Preprocessing

The LWD data-acquisition system starts recording data once
the engineers initialize it for the upcoming job. The LWD
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tool goes through the following steps:

e Tool initialization - The engineer configures the acqui-
sition parameters for the upcoming job, formats the tool
memory, and begins the tool recording.

e Shallow hole test - A confirmation that the tool is func-
tioning as expected inside the well before deploying to
full well depth.

e Casing logging for caliper calibration - Using the known
internal diameter of the metal casing connecting the rig
to the wellbore and the known drilling fluid properties,
the tool calibrates its ultrasonic measurement before de-
scending into the drilled well.

e Drilling operations - The physical drilling of a well with
the measurement acquisition equipment situation imme-
diately behind the drill bit.

Once the tools is initialized and in the well the onboard sys-
tem records measurements every 2 seconds. This data is not
available until the job is done and the tool is back to the sur-
face. Data collected during the steps before drilling opera-
tions contain millions of data points a lot of them can be ir-
relevant information about the degradation of the PNG and
are removed. After removing irrelevant data, a moving win-
dow is computed to summarize the data. The window size
is determined based on the job length. The resulting signal
contains 300 samples for the selected channels. The reason
behind reducing the number of samples is to reduce the pro-
cessing time required to extract HI as will be explained in the
next section.

3.3. Health indicator construction

To construct the HI from preprocessed signals we used a method

proposed by (Mosallam et al., 2013). Three steps are applied
to the preprocessed channels. The health indicator is calcu-
lated incrementally: it starts by the first two samples and then
adds the next on and so on. The result of this step is a HI
which consists of 299 samples. The details of the algorithm
are explained below.

Channel compression: this step has two goals: 1) extract
representative features and 2) reduce the dimensionality of
the selected channels into a single channel. Standard Prin-
cipal Component Analysis (PCA) method is applied on all
channels within every window:

C’Uq; = /\ﬂ/i (1)

where C' is the covariance matrix, A; are the eigenvalues, and
v; are the eigenvectors of the processed channels. The first
principal component retains the maximal variance while re-
ducing the dimensionality to one dimension (Jolliffe, 1986).

Therefore, only the first principal component is used to rep-
resent the health-status evolution with respect to time.

Trend extraction: in this step the algorithm extracts a trend
from the compressed signal to represent the degradation in a
simple monotonic signal using Empirical Mode Decomposi-
tion (EMD) algorithm. EMD is a method employed to de-
compose a signal into successive Intrinsic Mode Functions
(IMF) and a residual signal (Huang et al., 1998). The EMD
algorithm performs the following steps:

e find all local maxima and minima of the input signal and
compute the corresponding upper and lower envelopes
using cubic spline, respectively.

e subtract the mean value of the upper and lower envelopes
from the original signal.

e repeat until the signal remains nearly unchanged and ob-
tain IM F;.

e remove I MF; from the signal and repeat the previous
steps.

e stop when the generated residual r,(¢) is a constant or a
trend.

The residual r,,(¢) of this process should be a constant or
monotonic signal that can be represented as:

ra(t) = v1(t) = > imfi(t) 2)
i=1

where vy (t) is the input first principal component, imn f; is the
IMF and n is the maximal number of IMFs. The residual can
be used as a way to characterize the degradation of the PNG.
A constant residual could be due to no change happening at
this particular point. However, a residual following a trend
could be due to degradation change happening as described
by (Mosallam et al., 2016).

Feature extraction: the last step of the algorithm extracts
statistical features from the generated residuals (Mosallam et
al., 2012; Witten & Frank, 2005). Such features represent
each residual in one dimension as variance o2 of each residual
signal:

ol== 3)

where p is the mean of the residual signal r,, and n is the
number of samples in the residual signal.

3.4. Modeling

Each job used to build this model is labeled first as either
healthy (1) or faulty (-1) by the SME. A decision tree classifi-
cation model is used in this work (Bishop, 2006). The model
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is trained to map the relation between the input HI and the
corresponding label (z,Y") where:

xr = [Z‘l,IQ....l‘QQQ] (4)
and
1 where z is healthy
Y= { -1 wherexis failed )
4. RESULTS

The first step in this work collects LWD run data to build
the model. We collected around 200 run files from differ-
ent locations with different environmental conditions to build
the fault detection model. For each run, the SME reviews the
corresponding maintenance reports and checks the raw data to
label it as healthy or faulty. The SME also selects which chan-
nels contain information about the degradation and should be
used to build the model. The algorithm then starts by prepro-
cessing the raw data. The idea is to remove irrelevant data
and to summarize the raw data. Figure 7 shows the result of
preprocessing one raw channel.

Preprocessed signal

100 150

Sample #

200 250

Figure 7. Results of preprocessing one raw channel

Figure 7 shows that the number of generated samples is 300
regardless of the run length. In this way the computation
needed to construct HI is dramatically reduced. Next, the
method constructs the HI from preprocessed data. The HI
construction consists of three main steps. The first step com-
putes the first principal component of the first two samples of
the preprocessed signal. Then the EMD residual is extracted
from the first principal component. Finally, the variance is
calculated from the residual. The third value from the prepro-
cessed signal is added to the first two samples and the pre-
vious three steps are repeated. The result of this recursion is
a HI consisting of 299 samples. Figure 8 shows the HIs for
four different healthy runs. As can be seen HIs for healthy
runs did not exceed 4000.
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Figure 8. HI results of four different healthy jobs

Figure 9 shows failed runs. HIs for failed runs started on very
low values and then it had sharp increase. HIs for failed runs
can reach up to 8 x 10%. Also, in many cases we noticed that
the point when the HI start increasing can reflect the begging
of the failure on the raw data.
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Figure 9. HI results of four different failed jobs

HIs are generated from the data set to build a decision tree
classification model. Healthy runs are labeled as 1 and faulty
runs are labeled as -1. Decision trees are then used to train
a model using the input HIs and their corresponding labels.
Figure 10 shows distribution of mean values calculated for
healthy and faulty groups separately. The plot shows that
mean value of healthy HIs are much lower than failed HIs.
Also, the majority of HIs mean values for faulty runs are cen-
tered around one value whereas the healthy mean is spread
between 102265 to 1036183,
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Figure 10. Histogram of mean values of healthy and faulty
HI in the training set

Figure 11 shows distribution of standard deviation values cal-
culated for all generated HlIs. Standard deviation values of
healthy HIs are much lower than faulty HIs. The reason is
that healthy HI values are not spread out from the mean. HIs
for failed run start rapidly increase after failure begines dur-
ing the job.
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Figure 11. Histogram of standard deviation of healthy and
faulty HI in the training set

We validated the model on a test data set of 60 new run files,
which we did not use for training the model. The test data set
consists of 25 failed and 35 healthy files. The model shows
high confidence with only one misclassification and an accu-
racy of 98.33% (see Table 1).

Correct label

Healthy | Faulty | Total
Health 34 1 35
Predicted label ey
Faulty 0 25 25
Total 34 26 60

Table 1. Confusion matrix for model testing

5. CONCLUSION

This paper presents a data driven method for fault detection
of a nuclear generator subsystem. The method builds on con-
structing representative features that can be used as health in-
dicators. Such health indicators are modeled using a decision
tree classifier. The model was validated using operation data
that was not used to train the model. The results show that
the model can discriminate between failed and healthy runs
with high accuracy. Also, the model demonstrated excellent
value for maintenance and field engineers, because the physi-
cal condition of the neutron generator can be determined with
high precision and in just a few minutes using run data.

REFERENCES

Bishop, C. M. (2006). Pattern recognition and machine
learning (information science and statistics). Secau-
cus, NJ, USA: Springer-Verlag New York, Inc.

Hansen, R., & White, J. (1991). Features of logging-
while-drilling (Iwd) in horizontal wells. In Spe/iadc
drilling conferencespe/iadc drilling conference. doi:
10.2118/21989-MS

Huang, N., Shen, Z., Long, S., Wu, M., Shih, H., Zheng, Q.,
... Liu, H. (1998). The empirical mode decompo-
sition and the hilbert spectrum for nonlinear and non-
stationary time series analysis. In Proceedings of the
royal society of london series a. mathematical, physi-
cal and engineering sciences (p. 903-995).

Isermann, R. (2006). Fault-diagnosis systems: An introduc-
tion from fault detection to fault tolerance). Heidel-
berg: Springer-Verlag, Heidelberg.

Jolliffe, I. (1986). Principal component analysis and factor
analysis.. doi: 10.1007/978-1-4757-1904-8-7

Mosallam, A., Medjaher, K., & Zerhouni, N. (2012). Un-
supervised trend extraction for prognostics and condi-
tion assessment. ITFAC Proceedings Volumes, 45(31),
97 - 102. (2nd IFAC Workshop on Advanced Main-
tenance Engineering, Services and Technology) doi:
https://doi.org/10.3182/20121122-2-ES-4026.00014

Mosallam, A., Medjaher, K., & Zerhouni, N. (2013).
Nonparametric time series modelling for industrial
prognostics and health management. In (Vol. 69,
p. 16851699). doi: 10.1007/s00170-013-5065-z



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Mosallam, A., Medjaher, K., & Zerhouni, N. (2016).
Data-driven prognostic method based on bayesian ap-
proaches for direct remaining useful life prediction.
In (Vol. 27, p. 10371048). doi: 10.1007/s10845-014-
0933-4

Tittle, C. W. (1961). Theory of neutron logging i. GEO-
PHYSICS, 26(1), 27-39. doi: 10.1190/1.1438839

Witten, L., & Frank, E. (2005). Data mining: Practical
machine learning tools and techniques. Morgan Kauf-
mann.

Zhan, S., Ahmad, 1., Heuermann-Kuehn, L., & Baumann,
J. (2010). Integrated pof and cbm strategies for im-
proving electronics reliability performance of down-
hole mwd and Iwd tools..

BIOGRAPHIES

Ahmed Mosallam is a data scientist at
Schlumberger technology center in Clamart,
France. He has his PhD. degree in auto-
matic control in the field of Prognostics and
Health Management (PHM) from Univer-
sity of Franche-Comté. His main research
interests are signal processing, data mining,
machine learning and PHM.

Laurent Laval is a physicist at Schlumberger technology cen-
ter in Clamart, France. He has an engineering degree in physics
from Ecole National de Physique de Grenoble. His inter-
ests include software development, failure analysis, condition
based maintenance, prognostics and health management.

Fares Ben Youssef is an electrical engineer
at Schlumberger Asia Center for Reliability
and Efficiency in Malaysia. He has a Mas-
ter degree in electrical engineering from the
engineering school of Paris XI University.
His interests include electrical board and
component failure analysis, equipment effi-
ciency, condition based maintenance, prog-
nostic and health management.

James Fulton is a reliability engineer at Schlumberger tech-
nology centre in Clamart, France. He has a first class Mas-
ters degree in aeronautical engineering from the University
of Glasgow. His interests include design for reliability, con-
dition based maintenance and failure analysis.

Daniel Edgardo Viassolo is a Principal
and global PHM Analytics manager with
Schlumberger’s Enterprise Solutions orga-
nization. Daniel has made impactful con-
tributions to the field of Industrial Asset
Health Management and Controls in diverse
applications domains - oil & gas services,
renewables, jet engines. He co-authored 19
US patents, 30+ publications and 1 book. Daniel obtained his
PhD from Purdue University.



