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ABSTRACT

When analyzing vibration and sound signals from rotating
machinery, accurately tracking individual orders is crucial
for diagnostic and prognostic objectives. These orders cor-
respond to sinusoidal components, also known as determinis-
tic signals, whose amplitude and phase are modulated in re-
sponse to the angular speed of the machine. The extraction of
these components leads to a more comprehensive approach
to differential diagnostics. When the machine operates un-
der varying conditions, consistently tracking the orders be-
comes challenging, particularly in nonstationary regimes with
very fast variations. Typically, this issue is addressed us-
ing common techniques such as Vold-Kalman filter (VKF),
where the bandwidth of the selective filter is adjusted to han-
dle the speed variations. However, in the presence of high-
speed fluctuations, manual adjustment of these weights be-
comes difficult to balance the compromise between achiev-
ing accurate tracking by effectively filtering around the speed
variations, and maintaining a low estimation bias by reduc-
ing noisy errors. To overcome this constraint, the proposed
methodology is driven by the need to integrate speed fluc-
tuations into an optimal solution using VKF. This adapta-
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tion involves the consideration of angular acceleration pro-
files within the innovation process. In this context, the band-
widths are automatically adjusted to their optimal values ac-
cording to the machine’s regime. Optimality is achieved by
crafting a model dependent on the order signal-to-noise ratio
(SNR) and the auto-regression coefficient. This optimization
allows for a practical adjustment tailored to the distinctive
characteristics of each order. A comprehensive analysis of the
resulting model transfer function reveals crucial insights into
the impact of the given order SNR and the speed fluctuations.
Subsequently, the methodology undergoes performance as-
sessment through simulations and synthetic cases, showcas-
ing its viability and effectiveness across various regimes. No-
tably, its practical application is highlighted in envelope-based
bearing diagnosis, during operations characterized by variable-
speed conditions, thus underlining its promise in real-world
applications.

1. INTRODUCTION

In mechanical systems, gears and rolling-element bearings
play vital roles in power transmission, necessitating reliable
operation (Randall & Antoni, 2011). Vibration and acoustic
signals emitted by these mechanical pieces (Braun, 1986) ex-
hibit distinct cyclostationary (CS) behavior (Antoni, 2009).
Gears generate first-order cyclostationary (CS1) components
with a periodic mean, forming a harmonic spectrum corre-
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sponding to their fundamental period. Rolling-element bear-
ings, on the other hand, exhibit second-order cyclostationary
(CS2) components marked by periodic autocovariance and an
instantaneous envelope. These distinctions are crucial for dif-
ferential diagnosis (Antoni & Randall, 2002), providing in-
sights into overall system health. In stationary conditions,
Fourier analysis simplifies the identification of CS1 compo-
nents, which are characterized by their corresponding ampli-
tude and phase. This facilitated the rise of order tracking,
enabling the extraction of these characteristic components.
These orders correspond to sinusoidal signals, also termed
deterministic components, wherein its amplitude and phase
modulations are influenced by the machine angular speed with
respect to a reference angle. Subtracting the tracked ones
reveals residual random aspects, including the CS2 environ-
ment, offering a comprehensive diagnostic perspective.

However, as mechanical systems venture into varying nonsta-
tionary regimes, the complexity deepens. These distortions
are mainly introduced by the change of the machine power in-
take and the effect of transmission from the excitation source
to the sensor. Even with the application of angular resampling
to address frequency modulations stemming from nonstation-
arity (McFadden, 1989; Bonnardot et al., 2005; Borghesani et
al., 2012), the Fourier coefficients representing an order in the
spectrum lose their pristine sparsity. This degradation arises
from the dynamic evolution of the envelope and is highly em-
phasized in the presence of high speed fluctuations.

An essential technique in navigating this complexity is the
Vold-Kalman filter (VKF) (Vold et al., 1997). Proposed by
Vold and Leuridan, VKF has been a cornerstone in the esti-
mation of individual order components instantaneous ampli-
tude and phase. This selective filtering is adapted by adjusting
its bandwidth correspondingly to handle nonstationary condi-
tions for each order (M.-C. Pan & Wu, 2007b). Further ad-
vancements have led to schemes that simultaneously estimate
multiple orders, such as the angular-displacement (AD) (M.-
C. Pan & Wu, 2007a) and angular-velocity (AV) (M. Pan et
al., 2016) VKF. Considering other notable methods, the Slid-
ing Window Tracking (SWT) (Pai & Palazotto, 2009) tech-
nique was introduced to track the varying instantaneous am-
plitude of a noise-contaminated signal with a moving aver-
age. It employs a constant and a pair of windowed regular
harmonics to fit the data, providing implicit noise filtering ca-
pabilities. Recently, the so-called local synchronous fitting
(LSF) has been proposed (Abboud et al., 2022). It was intro-
duced as an enhancement to the global one (GSF) (Daher et
al., 2010) in the sense that it estimates a cyclic-nonstationary
(CNS) mean, but through a local polynomial fit, using the
well-known Savitsky-Golay filter (Savitzky & Golay, 1964).
The properties of the filter was also discussed in (Abboud
et al., 2019). Interested readers can refer to (Randall et al.,
2011) for a comparison among more relevant separation tech-
niques.

While SWT, LSF and VKF are highly accurate in terms of en-
velope estimation, their limitations become pronounced when
mechanical systems transition into fast nonstationary varia-
tions. On the one hand, even though SWT attempts to ad-
dress nonstationary behavior, it assumes a fixed sliding win-
dow length, which is not optimal for handling high speed
fluctuations. On the other hand, LSF suffers from the esti-
mation of the Fourier coefficient from the centered signal by
applying a linear angle-invariant convolution. In fact, from
a signal point of view, this operation aims at estimating the
mean (trend) of a non-stationary time series. While the clas-
sical low-pass filtering is efficient when the noise is (angle-
stationary), it can be highly compromised in the case of non-
stationary noise, in particular when the noise is impulsive. Fi-
nally, while the VKF’s bandwidth can be customized to han-
dle nonstationary speed variations, the compromise between
accurate tracking and maintaining low estimation bias is em-
phasized. In addition, within high speed variations, manually
adapting the filter nonstationary parameters may pose chal-
lenges in achieving optimized solutions leading to unbalance
this compromise. Other variants and extended versions of
the filter considered tracking the components of interest by
maximizing the kurtosis (Dion et al., 2013) and tuning the
bandwidth accordingly (Feng et al., 2022) to take into account
the high amplitude fluctuation. The high-speed environment
necessitates a methodology that explicitly incorporates speed
fluctuations into its definition. Consequently, rather than ad-
justing the filter bandwidth parameters to meet predefined ob-
jectives, an optimal approach involves integrating speed fluc-
tuations directly into the model.

Therefore, the paper aims to present a novel VKF optimized
solution where the innovation process is directly affected by
the speed fluctuations, thus the bandwidth is automatically
adapted, yielding stationary hyper-parameters to be tuned:
the order signal-to-noise ratio (SNR) and the auto-regression
coefficient. Section 2 states the problem with a particular
attention to formulating the transmission path effect from a
CNS view, followed by a detailed exposition of the method-
ology in Section 3. Sections 4 and 5 validate the effectiveness
of the proposed solution on numerical and experimental sig-
nals. In light of the obtained results, the paper is sealed with
a general conclusion in Section 6.

2. PROBLEM STATEMENT

This section introduces the basic model that will serve to de-
fine the solution, which consists of Fourier series whose com-
plex exponentials are function of the variable angle, θ, being
a reference angle in the machine, and the coefficients are only
dependent on the speed ω = dθ

dt , with the load effect omitted.
Practically, when vibration and acoustic responses are mea-
sured from rotating and reciprocating machinery, the effects
of flow noise, turbulence, and transient events are captured,
in addition to the sum of rotational dynamics x(t), such that
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the total measured signal y(t) is:

y(t) = x(t) + ν(t), (1)

where ν(t) is causal and uncorrelated with x(t) such that it
doesn’t affect its generation or behavior. A temporal repre-
sentation of a rotating machine’s excitation is defined as

x(t) =
∑

k

ak(t)e
j2παkθ(t)+Φk , (2)

where the harmonic cyclic order αk = k
Θ such that Θ stands

for the angular period of the rotating component of refer-
ence, θ(t) is the angular position of the reference expressed
in [rad] and ak and Φk are respectively the slowly varying
complex envelopes and phases. In the particular case of con-
stant operating speed (i.e. θ(t) = ω0t), ak(t) become essen-
tially constant over time, representing the Fourier coefficients
in the harmonic series. In such scenario, the synchronous
average (SA) is one of the most used tools to extract such
components (Braun, 1975; McFadden, 1987), with minimum
disruption in the residual signal (Randall et al., 2011). The
SA simply consists in slicing the signal (often after an angu-
lar resampling step) into cycles equal to the rotation period
of the mechanical piece of interest and performing an em-
pirical average to reject (or reduce) non-synchronous com-
ponents including noise and interfering components. How-
ever, in the case of speed varying excitation, the complex
envelopes ak(t) become slowly varying and principally de-
pendent on the operating speed and its fluctuations (Abboud
et al., 2016). Despite mild conditions under which higher
derivative orders can be neglected, high-speed fluctuations
still induce non-stationary behavior in the envelope, poten-
tially leading to inaccurate estimations for each given order.
Therefore, the study focuses on the first derivative order to
showcase the impact of speed fluctuations on the determinis-
tic component evolution, given by:

x(t) =
∑

k

ak(ω(t))e
j2παkθ(t)+Φk . (3)

3. PROPOSED METHODOLOGY

The mechanical vibration nature specifies that the envelope
functions should be smooth and slowly varying over time.
One way of specifying this, is to demand that a repeated dif-
ference should be small, which satisfies the following VKF
equation in stationary mode,

∂qak(t)

∂tq
= εk(t), (4)

where q is the derivative order and εk is a process of uncer-
tainties that degrades the envelope. During this study and for
simplicity, an order q = 1 will be elaborated. This leads to
the fact that, in stationary regime, the envelope will tend to be
constant with stationary uncertainties. However, this model

turns out to be more sophisticated in the case where ω(t) is
varying with respect to time because the uncertainties also
become nonstationary. This can be formulated as follows:

∂ak(ω)

∂ω
= εk(ω). (5)

With the angular velocity varying over time, the application
of the chain rule leads to the formulation:

∂ak(ω(t))

∂t
= ω̇(t)εk(ω(t)). (6)

Given the existence of multiple regime scenarios, it is essen-
tial to consider both stationary and nonstationary modes, al-
lowing for a generalized modeling approach. This results in
envelope uncertainties attributed to

∂ak(ω(t))

∂t
= (1 + λω̇(t))εk(ω(t)), (7)

where λ serves as a weighting coefficient. To optimize the
model based on diverse domain processes derived from (1)
and (7), a discrete-time realization is established. The main
processes are expressed as follows:

{
yk[n] = ak[n]e

jαkθ[n] + ν[n]

ak[n]− βkak[n− 1] = (1 + λω̇[n])εk[n]
(8)

where yk[n] represents the raw noisy component correspond-
ing to the kth harmonic and βk is the auto-regression coeffi-
cient whose value is close to 1. In the following, both ν[n]
and εk[n] are supposed to follow complex Gaussian normal
distributions with respective variance σ2

ν and σ2
εk

: ν[n] ˜
CN(0, σ2

ν) and εk[n] ˜ CN(0, σ2
εk
). Since ω̇[n] and εk[n]

are independent, one can deduce that their product variance
is equal to (1+λω̇[n])2×σ2

εk
. Thus, the definition of the two

processes:

P1 : Yk −AkEk = V, (9)

where Yk, Ek and V are expressed as follows:

Yk =




...
yk[n]

...


 ,Ek =




. . .
ejαkθ[n]

. . .


 ,V =




...
ν[n]

...


 .

P2 : DkAk = Ψξk, (10)

such that Ak and the sparse matrix Dk are expressed as

Ak =




...
ak[n]

...


 , Dk =




1 0 0 . . . 0
−βk 1 0 0 0
0 −βk 1 0 0
... 0

. . . . . . 0
0 0 0 −βk 1



,
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along with Ψ and ξk expressed as:

Ψ =




...
1 + λω̇[n]

...


 , ξk =




...
εk[n]

...


 .

3.1. A Posterior Estimate of the Envelope

With regards to the envelope’s dependencies, one can explic-
itly describe its likelihood and prior distribution. As a result,
the a posterior estimation of Ak can be defined by the Maxi-
mum a posteriori estimate (MAP):

Âk = Argmax(P (Ak|Yk))

∝ Argmax(P (Yk|Ak)P (Ak)).
(11)

After setting Γk = DkAk to simplify the process formu-
lation, the Bayes Theorem can be applied to P2 in order to
compute P (Ak) as follows:

P (Ak) =

∫
P (Ak,Γk)dΓk. (12)

One can deduce from Eqs (10) and (12) that

P (Ak) = P (Γk)|Dk|, (13)

To initiate the MAP estimate, the likelihood conditional prob-
ability P (Yk|Ak) and the prior one P (Ak) can be expressed
accordingly:

P (Yk|Ak) =
1

πσ2N
ν

e
− ∥Yk−EkAk∥2

σ2
ν , (14)

P (Ak) =
1

πσ2N
εk

Ω
e
− ∥AT

k DT
k Ω−1AkDk∥

σ2
εk |Dk|, (15)

where [Ω]ij = δijΨ[i]2 and δij is the Kronecker delta. Plug-
ging Eqs (14) and (15) into Eq (11) result minimizing an ob-
jective function J(Ak) represented by:

J(Ak) ≈
∥Yk −EkAk∥2

σ2
ν

+AT
kD

T
k

Ω−1

σ2
εk

DkAk (16)

such that MT represents the transpose of M. In order to
find the minimum, the derivative of J(Ak) with respect to
the variable of interest Ak is set to 0: ∂J(Ak)

∂Ak
= 0. As a

result, the estimated Âk can be computed as

Âk =

(
I+

σ2
ν

σ2
εk

DT
kΩ

−1Dk

)−1

EH
k Yk (17)

such that EH
k is the conjugate of Ek and I is the identity

matrix. It can be identified from the resulted model that, Âk

depends on the constant ratio ρk =
σ2
ν

σ2
εk

which is none other

than the inverse SNR of the kth harmonic.

3.2. Filter Frequency Response Function

In order to interpret the model frequency response function
(FRF), a simple scheme is considered in Fig. 1 such that the
objective is to find |Hk(f)|2 that would result in Ak(f) from
Yk(f). In order to define |Hk(f)|2, the speed ω(t) is assumed

Figure 1. Scheme illustrating the transfer function Hk(f)
processing input Yk(f) to produce output Ak(f).

to be constant or slowly varying, ensuring fixed frequency and
allowing the FRF to make sense for each frequency, which
results in ω̇[n] ≈ 0. In addition, it is noteworthy that, as
the filter automatically adapts to speed fluctuations, its sta-
tionary parameters remain valid regardless of the operating
regime. Consequently, the FRF will be analyzed primarily
under stationary conditions, ensuring correct parameters es-
timation. Recalling the processes described in Eq. (8), its
respective power spectral densities would take the following
form:

SYk
(f) = E|Yk(f)|2 = E|Ak(f)|2 + E|V (f)|2, (18)

SAk
(f) = E|Ak(f)|2 =

E|ξk(f)|2
|1− βke−j2πf |2 . (19)

Knowing that E|V (f)|2 = σ2
ν and E|ξ(f)|2 = σ2

ε , SHk
can

be computed as follows:

SHk
(f) =

SAk
(f)

SYk
(f)

=
1

1 + ρk|1− βke−j2πf |2 . (20)

Based on Eq. (20), it seems to behave like a low pass filter.
For a comprehensive understanding, it is crucial to investigate
the parameters of the FRF and the frequencies associated with
typical filters. In this analysis, the following parameters are
defined in the logarithmic:





ln(|H(0)|2) = −µ0

ln(|H(fp)|2) = −µp

ln(|H(fs)|2) = −µs

(21)

such that

1. fp: The passband frequency.

2. fs: The stopband frequency.

3. −µ0: Log of the FRF at f = 0.

4. −µp: Log of the FRF at the passband frequency fp.

5. −µs: Log of the FRF at the stopband frequency fs.
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To illustrate these parameters, consider Figure 2 that depicts
an example of lowpass filter with the passband frequency fp,
stopband frequency fs and other associated parameters.

Figure 2. Illustration of a theoretical first-order lowpass filter
with the corresponding characteristics.

In Figures 3a and 3b, the FRF for the proposed filter is illus-
trated under various conditions. Each figure depicts the FRF
for different values of ρk, showcasing the impact of this pa-
rameter on the filter’s behavior.

(a)

(b)

Figure 3. Plots of the frequency response function using var-
ious ρk values with respect to (a) βk = 1 and (b) βk = 0.8.

Furthermore, the illustrations explore the influence of βk, pre-
senting results with βk = 1 & βk = 0.8 respectively. The dis-
tinctive curves in each plot reveal the sensitivity of the filter to

the model parameters ρk and βk, providing valuable insights
into its performance characteristics.

4. NUMERICAL EXPERIMENT

Deterministic components encountered in rotating machine
signals operating under nonstationary regimes are generally
sinusoidal components whose amplitudes and phases are mod-
ulated through smooth functions. These amplitude modu-
lations typically arise from resonance encounters or shifts
in internal forces. Phase alterations may stem from varia-
tions in time delays resulting from mechanical system trans-
fer functions interacting with excitation frequencies, or from
torsional oscillations in shafts. To capture these dynamics,
the following sinusoidal model is adopted:

y[n] =

3∑

k=1

ak[n]sin

(
2πk

n∑

m=0

ω[m] + Φk[n]

)
+ ν[n]

(22)
where

1. y[n] is the generated signal sampled at 10kHz over a 10
second acquisition window (i.e. resulting in 100 ksam-
ples)

2. ω[n] stands for the instantaneous frequency of the ref-
erence rotating shaft (i.e. the fundamental frequency of
the process associated with the order 1) simulated using
a first order autoregressive process (see top Figure 4),

3. ak[n] and Φk[n] are respectively the amplitude and the
phase modulations associated with the kth harmonic (see
middle and bottom Figure 4), made of linear combination
of the square of ω[n], ν[n] is a stationary gaussian noise.

Figure 4. Plots of: (top) the speed constructed using a first or-
der auto-regressive process, (middle) the 3 amplitudes ak[n]
and (bottom) the 3 phase modulations Φk[n] associated with
the sinusoids of the synthetic signal.

The signal-to-noise (power) ratio equals -10dB. The proposed
methodology is implemented on the signal, alongside three
other methods for comparative analysis: SWT, LSF, and VKF
with stationary bandwidth in order to assess the efficacy of the
speed adaptation proposed in this study. For SWT, the win-
dow length was optimized to achieve the best performance,

5
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resulting in a length of 125 samples per sliding window. LSF
is applied to the signal after resampling in the angular do-
main, employing a polynomial order of 5 and a window length
of 75 samples. The conventional and proposed VKF param-
eters, namely βk and ρk, are fine-tuned to achieve the values
presented in Table 1. These parameters are crucial as they

Table 1. Filter tuned parameters for the simulation case.

Parameters Value
βk {0.988, 0.991, 0.957}
ρk {45, 35, 75}
λ 1

directly impact the filtering process and subsequent signal
analysis. The actual (noise-free) signal, the estimated signals
and corresponding errors are displayed in Figure 5 for each
method. It is clear from the figure that the proposed estima-
tion is more accurate than the other used techniques: Table 2
shows that the proposed error signal has a significantly lower
relative mean error compared to SWT, LSF and VKF.

Table 2. Relative mean errors of each used method.

Used method Relative mean error %
SWT 4.18
LSF 8.44
VKF 6.60
Proposed method 1.84

Figure 5. The actual noise-free signal (blue line), the deter-
ministic signal estimate (green line) and the corresponding
errors (red line) using the (top-left) SWT method, (top-right)
LSF method, (bottom-left) conventional VKF and (bottom-
right) proposed method.

For further interpretation of the proposed methodology, the
envelope estimation is visualized in Figure 6 to assess the
evaluation with respect to the reference one (actual envelope).
It is essential to see how the model kept track of the envelope
related to each of the 3 cyclic orders. In addition, the FRF
along with the extracted component of the first cyclic order
are displayed in Figures 7 and 8 to have a better comprehen-
sive understanding of the model with respect to the chosen

Figure 6. Plot showing the assessment of the estimated en-
velopes (dashed lines) with respect to the actual ones (full
lines).

parameters βk and ρ1. It can be seen in the resiudal within
the Figure 8 that the first tracked order was completely ex-
tracted after using the FRF displayed in 7. After iterating

Figure 7. Scaled squared order spectrum of demodulated an-
gular signal with FRF for first order, illustrating passed and
rejected frequencies.

Figure 8. Order spectrums of: (top) the raw signal, (middle)
the first extracted component and (bottom) the residual signal.

over the 3 orders, the spectrograms of the raw, extracted and
residual signals are displayed in Figure 9. Since the signal
is generated in a nonstationary regime, time-frequency repre-
sentation (TFR) is a popular tool to present those time-variant
components before resampling into the angular domain. This

6
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is done to show that the proposed methodology filters well
the 3 harmonics of interest from the raw signal.

Figure 9. Simulation close-up spectrograms of the generated
signals. (Left) Raw signal, (Middle) extracted components,
and (Right) residual signal.

5. APPLICATION

This section presents the evaluation of the methodology us-
ing real experimental data acquired from the KU Leuven Di-
agnostic test rig (Yazdanianasr et al., 2024), as depicted in
Figure 10. The test rig comprised an electric drive motor, a
first housing containing a healthy bearing, and a second hous-
ing with two cases: one featuring large damage to the inner
race of the test bearing and another case involving small dam-
age to the outer race. The bearings used are SKF 2206 ETN9
bearings. The experimental setup also included the mount-
ing of two ICP accelerometers (PCB-model number 352A10)
on the housing of the bearings. Additionally, two B&k type
4188 microphones were installed as seen in the figure of the
test rig. Furthermore, a smartphone, capturing through its mi-
crophone (considered as the low quality microphone in this
acquisition), was placed behind the second microphone. Fi-
nally, an encoder was installed on the end of the electric mo-
tor to keep track of the angular position, providing a reliable
estimate of the angular speed. Notably, the sampling fre-
quency for all sensors, excluding the smartphone, was about
102.4 kHz. Given the smartphone’s sampling frequency of
44.1 kHz, resampling was necessary to synchronize its data
with that of the other sensors. The experiment aims to discern

Figure 10. KU Leuven Diagnostic test rig.

both types of faults mentioned before, captured under a non-
stationary regime. Naturally, signals from the accelerometer

positioned on the upper part of the damaged bearing housing
provide insights into significant damage to the inner race fault
case. However, the experiment goes a step further by utiliz-
ing signals from the smartphone, which captures data from
a distance near the upper part of the housing, revealing small
damage for the outer race case. This small fault presents a sig-
nificant challenge, as its detection amidst the presence of CS1
components can be particularly difficult to achieve, polluted
by additional noise from the outside environment. Therefore,
the experiment will be divided into two cases: the Large Inner
Race Fault Case and the Small Outer Race Fault Case.

5.1. Large Inner Race Fault

In this initial experiment, the speed profile employed, as de-
picted in Figure 11, primarily exhibited random behavior to
provide a highly nonstationary condition. The corresponding
raw accelerometer signal is also displayed in Figure 12. In

Figure 11. First experiment random walk-like speed profile

Figure 12. First experiment raw accelerometer signal depict-
ing the varying signal envelope.

the initial phase, pinpointing the bandwidth containing crit-
ical CS2 information is essential. Utilizing the well known
kurtogram (Antoni & Randall, 2007) can facilitate the detec-
tion of pertinent details. In this instance, the bandwidth yield-
ing the highest kurtosis fell within the range of [815, 865]
shaft order. Consequently, the CS1 orders to be tracked align
with the speed components that reside within the frequency

7
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band of [16300, 17300] Hz. After identifying 6 speed depen-
dent orders, their deterministic components were extracted
using the proposed technique. Upon fine-tuning the param-
eters of the methodology, the values shown in Table 3 were
attained. The speed fluctuation weight λ was set the same for

Table 3. Filter tuned parameters for the first experiment.

Parameters Value
βk {0.995, 0.987, 0.999, 0.979, 0.988, 0.954}
ρk {4320, 7664, 4211, 8853, 5333, 9912}
λ 0.01

all harmonics to control the stationary-nonstationary adjust-
ment. To evaluate the impact of the model with the specified
parameters, close-up spectrograms of the raw signal, the ex-
tracted CS1 components, and the residual are presented in
Figure 13. This enables observation of the significant atten-
uation of the speed components, tracked with the defined or-
ders. Additionally, the speed profiles corresponding to the
tracked orders are displayed with red dashed lines. The de-

Figure 13. First experiment close-up spectrograms of the vi-
bration signals. (Left) Raw signal, (Middle) extracted compo-
nents, and (Right) residual signal with tracked speed profiles
(red dashed lines).

scribed processing steps are applied both to the raw signal
and the residual one to compare the attenuation of speed de-
pendent deterministic components. Initially, angular resam-
pling is performed to mitigate frequency modulations. Sub-
sequently, both angular signals undergo filtering within the
specified bandwidth to isolate bearing signature information.
A Hilbert transform is then employed to extract the envelope
of the resulting complex signal. Finally, the squared enve-
lope spectrum (SES) of the angular filtered signals is com-
puted for evaluation. Figure 14 compares both SES, empha-
sizing the bearing fault contribution after the elimination of
the extracted components. The analysis reveals that while ex-
tracting deterministic components, it also impacted the BPFI
modulations. These modulations, typically associated with
CS2 components, showed attenuation due to interactions with
deterministic speed components. This suggests that the BPFI
signature, not being entirely random, led to the attenuation of
its deterministic part.

5.2. Small Outer Race Fault

In the second experiment, the utilized speed profile, illus-
trated in Figure 15, primarily demonstrated a steady-hop be-

Figure 14. Squared envelope spectrum of: (top) raw signal
and (bottom) residual signal highlighting the BPFI multiples
(red dashed lines), the speed harmonics (blue dashed lines)
and the modulations of the first BFPI (purple markers), show-
ing the attenuation of the speed components in the residual
one.

havior. The corresponding raw smartphone microphone sig-
nal is also displayed in Figure 16 to demonstrate the variation
of its envelope in tandem with the changes in speed. Sim-

Figure 15. Second experiment steady-hop speed profile

Figure 16. Second experiment raw smartphone microphone
signal depicting the variation of the signal envelope mirroring
the changes in the speed profile.

ilar to the initial steps taken in the first experiment, efforts
were made to identify the bandwidth containing crucial CS2
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information. However, in this instance, the analysis was per-
formed using data acquired from the smartphone instead of
the accelerometer. The analysis revealed that the bandwidth
with the highest kurtosis, as determined by the kurtogram,
fell within the range of [333, 353] shaft order. For the sec-
ond experiment, a similar process was followed to identify 8
speed dependent orders and extract their deterministic com-
ponents using the proposed technique. The parameters of the
methodology were fine-tuned to achieve the values described
in Table 4. To assess the impact of the model with these spec-

Table 4. Filter tuned parameters for the second experiment.

Parameters Value
βk {0.947, 0.955, 0.994, 0.936,

0.961, 0.887, 0.947, 0.984}
ρk {12206, 11791, 8645, 13662

9197, 21111, 12206, 10167}
λ 0.01

ified parameters, close-up spectrograms of the raw signal, the
extracted CS1 components, and the residual are provided in
Figure 17 which facilitates observation of the significant at-
tenuation of the speed components tracked with the defined
orders.

Figure 17. Second experiment close-up spectrograms of the
vibration signals. (Left) Raw signal, (Middle) extracted com-
ponents, and (Right) residual signal with tracked speed pro-
files (red dashed lines).

Figure 18. Squared envelope spectrum of: (top) raw signal
and (bottom) residual signal highlighting the BPFO multiples
(red dashed lines), the speed harmonics (blue dashed lines)
and the cage frequencies (purple markers), showing the at-
tenuation of the speed components in the residual one.

Similarly, for the second experiment, the processing until the
computation of the SES was carried out on the raw signal and
its residual to identify the Ball Pass Frequency Outer Race
(BPFO). A comparison of both raw and residual SES are il-
lustrated in Figure 18.

6. CONCLUSION

The paper introduced an extension of the Vold-Kalman Filter
for better tracking of large nonstationary operating regimes.
This extension is achieved by dynamically adapting the fil-
ter’s bandwidth to accommodate fluctuations in speed. In the
preliminary analysis, the frequency response function is also
examined to provide insights into the filter’s behavior. Nu-
merical simulations are conducted to evaluate and compare
the performance of conventional techniques against the pro-
posed methodology. Additionally, the dependency on speed
fluctuations is tested in a real-world application, specifically
for enhanced bearing diagnostics. The adaptability to speed
fluctuations ensures consistent and accurate performance across
varying operational conditions, enhancing the effectiveness
of machinery health monitoring. Looking ahead, future re-
search could explore extending the proposed methodology to
a higher filter order and automating the hyperparameter se-
lection.
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