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ABSTRACT

Batteries are a key enabling technology for the decarboniza-
tion of transport and energy sectors. The safe and reliable
operation of batteries is crucial for battery-powered systems.
In this direction, the development of accurate and robust bat-
tery state-of-health prognostics models can unlock the poten-
tial of autonomous systems for complex, remote and reliable
operations. The combination of Neural Networks, Bayesian
modelling concepts and ensemble learning strategies, form
a valuable prognostics framework to combine uncertainty in
a robust and accurate manner. Accordingly, this paper in-
troduces a Bayesian ensemble learning approach to predict
the capacity depletion of lithium-ion batteries. The approach
accurately predicts the capacity fade and quantifies the un-
certainty associated with battery design and degradation pro-
cesses. The proposed Bayesian ensemble methodology em-
ploys a stacking technique, integrating multiple Bayesian neu-
ral networks (BNNs) as base learners, which have been trained
on data diversity. The proposed method has been validated
using a battery aging dataset collected by the NASA Ames
Prognostics Center of Excellence. Obtained results demon-
strate the improved accuracy and robustness of the proposed
probabilistic fusion approach with respect to (i) a single BNN
model and (ii) a classical stacking strategy based on different
BNNs.

1. INTRODUCTION

Batteries are key components in the transition towards a sus-
tainable carbon-free economy. In this transition, the develop-
ment of remaining useful life (RUL) prediction of batteries
is a crucial activity. The accuracy and reliability of the RUL
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prediction models is essential to build trust in the predictions
(Liu et al., 2023). In this context, robust and reliable bat-
tery prognostics models support the development of accurate
monitoring strategies and cost-effective solutions.

The estimation of the state-of-health (SOH) of batteries is a
key activity for the design of RUL prognostics models. SOH-
based prognostics models focus on capturing the run-to-failure
ageing dynamics and battery health state estimation (Toughzaoui
et al., 2022). It is frequently used to determine age-related
degradation that reduces energy capacity and rises safety risks,
including overheating and explosions (Wang et al., 2022).
Therefore, accurate SOH monitoring and forecasting are key
activities to design and operate safe, reliable and effective
battery-powered systems (H. Zhao et al., 2023).

SOH estimation is an ongoing area of research (Yang, Chen,
Chen, & Huang, 2023). SOH refers to the ratio of the current
maximum capacity relative to its original specified capacity
(X. Zhao, Wang, Li, & Miao, 2024). SOH can be quantified
through different factors, including resistance and maximum
power. However, discharge capacity is the most common def-
inition (Vanem, Salucci, Bakdi, & Alnes, 2021), and this is
adopted in this research.

Recent data-driven approaches have focused on modeling the
capacity degradation of lithium-ion (Li-ion) batteries. (Lee,
Kwon, & Lee, 2023) used convolutional neural network (CNN)
to estimate the future SOH value of Li-ion batteries, trans-
forming the capacity degradation data into two-dimensional
images. Estimates of the SOH and RUL are commonly found
together in the literature. For example, (Toughzaoui et al.,
2022) developed a CNN-LSTM architecture, and (Wei & Wu,
2023) presented a graph CNN complemented by dual atten-
tion mechanisms for the estimation of SOH and RUL of bat-
teries. However, due to the variability inherent in battery
manufacturing process, it is essential to quantify this uncer-
tainty to ensure robust and reliable prognostics predictions
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(Abdar et al., 2021; Nemani et al., 2023).

There are different sources of uncertainty present in the de-
sign, operation and maintenance of batteries (Hadigol, Maute,
& Doostan, 2015). (Y. Zhang, Zhang, Liu, Feng, & Xu,
2024) introduced a SOH assessment method that estimates
uncertainty through the quantile distribution of deep features,
which are inferred from a Residual Neural Network (ResNet)
architecture. This approach generates SOH values accompa-
nied by confidence intervals. However, the proposed ResNet
architecture lacks probabilistic layers, overlooking the uncer-
tainty inherent in the model parameters. (Che et al., 2024) de-
veloped a prognostic framework to assess battery aging, using
a CNN-LSTM Bayesian neural network. However, this ap-
proach limits the uncertainty to the final dense layers, which
are the only components modeled probabilistically.

With the aim of capturing uncertainty associated with com-
plex processes, recent studies in the broader machine learning
(ML) community have focused on ensembles of probabilistic
models. (Fan, Olson, & Evans, 2017) introduced a Bayesian
posterior predictive framework for weighting ensemble cli-
mate models. (Cobb et al., 2019) present a new ML retrieval
method based on an ensemble of Bayesian Neural Networks
(BNNs). In this scenario, the overall output from the ensem-
ble is treated as a Gaussian mixture model. However, mod-
els are equally weighted with no adaptation to the observed
data. (S. Zhang, Liu, & Su, 2022) present a Bayesian Mix-
ture Neural Network (BMNN) for Li-ion battery RUL predic-
tion. The BMNN framework incorporates a Bayesian Convo-
lutional Neural Network as feature extractor and a Bayesian
Long Short-Term Memory to learn degradation patterns over
time. However, the absence of a weighted model combination
limits the analysis of individual model contributions.

Alternatively, (Bai & Chandra, 2023) described a Bayesian
ensemble learning framework that uses gradient boosting by
combining multiple Neural Networks trained by Markov Chain
Monte Carlo (MCMC) sampling. Finally, (Dai, Pollock, &
Roberts, 2023) demonstrate the robustness of Bayesian fu-
sion by embedding the Monte Carlo fusion framework within
a sequential Monte Carlo algorithm.

In this context, inspired by the use of probabilistic ensem-
ble models to capture model uncertainty, the main contribu-
tion of this research is the development of a novel proba-
bilistic model fusion approach for battery SOH predictions.
Bayesian convolutional neural networks (BCNNs) are used
as base models for SOH prediction, and the fusion approach
integrates individual BCNN probabilistic predictions. The
fusion strategy balances between precision and reliability of
individual predictions, adopting an optimal tradeoff between
accuracy and uncertainty of predictions through the proposed
stacking approach.

The proposed approach has been compared with (i) individual

BCNN models and (ii) fusion strategies focused on stacking
of BCNN models using point prediction information. Ob-
tained results confirm that the proposed framework infers ac-
curate, well-calibrated, and reliable probabilistic predictions,
which improve predictive performance and contribute to esti-
mate uncertainty in a robust and reliable manner in complex
data-driven tasks. The proposed approach has been tested and
validated with the publicly available NASA’s battery dataset
(Saha & Goebel, 2007).

The remainder of this article is organized as follows. Sec-
tion 2 outlines our probabilistic fusion approach for robust
battery prognostics. Section 3 describes a case study to demon-
strate the application of our methodology. Section 4 presents
and analyzes the results obtained from the case study. Sec-
tion 5 discusses the implications of these findings. The article
concludes with Section 6, summarizing our main conclusions
and suggesting avenues for future work.

2. PROBABILISTIC FUSION APPROACH FOR ROBUST BAT-
TERY PROGNOSTICS

The proposed probabilistic fusion framework integrates BC-
NNs with probabilistic ensemble strategies. The main objec-
tive of the integration is to generate accurate predictions with
robust uncertainty quantification, thanks to the uncertainty
quantification of Bayesian modelling (Blundell, Cornebise,
Kavukcuoglu, & Wierstra, 2015) and the robustness and ac-
curacy of ensemble strategies (S. Zhang et al., 2022).

The approach is divided into offline and online stages. Start-
ing from a set of battery datasets, in the offline process, data
pre-processing and model training steps are completed. In
the online process, trained models are stacked in an ensemble
model according to computed weight and stacking criteria.
The outcome of the approach is a one-step-ahead probabilis-
tic capacity estimate. Figure 1 shows the high-level block
diagram of the proposed approach.

Battery Dataset

Online

Offline

Forecasting

Figure 1. High-level block diagram of the proposed approach.

The high-level concepts in Figure 1 are implemented through
the detailed model architecture shown in Figure 2.

The base models are BCNN models, which are trained (of-
fline) through a leave-one-out cross validation (LOOCV) pro-
cess. The probabilistic results of individual BCNN models
are aggregated through a stacking process that includes accu-
racy and uncertainty metrics. In the testing (online) phase,
each BCNN model weights are computed using learned mod-
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Figure 2. Block diagram of the proposed approach.

els (log-score weights) and the stacking model is designed
to combine them and generate a distribution from a mixture
model. The following subsections explain in detail the main
parts of the approach.

2.1. Offline Phase

During the offline phase, starting from a battery dataset with
different run-to-failure trajectories on the same type of bat-
teries, different base models are designed through a training
strategy which seeks diversity in the training set to develop
complementary predictive models.

2.1.1. Ensemble Base Models: BCNNs

BCNN models are a Bayesian extension of the classical CNN
models to include uncertainty associated with parameter es-
timation. This requires modification of the classical back-
propagation algorithm through Bayesian techniques that in-
volves incorporating uncertainty into the model by treating
weights as random variables, and applying variational infer-
ence to approximate posterior distributions. This results in
a more robust model that predicts the complete probability
density function (PDF).

Consequently, BCNN models have been selected to improve
the robustness and accuracy of model prediction. To this
end, BCNNs make use of probabilistic distributions to model
parameters and the uncertainty related to their training pro-
cess, and prior distributions to incorporate previous knowl-
edge, generate uncertainty estimations and mitigate over-fitting
(Blundell et al., 2015). In contrast, the classical learning mod-
els, e.g. non-Bayesian CNN models, focus on maximum like-
lihood estimation (MLE) and they overlook prior and poste-

rior distributions. This leads to increasing error and decreas-
ing model robustness in high uncertainty contexts, e.g. out-
of-distribution data or manufacturing drifts.

The proposed approach utilizes data pre-processing techniques
to standardize the length of discharge cycles through padding.
This technique involves repeating the last discharge value un-
til the desired cycle length is reached, ensuring consistent in-
put dimensions for all models. Additionally, normalization is
carried out scaling the discharge values between 0 and 1.

The architecture of the BCNN models is shown in Figure 3
defined as follows:

• Input data: the input data for the BCNN is structured in
a tensor format. The rows represent data samples of dis-
charge cycles, and columns that correspond to features,
such as the voltage and temperature over time. Notably,
the input does not include the current discharge as it re-
mains constant in this scenario.

• Convolutional 1D Reparametrization: this layer creates
a convolution kernel that is applied to the input data.
During the forward pass, kernel and bias parameters are
drawn from a Gaussian distribution. It uses the reparam-
eterization estimator to approximate distributions through
Monte Carlo trials, integrating over the kernel and bias.

• Global Average Pooling 1D: this layer performs average
pooling specifically for temporal data. It reduces the spa-
tial dimensions of the input data to a single value per
channel by calculating the average over the temporal di-
mension.

• Flatten: this layer reshapes input data into a one dimen-
sional array, enabling compatibility between Bayesian
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Figure 3. Schematic of the Bayesian convolution neural network.

convolutional layers and Bayesian dense layers.
• Dense Reparameterization: this layer implements a repa-

rameterization estimator for Bayesian variational infer-
ence. It implements a stochastic forward pass via sam-
pling from the kernel and bias distributions. This ap-
proach improves the robustness of the model, allowing
uncertainty estimation in parameter values and support-
ing probabilistic modeling in deep learning.

• Distribution Lambda: this layer is responsible for pro-
ducing the final results given the inputs and the learned
weights from the previous layers. The output layer con-
sists of two neurons representing the mean, ŷ and vari-
ance, σ̂2, in order to quantify the expected value and its
associated uncertainty. To ensure a positive variance, the
neuron is activated using an exponential function.

BCNN combines feature extraction capabilities of classical
CNN models with the uncertainty quantification of Bayesian
theory. The proposed architecture is built using the Bayesian
layers of TensorFlow Probability in Python (Dillon
et al., 2017).

2.1.2. Training for Diversity

Model diversity is a key concept for effective ensemble mod-
els (Nam, Yoon, Lee, & Lee, 2021). Accordingly, in this case,
the training set for each battery model is modified to learn
different battery aging properties. Historical capacity fading
data are used to build aging models for each battery in the
dataset.

Namely, using the LOOCV strategy, if K run-to-failure tra-
jectories are available, K diverse BCNN models are built
changing the training set in each iteration (cf. Figure 2). That
is, the model is trained on all batteries except one, which is
held as a test set. This process is repeated so that each battery
serves as a test set exactly once. Thus, all available data are
used for training, maximizing the diversity of training scenar-
ios.

Training the BCNN models through LOOCV strategy, en-
hances the ability of individual models to generalize across
different battery types and manufacturing conditions.

This stage completes the offline training process, which re-
sults in a set of BCNN models:

M = {BCNN1, BCNN2, . . . , BCNNK}, (1)

which are used in the subsequent online inference process to
build ensemble models.

2.2. Online: Stacking of Predictive Distribution

During the online phase, the proposed stacking of predictive
distribution strategy is designed and tested. The proposed ap-
proach takes as input individual base models [cf. Eq. (1)] and
monitored data up to the prediction instant t, which is used
to forecast the probability density function (PDF) of the ca-
pacity at t + 1, ŷPDF (t + 1). The objective of the stacking
process is to integrate the predictive distributions of different
base models and propagate all the information end-to-end.

For comparison and benchmarking purposes, an alternative
stacking approach is also implemented named stacking of
point prediction (cf. Subsection 3.3).

Log-Score Weights

The optimal way to combine a set of Bayesian posterior pre-
dictive distributions is by using the logarithmic score (Yao,
Vehtari, Simpson, & Gelman, 2018). This method maximizes
the average log-likelihood of the observed data, which is a
proper scoring rule used to evaluate the accuracy of prob-
abilistic forecasts. It measures the accuracy of a forecast
and penalizes overconfidence and underconfidence in the pre-
dicted probability. The logarithmic score is defined as fol-
lows:

ŵ = argmax
w

1

N

N∑

i=1

log
K∑

k=1

wkp(yi | y−i,Mk) + λreg

K∑

k=1

w2
k (2)

where N denotes the total number of data points and K de-
notes the total number of base models. The leave-one-out
predictive distribution for each model, i.e. p(yi | y−i,Mk),
is used to compute the model’s prediction for the data point
i. To avoid overfitting, a regularization term λreg is added to
the likelihood function, penalizing large weights.
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(a) Voltage variation (b) Current variation (c) Temperature variation

Figure 4. Feature variations due to an increasing number of discharge cycles in battery #5.

Stacking

Stacking is a method to average point estimates from several
models (LeBlanc & Tibshirani, 1996). In its simplest form,
it can be seen as a weighted average method. Through the
weighted average, it facilitates the construction of ensembles
that incorporate predictions from multiple models. In the pro-
posed framework, the goal of weighted average ensemble is
to leverage the predictive capabilities ofK pre-trained BCNN
models [cf. Eq. (1)]. It seeks to mitigate forecasting errors by
assigning weights to the linear combination of these models,
thereby enhancing the accuracy of predictions.

In the Bayesian framework, stacking extends beyond the lim-
itations of averaging point predictions by combining multiple
Bayesian posterior predictive distributions. This approach de-
velops a stacking model that leverages the strengths of vari-
ous predictive models, enhancing overall predictive accuracy.
The stacking of the predictive distribution enables the fusion
of uncertainties from various models into a unified predictive
framework. This approach improves the accuracy of forecasts
and offers a comprehensive evaluation of the uncertainty as-
sociated with these forecasts, providing advantages across di-
verse decision-making scenarios. The fundamental equation
governing this process is defined as follows:

p̂(ỹ|y) =
K∑

k=1

ŵkp(ỹ|y,Mk) (3)

where p̂(ỹ|y) represents the aggregate probability estimation
based on the ensemble model, ωk denotes the weight assigned
to the k-th component within the ensemble, and p(ỹ|y,Mk)
refers to the probabilistic forecast generated by each base
model, denoted as BCNNk, given the observed data y.

This probabilistic prediction indicates the likelihood of ob-
serving the predicted outcome ỹ, dependent on the specific
base model employed.

2.2.1. Forecasting

Online forecasting is computed for one-step-ahead predic-
tions. In order to forecast battery capacity at instant t + 1,
previous data until the instant t is used, plus an uncertainty
factor expressed as noise:

X (t) = {V (t), T (t), ϵ} (4)

where {V (t), T (t)} denote the values of voltage and tem-
perature at instant t, and ϵ denotes the Gaussian noise term,
N(0, σ) with σ = 0.1, that introduces variability in the pro-
gression of X over time.

The one-step-ahead capacity distribution prediction is thus
defined as follows:

ŷPDF (t+ 1) = f(X (t)) (5)

where f(.), denotes the designed ensemble model, ŷPDF (t+
1) is the distribution of the capacity estimate at t+ 1.

It is possible to perform SOH predictions for longer predic-
tion horizons through a recursive forecasting strategy. How-
ever, due to the accumulation of individual forecasting errors,
this approach may lead to decrease long-term forecasting per-
formance. Long-term SOH forecasting activities are left open
for future work.

This approach allows the model to learn continuously and
adapt to changing conditions. Online forecasting is partic-
ularly beneficial in environments that require immediate de-
cision making based on the latest available data.

3. CASE STUDY

3.1. Dataset description

The effectiveness of the proposed method has been tested us-
ing a battery dataset from the NASA Ames Prognostics Cen-
ter of Excellence (Saha & Goebel, 2007).
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A subset of available battery data has been selected, focusing
on batteries #5, #6, #7 and #18. Each battery is operated
under various conditions including charging, discharging, and
impedance analysis. Throughout the charge and discharge
cycles, temperature, current, and voltage were meticulously
recorded. During charging, a constant current mode at 1.5 A
was maintained until the voltage reached 4.2 V, followed by a
switch to constant voltage mode until the current dropped to
20 mA. Discharge cycles involved a constant load mode at 2
A until the voltage levels reached 2.7 V, 2.5 V, 2.2 V and 2.5 V
for batteries #5, #6, #7 and #18, respectively. The experiment
ended once the battery capacity decreased by 30%. These
batteries had a maximum capacity of 2Ah with an end-of-life
capacity set at 1.4Ah.

Figures 4(a), 4(b) and 4(c) show the evolution of voltage,
current (constant), and temperature measurements with the
increment of discharge cycles for the battery #5. Figure 5
shows variations in capacity degradation rates for identical
batteries. This is an indicator of uncertainty inherent in the
manufacturing process, which affects SOH estimates.

Figure 5. Capacity degradation data of Li-ion batteries.

3.2. BCNN structure and hyperparameters

The design of the base BCNN model structure is developed
through experimentation. The BCNN architecture for SOH
forecasting is detailed in Table 1, where ’None’ is indicative
of the batch size. The input for the model comprises 371
data points per discharge cycle, with each point aggregating
3 features: voltage, temperature, and time.

The proposed structure encompasses a total of 1300 train-
able parameters, designed to extract features from battery dis-
charge cycle data for forecasting purposes. Figure 3 details
the convolutional layer hyperparameters, which includes 16
kernels, each with a dimension of 3, adopting a Laplace dis-
tribution for the prior and employing a ReLU activation func-
tion. In addition, the model incorporates Bayesian dense lay-
ers with 16 units, Adam optimizer, a learning rate of 0.01, and
Evidence Lower Bound (ELBO) as its loss function (S. Zhang
et al., 2022).

Table 1. BCNN model architecture

Layer Description Output Shape # Param.
- Input (None, 371, 4) 0
1 Conv.1D Reparameter. (None, 369, 16) 416
2 Conv.1D Reparameter. (None, 368, 8) 528
3 Global Average Pooling (None, 8) 0
4 Flatten (None, 8) 0
5 Dense Reparameter. (None, 16) 288
6 Dense Reparameter. (None, 2) 68
7 Distribution Lambda (None,1),(None,1) 0

Total params: 1300 (5.08 KB)

3.3. Benchmarking

In order to compare the designed stacking approach with al-
ternative stacking strategies, another stacking approach has
been designed using point prediction information instead of
the full distribution.

Stacking of Point Prediction

An effective method for determining the weight of each model
in the stacking process is by minimizing the leave-one-out
mean squared error with a L2 regularization term, λreg. The
purpose of this term is to penalize large weights, thus prevent-
ing overfitting and balancing individual model contributions.
The weights are obtained through the following optimization
problem:

ŵ = argmin
w

n∑

i=1

(
yi −

K∑

k=1

wkf̂
(−i)
K (xi)

)2

+ λreg

K∑

k=1

w2
k (6)

where f̂ (−i)
K (xi) represents the predicted value of the k-th

model, when the i-th observation is left out of the training
set. The regularization parameter, λreg , controls the strength
of the regularization applied. To ensure a feasible solution,

the weights are restricted to wk ≥ 0 and
K∑

k=1

wk = 1.

Accordingly, the stacking of point prediction approach is de-
fined as follows:

ŷ =

K∑

k=1

ŵkfk(x|θk) (7)

where ŷ represents the prediction of the ensemble for the test
battery capacity, ŵk denotes the weight assigned to the k-th
battery base model, and fk(x|θk) is the prediction made by
the corresponding base model (BCNNk).

3.4. Evaluation criteria

The accuracy of the regression is measured by Mean Squared
Error, while Negative Log Likelihood assesses model perfor-
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mance by quantifying prediction probabilities. Finally, The
correctness of probability predictions is assessed through the
CRPS.

Mean Square Error (MSE) is a metric for measuring the
quality of an estimator. It is a measure of the average squared
differences between the estimated values and what is esti-
mated. MSE is calculated by taking the average of the square
of the differences between the predicted values and the actual
values (Hodson, 2022).

MSE =
1

n

n∑

i=1

(Yi − Ŷi)2 (8)

where, n represents the number of observations, Yi denotes
the actual value for the ith observation, and Ŷi signifies the
predicted value for the ith observation.

Coefficient of Determination (R2) is a metric used to assess
the goodness of fit of the model. It provides a measure of
how well the observed outcomes are replicated by the model,
based on the proportion of total variation of outcomes ex-
plained by the model (Barrett, 1974).

R2 = 1−

n∑
i=1

(Yi − Ŷ i)2

n∑
i=1

(Yi − Ȳ )2
(9)

where, n is the number of observations, Yi is the actual value,
Ŷi the predicted value for the i-th observation and Ȳ the mean
of Y . R2 of 1 implies perfect model predictions, while 0
means no explained variability.

Continuous Ranked Probability Score (CRPS) can be for-
mally expressed as a quadratic measure of discrepancy be-
tween the predicted Cumulative Distribution Function (CDF),
F (·), and the observed empirical CDF for a given scalar ob-
servation y (Zamo & Naveau, 2018):

CRPS(F, y) =

∫
(F (x)− I(x ≥ yi))2dx, (10)

where I(x ≥ yi) is the indicator function, which models the
empirical CDF.

To obtain a single score value from Eq. (10), a weighted av-
erage is calculated for each individual observation of the test
set (Gneiting, Raftery, Westveld, & Goldman, 2005):

CRPS =
1

N

N∑

i=1

CRPS(Fi, yi) (11)

where N denotes the total number of predictions.

Negative Log Likelihood (NLL) metric assesses probabilis-
tic models by using the likelihood concept, which indicates
how likely the observed data is given model parameters (Bosman
& Thierens, 2000). Likelihood (L) is the product of each
observation’s probability density function (PDF), expressed
mathematically as

L(θ | X) =

N∏

i=1

f(xi|θ) (12)

where θ denotes model parameters and X includes N data
points. NLL is preferred for optimization since minimizing
NLL is equivalent to maximizing the log-likelihood, facilitat-
ing the discovery of model parameters that best explain the
observed data, represented by

− logL(θ | X) = −
n∑

i=1

log f(xi | θ) (13)

Calibration refers to the statistical consistency between the
predictive distributions and the actual observations. It repre-
sents a joint property of forecasts and empirical data (Jung,
Jo, Choo, & Lee, 2022). Namely, it is stated that the model is
calibrated if (Kuleshov, Fenner, & Ermon, 2018):

∑T
t=1 I{yt ≤ F−1

t (p)}
T

→ p for all p ∈ [0, 1] (14)

In this expression, T refers to the total number of data points,
while the indicator function I{yt ≤ F−1

t (p)} takes a value of
1 when the condition yt ≤ F−1

t (p) is true, and 0 otherwise.
Given this condition, yt express the observed outcome at time
t, and F−1

t (p) is the inverse of the CDF for the forecast, eval-
uated at probability p. Therefore, the condition represents the
threshold below which a random sample from the distribution
would occur with a probability p.

Sharpness means that the confidence intervals should be op-
timized for minimal width around a singular value. That is,
the goal is to reduce the variance, denoted as var(Fn), of the
random variable characterized by the cumulative distribution
function Fn (Kuleshov et al., 2018; Tran et al., 2020):

sha =

√√√√ 1

N

N∑

n=1

var(Fn) (15)
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Table 2. Comparison of different ensemble strategies for different batteries used as test.

Baseline Model Benchmarking Ensemble Proposed Ensemble

MSE(↓) R2(↑) NLL(↓) CRPS(↓) MSE(↓) R2(↑) NLL(↓) CRPS(↓) MSE(↓) R2(↑) NLL(↓) CRPS(↓)
B0005 0.0007 0.9732 2.3397 0.0183 0.0002 0.9901 -1.9523 0.0145 0.0003 0.9886 -2.1001 0.0131
B0006 0.0013 0.9636 8.0947 0.0213 0.0009 0.9753 -1.8222 0.0183 0.0009 0.9741 -1.9358 0.0178
B0007 0.0005 0.9696 -0.0409 0.0149 0.0003 0.9814 -1.9755 0.0145 0.0004 0.9763 -1.9769 0.0145
B0018 0.0013 0.8943 9.0342 0.0223 0.0010 0.9183 -1.9478 0.0174 0.0010 0.9141 -1.9312 0.0178

4. RESULTS

To evaluate the proposed approach, firstly, different ensemble
strategies are compared to evaluate their strengths and iden-
tify the most suitable approach. Subsequently, a sensitivity
analysis is developed with respect to the contribution of indi-
vidual base-models to the overall ensemble.

4.1. Probabilistic Ensemble Strategies

This section focuses on the comparison between (i) the base-
line model, i.e. BCNN model trained with all available data,
(ii) ensemble of point prediction and (iii) proposed ensemble
method (cf. Figure 2) to further evaluate the improvement of
ensemble strategies over baseline model.

Table 2 presents a comparative analysis in terms of accuracy
and probabilistic metrics. This comparison highlights that,
for different test scenarios, the ensemble methodologies en-
hance the performance of the baseline model.

A notable observation from the results in Table 2 is the vari-
ance between the proposed ensemble approach (cf. Figure 2)
and the benchmarking ensemble model (cf. Subsection 3.3)
in specific scenarios. For batteries #5 and #6, the proposed
approach exhibited superior outcomes, particularly in proba-
bilistic metrics (NLL and CRPS). This suggests that within
a Bayesian framework, prioritizing likelihood maximization,
leads to accurately modelling uncertainty, and therefore, it is
more advantageous than focusing on MSE minimization (as
in Subsection 3.3).

The model optimization criterion has a direct impact on the
performance of the tested methods and on the effectiveness of
the ensemble approach. However, for batteries #7 and #18, no
significant differences were observed between the tested en-
semble approaches, which indicates that the results are asso-
ciated to the prior models. That is, it is possible that the same
prior model minimizes the MSE and maximizes the likeli-
hood at the same time.

Figure 6(a) shows the comparison between the ensemble model
generated by stacking point predictions (cf. Subsection 3.3),
Figure 6(b) shows the ensemble model generated through stack-
ing of predictive distributions (cf. Figure 2), and Figure 6(c)
shows the individual BCNN trained with the entire dataset,
e.g. for the battery #5, train with batteries #6, #7, and #18,

and test with #5.

(a) Stacked point prediction method (cf. Subsection 3.3)

(b) Stacked predictive distribution method (cf. Figure 2)

(c) Baseline model

Figure 6. Battery capacity degradation forecasting results.

It is observed that the ensemble models enhance the perfor-
mance of baseline model in terms of accuracy and uncertainty
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(a) calibration and sharpness for the benchmarking ensemble model (b) calibration and sharpness for the proposed ensemble model

Figure 7. Evaluation of calibration and sharpness for battery #5.

quantification. This is indicated by the positioning of the
ground truth (dashed lines) at the limit of the lower boundary
in Figure 6(c), which means that the uncertainty does not ac-
curately cover the observed values. That is, the uncertainty
bounds are not well-calibrated, compromising the model’s
ability to accurately represent the underlying variability in the
data and in the model compared to ensemble strategies.

Figure 6(a) shows an improvement in the prediction accuracy.
However, it simultaneously introduces a higher level of uncer-
tainty compared to the proposed ensemble method in Figure
6(b). This is reflected in the NLL and CRPS metrics, where
the stacking of the predictive distribution demonstrates supe-
rior performance (cf. Table 2). Such probabilistic metrics
indicate that the model parameters make the observed data
more probable, indicating a good fit to the observed data.

The evaluation of the shape of the PDF is a crucial aspect of
uncertainty quantification. Accordingly, the calibration and
the sharpness assessment of PDFs is performed through a
python toolbox for predictive uncertainty quantification (Chung,
Char, Guo, Schneider, & Neiswanger, 2021). Figure 7 shows
the calibration and sharpness of the analysed ensemble meth-
ods designed for probabilistic forecasting for the battery #5.

The calibration plot for the point-prediction ensemble model
[cf. Figure 7(a)] reveals a miscalibration area of 0.26, indi-
cating a gap between predicted probabilities and actual out-
comes, generally overestimating event probabilities. On the
contrary, the proposed ensemble model [cf. Figure 7(b)] shows
better calibration with a miscalibration area of 0.12, aligning
closer to the ideal, especially in midrange probabilities.

In terms of sharpness, the predictions of the point-prediction
based ensemble model have a mean sharpness value of 0.06
and are right-skewed, reflecting higher uncertainty. However,
the proposed ensemble model has a mean sharpness value of
0.05, with a slightly left-skewed distribution, indicating more
predictions with lower uncertainty and greater confidence.

4.2. Sensitivity of the Ensemble Strategy with Base-Models

To evaluate the contribution of each individual BCNN model
to the ensemble approach, a sensitivity assessment has been
performed. Namely, the performance of the different leave-
one-out iterations has been evaluated, sequentially training
with different battery datasets and testing with the leave-out
battery dataset. This has been compared with the proposed
ensemble approach results to identify individual contributions
from different models. Table 3 displays the obtained results.

Table 3. Performance evaluation of BCNN models and the en-
semble approach.

Test1 Model MSE (↓) R2 (↑) NLL (↓) CRPS (↓)

#5
BCNN [#6,#7]2 0.0005 0.9802 -1.0707 0.0135
BCNN [#6,#18] 0.0244 0.1016 19.4417 0.1411
BCNN [#7,#18] 0.0006 0.9795 -2.0774 0.0132

Ensemble 0.0003 0.9886 -2.1001 0.0131

#6
BCNN [#5,#7] 0.0011 0.9695 3.7012 0.0197
BCNN [#5,#18] 0.0147 0.5861 0.5852 0.0849
BCNN [#7,#18] 0.0018 0.9491 -0.7498 0.0252

Ensemble 0.0009 0.9741 -1.9358 0.0178

#7
BCNN [#5,#6] 0.0008 0.9543 -1.5462 0.0166

BCNN [#5,#18] 0.004 0.7704 2.1996 0.0326
BCNN [#6,#18] 0.0026 0.854 -1.5735 0.0286

Ensemble 0.0004 0.9763 -1.9769 0.0145

#18
BCNN [#5,#6] 0.0091 0.2534 14.708 0.0833
BCNN [#5,#7] 0.0041 0.6663 1.5441 0.0459
BCNN [#6,#7] 0.0013 0.8929 1.8299 0.0213

Ensemble 0.0010 0.9141 -1.9312 0.0178
1 Battery identifier used for testing.
2 BCNN [#A,#B]: BCNN trained with batteries #A and #B.

The ensemble BCNN model demonstrates significantly higher
accuracy and predictive power than individual BCNN mod-
els, as evidenced by its superior performance across multiple
metrics. It achieves the lowest MSE in every testing battery,
indicating more precise predictions, and the highest R2 score,
showing its ability to explain a greater proportion of variance.
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(a) Ensemble forecast showing the combined prediction from all models (b) Forecast from the first component model of the ensemble

(c) Forecast from the second component model of the ensemble (d) Forecast from the third component model of the ensemble

Figure 8. Capacity fade forecasting for battery #5 employing an ensemble of BCNN models.

The ensemble model also shows a notable improvement in
the NLL metric, suggesting a more reliable uncertainty esti-
mation. Additionally, by achieving the lowest CRPS, it em-
phasizes its proficiency in probabilistic forecasting and pre-
cise uncertainty quantification. Overall, the ensemble method
outperforms individual models, highlighting its effectiveness
in contexts that require high accuracy and reliability.

Figure 8 presents the forecasts generated by individual mod-
els for battery #5 (cf. Table 3). Figures 8(b)-8(d), show indi-
vidual models and Figure 8(a) shows the combined forecast
of the ensemble model.

It can be seen that the ensemble effectively combines the
characteristics of models 2 and 3, thereby improving the over-
all performance of the final forecast of the ensemble.

5. DISCUSSION

The proposed research work demonstrates that the stacking of
predictive distributions based on a Bayesian framework im-
proves the accuracy and robustness of predictions compared
with stacking of point predictions. Furthermore, it has been
observed that the use of an ensemble of BCNN models im-

proves the modeling of uncertainty when compared to rely-
ing on a single BCNN model (baseline). However, before
drawing definitive conclusions about the application of the
proposed solution in real-world applications, further work is
necessary testing the robustness, scalability, and sensitivity
with respect to noise.

Robustness

Credible intervals reflect the uncertainty associated with the
data and the model (cf. Figure 6). The robustness of the
proposed approach is therefore directly dependent on model
and data uncertainty. The reduction of credible intervals align
with the objective of increasing robustness. To this end, in-
creasing the number of observations would reduce the uncer-
tainty attributed to the model, which results in more precise
credible intervals. Additionally, employing priors like maxi-
mum entropy priors or weakly informative priors may further
tighten credible intervals, thereby improving the reliability of
the model predictions.

Scalability

To analyze larger fleets of batteries, instead of using leave-
one-out methodologies, it may be more appropriate to de-
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velop generalized training methodologies. In this direction,
one approach would be to cluster batteries that exhibit simi-
lar operation and degradation conditions. This strategy would
enable capturing data diversity, which is a key property for
ensemble strategies. Alternatively, a hierarchical modelling
strategy may be adopted. This method involves a global model
for overall battery behavior, supplemented by smaller models
for specific groups, enabling precise adaptations without the
need for separate models per battery. This strategy ensures
scalability and flexibility in handling various battery opera-
tion and degradation conditions efficiently.

Noise Sensitivity

The proposed approach assumes a Gaussian noise to model
the variability of the modeled process and measurements [cf.
Eq. (4)]. To analyze the impact of Gaussian noise levels on
prediction results, a sensitivity analysis has been performed.
Figure 9 shows the obtained results.

Figure 9. Impact of Gaussian Noise on Predictive Modeling
of Battery Capacity Degradation.

Obtained results indicate that, when testing data diverges from
training data, the epistemic uncertainty increases. The in-
crease in Gaussian noise causes a greater deviation, and there-
fore, there is a significant rise in epistemic uncertainty. Analysing
the model’s behaviour in the presence of different types of un-
certainty is crucial to evaluate the robustness of the model and
determine if additional training stages are needed to enhance
its reliability. Consequently, this research adopts a noise level
of 0.1 as a trade-off decision between prediction accuracy and
uncertainty.

Application Limits

Some of the adopted practices may limit the applicability of
the proposed framework in real-world applications. The ex-
perimental setup, conducted in a controlled environment with
specified load conditions, may not entirely replicate the di-
verse sources of uncertainty present in real-world applica-
tions. Such controlled conditions could potentially skew the
understanding of uncertainty due to environmental and opera-
tional variabilities. Consequently, the predictive performance

observed in this study may differ under less predictable con-
ditions. In this direction, for controlled operation environ-
ments, the complexity of the proposed approach may be re-
duced. However, the proposed methodology complexity is
designed to capture a wide range of uncertainties found in
real operating systems.

6. CONCLUSION AND FUTURE WORK

Batteries are key components in power and energy systems
and ensuring a robust and reliable remaining useful life (RUL)
prediction of batteries is crucial to develop accurate monitor-
ing strategies, and build cost-effective solutions.

In this context, battery RUL prediction models generally fo-
cus on individual prediction models. They may be able to
capture uncertainty associated with the battery ageing pro-
cess, but the uncertainty modelling and capturing ability is
also limited to the individual model. This research presents a
probabilistic ensemble prognostics approach which combines
Bayesian Convolutional Neural Network (BCNN) models in
a probabilistic stacking strategy. The proposed framework
leverages the probabilistic predictive information of individ-
ual BCNN models, which are integrated through a probabilis-
tic stacking approach that calibrates between accuracy and
robustness of probabilistic predictions.

The proposed approach has been tested on NASA’s battery
dataset. Obtained results show that the proposed probabilis-
tic stacking approach improves accuracy and uncertainty of
predictions with respect to other ensemble strategies and in-
dividual BCNN models.

This research study contributes towards understanding and
predicting the capacity fade in Li-ion batteries. Namely, it
highlights the role of probabilistic approaches and ensem-
ble methods in modelling the uncertainties inherent in battery
manufacturing and operation.

Looking forward, there are different opportunities to expand
the scope and applicability of this work. On the one hand,
the use of a larger battery dataset, which includes diverse en-
vironmental and operational conditions, would allow for a
more comprehensive understanding of capacity fade across
various scenarios. On the other hand, it may be possible to
perform a more exhaustive comparative analysis of differ-
ent fusion strategies, including Bayesian Model Averaging,
Pseudo Bayesian Model Averaging, or Mixture Models. This
comparative will provide further insights into the optimal ap-
proaches for integrating predictive models in the context of
battery life prediction, enhancing both the accuracy and reli-
ability of capacity fade forecasts.
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