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ABSTRACT 

A methodology for replacing finite element simulations with 

a fast-calculating surrogate model for fault tolerance in 

operating systems is presented. The study focuses on the 

TO220 rectifier system and explores methods to detect 

impending failures and calculate the resulting necessary load 

reduction. The finite element simulation model is described, 

highlighting the die attach as the relevant connection for 

failure. A surrogate model is developed using long-short-

term-memory models to predict temperature and in-elastic 

strain. The surrogate model significantly reduces simulation 

time, allowing for the adjustment of load based on the 

system's current state of health. The rainflow counting 

algorithm is applied to calculate the number of cycles to 

failure, and the Palmgren-Miner linear damage accumulation 

relation is used to determine the damage and state-of-health. 

The dependency of the change in lifetime due to variations in 

scaling factor is evaluated and the results show that load 

reduction increases the lifetime of the system. 

1. INTRODUCTION 

The increased requirements for fault tolerance (e. g. for SAE 

level L3 and onward, defined by the Society of Automotive 

Engineers (SAE) in SAE International (2021)) requires, the 

operating system must continue to operate with reduced 

power until other measures are initiated. Therefore, the 

system must be able to detect the impending failure and start 

the fault handling. Furthermore, the result of the intervention 

must be predicted in order to apply right failure rectification. 

These requirements can be met by various methods, as 

mentioned by Moeller, Inamdar, van Driel, Bredberg, Hille, 

Knoll and Vandevelde (2024). For example, a system that 

regularly undergoes rest phases can run self-diagnoses 

processes by using standard load cycles during these rest 

phases. From the deviation of the resulting response to the 

response in the undamaged state, the damage and the 

resulting necessary reduction in load can be calculated (as 

shown in e.g. Chacko, Moeller, Kolas, Albrecht, and Rzepka 

(2024)). However, the disadvantage of this method is that the 

fault can be detected at the earliest in the first rest phase after 

the first measurable deviations have occurred.  On the other 

hand, the advantage is that the calculation must not be carried 

out in the system itself, but can also be performed in the 

cloud, for example. 

Alternatively, a digital twin of the system can be created and 

this representation can be digitally loaded in parallel with the 

real system. The digital twin then calculates the damage to 

the real system based on the real load.  In order to achieve 

this, the digital twin must be capable of mapping the failure 

mechanism that occurs and calculating the damage from this. 

In addition, the calculation of the damage due to the load in 

the digital twin must be performed faster than the load is 

applied in reality (this depends on the available calculation 

resources). Only if both of these conditions are met the 

current state of health of the system can be mapped correctly 

and an appropriate regulation can be calculated. 

In this work, the chosen system is a TO220 rectifier. The 

TO220 is a Silicon Carbide Schottky diode for ultra-high 

performance, low loss, high efficiency power conversion 

applications.  For example, it can be used as a switched-mode 

power supply, AC-DC and DC-DC converter, in battery 

charging infrastructure, server and telecommunications 

power supply, uninterruptible power supply and as a 

photovoltaic inverter (Nexperia 2023). As already shown by 

Albrecht, Horn, Habenicht and Rzepka (2023), it is possible 

to generate a validated digital representation of this rectifier 

in the form of a combined multi-field FE simulation, from 

which the damage under real loads can be calculated. 

However, the calculation time of these FE simulations is 
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much too long. This paper shows how the FE simulation 

model can be replaced by a fast-calculating surrogate model. 

After a brief introduction of the TO220 rectifier and the 

corresponding FE simulation in section 2, the training and 

setup of the surrogate model and the calculation of the state 

of health are presented. Subsequently, this surrogate model is 

used to calculate the change in lifetime due to the reduction 

of the load. 

2. FINITE ELEMENT SIMULATION 

The structure of the TO220 rectifier can be seen in the FE 

simulation model in Figure 1 and Figure 2. The die attach is 

the relevant connection regarding the failure (as shown in 

Albrecht et al. (2023)), representing the connection between 

the chip and the lead frame. The current flows from the 

contact via the bond wire to the die and is then transferred to 

the lead frame via the die attach. The materials heat up due to 

the current flow (Joule heating). The temperature is 

dissipated via the heatsink.  

 

Figure 1: Finite Element model of the TO220 rectifier 

(cut view). 

The FE simulation is based on a sequential approach, where 

the electric-thermal behavior is simulated first, followed by 

the thermal-mechanical behavior of the component. A current 

load profile is used as input for the electric-thermal 

simulation. The computed temperature field is then used as 

input for the thermal-mechanical simulation. From the 

thermal-mechanical simulation the in-elastic strain in the 

region of the die-attach corners (the relevant area for the 

failure) is extracted using an averaging approach.  

 

Figure 2: Finite Element model showing the die attach 

and the bond foot. 

In order to calculate the state-of-health from the simulation 

result, the Coffin-Manson lifetime model 

𝑁𝑓 = 𝐶1Δ𝜀𝑝𝑙
𝐶2   (1) 

is used. With this model the number of cycles to failure 𝑁𝑓 is 

calculated by using the in-elastic amplitude allocated to the 

cycle Δ𝜀𝑝𝑙 as well as two model parameters 𝐶1 and 𝐶2. In this 

calculation, the parameters identified by Darveaux and 

Banerji (1991) for Pb95Sn5 were used. Since real loads are 

used in this calculation rather than standard cycles, rainflow 

counting is carried out based on the temperature profile. The 

rainflow counting extracts cycles from the real load, and the 

corresponding change in the in-elastic strain is assigned to 

these cycles. From the number of cycles to failure 𝑁𝑓  the 

state-of-health can be calculated (as shown in section 4). The 

methodology of calculating the state-of-health by using FE 

simulations is also shown in Figure 3. 

 

Figure 3: Applied methodology for the calculation of the 

state-of-health. 

A crucial aspect of the FE simulation is the accurate 

description of the materials used in the component. Most of 

the materials exhibit strong temperature dependence, the 

bond wire and bond foot (both aluminum) as well as the lead 

frame (copper) are modeled by using linear elastic and 

bilinear kinematic hardening plasticity behavior and the 

solder in the die attach is modeled by using the Anand law. 

Especially the solder is highly non-linear and the material 

behavior depends strongly on the strain experienced in the 

past. Further details on the materials and the FE simulation in 

general are shown in Albrecht et al. (2023).  

Using the calibrated model, a complete Worldwide 

harmonized Light vehicles Test Procedure (WLTP) mission 

profile was simulated by varying the electrical load over time. 

In order to obtain the current from the WLTP profile, an 

inverter module was added before the simulation. The 

temperature field from the electric-thermal simulation was 

used as input for the thermal-mechanical simulation and the 

stress as well as the strain in the die-attach corners is 

calculated and averaged. The results are shown in Figure 4. 
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3.  SURROGATE MODEL 

As mentioned before, the WLTP cycle can be simulated by 

using FE simulation and the results fit to experimental 

measurements. So, the FE simulation model is a digital 

representation of the TO220 rectifier. However, the 

simulation time for calculation the WLTP cycle of 1800s is 

round about two days. In order to reduce the simulation time, 

the finite element simulation must be replaced by a surrogate 

model.  

Therefore, the restrictions are: The surrogate model must take 

the current as input and the temperature as well as the in-

elastic strain as outputs. Additionally, the surrogate model 

must be able to store all information of the reality – and 

because the FE simulation fits to the reality also all 

information of the FE simulation model. Due to this, the type 

of the surrogate model cannot be chosen randomly.  

As described before, the materials of the TO220 rectifier are 

highly non-linear and also strongly dependent to the history. 

Due to this, as model type the long-short-term-memory 

(LSTM) model is used (Hochreiter & Schmidhuber (1997)). 

LSTMs are effective in capturing long-range dependencies in 

sequential data and have the ability to remember information 

over long periods of time, as for example shown in Zheng, 

Ristovski, Farahat and Gupta (2017). Analogous to the FE 

simulation, two different LSTM models were trained: one 

model to predict the temperature and one model to predict the 

in-elastic strain. The training data were produced by the FE 

simulation model and as the LSTM model is to be applied to 

real loads, the simulation data from the WLTP cycle is used 

for training. The training/validation split is 80/20 % and the 

Adam optimizer (Kingma & Ba 2014) is used. In order to 

generate additional data that the model had not seen in 

training, the mission profile was varied using different 

methods and a total of six variations were calculated using 

FE simulation. The shown mean absolute error / mean 

absolute percentage error (MAE/MAPE) is calculated on all 

seven mission profiles. The models are trained without 

considering the time. So, for the data a constant time step of 

10 Hz is used. 

 

Figure 5: MAPE for variation of the sequence length and 

the units for the LSTM predicting the temperature. 

For the LSTM there are many parameters, such as sequence 

length, number of unit layers, number of units per layer, 

features, predictions, learning rate etc. These parameters are 

optimized by a combination of a variation study and a 

hyperparameter variation. Exemplarily for the LSTM 

predicting the temperature, which only uses one unit layer, in 

Figure 5 the MAPE for the variation of the sequence length 

and the number of units in the unit layer is shown. The 

increase of the sequence length (the history taken into 

 

Figure 4: WLTP (current) mission profile (green) as well as some of the calculated results from the FE simulation: 

temperature (blue), von Mises stress (red) and the averaged total in-elastic strain (black). 
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account) significantly increases the prediction quality. 

Simultaneously, increasing the sequence length reduces the 

difference between the models with different units. 

For predicting the temperature, the LSTM model with the 

current as feature, a sequence length of 240, one unit layer 

with 14 units is chosen. The prediction quality (also for all 

seven mission profiles) is shown in Figure 6. 

 

Figure 6: Prediction quality of the LSTM for temperature 

prediction. The green line indicates the optimal 

prediction. 

As mentioned before, for the prediction of the in-elastic strain 

a second LSTM model is trained. Therefore, the features are 

the current together with its first and second derivative and 

also the temperature (predicted by the other LSTM) together 

with its first derivative. The result of the parameter variation 

and hyperparameter variation gives a model with two unit 

layers with 16 units and 10 units respectively. The sequence 

length is identified to 200. 

The in-elastic strain is a continuously increasing quantity 

where the changes are constantly added up. Therefore, not the 

in-elastic strain itself was predicted, but the incremental in-

elastic strain. In post-processing after the prediction itself, the 

in-elastic strain is calculated from the incremental in-elastic 

strain via integration. Due to this in Figure 7, where the 

predictions quality for the (total) in-elastic strain is shown for 

the seven mission profiles, seven connected lines of 

prediction points are visible. 

The application of integration also means the integration of 

errors. This has both advantages and disadvantages.  Assume 

that only one error occurs at a specific point in time. Then, 

from this data point onwards, a deviation can be seen in all 

subsequent data points in Figure 7. This deviation will also 

be included in the MAPE calculation. On the other hand, a 

further, opposing error can cancel out the original error. 

Nevertheless, the prediction is sufficiently accurate, as also 

can be seen in Figure 8.  

 

Figure 7: Prediction quality of the LSTM for in-elastic 

strain prediction. The yellow points indicate the 

prediction quality for the incremental strain, the blue for 

total strain. 

 

Figure 8: Comparison of the result of the FE simulation 

(blue) and the LSTM model prediction (red) for the 

WLTP cycle. The strain is scaled to (-1, 1). 

So, with this surrogate model a reduction of the calculation 

time from two days to 19 seconds (7 seconds for the 

prediction of the temperature and 12 seconds for the 

prediction of the strain) for the WLTP cycle of 1800 seconds 

is achieved.  

4. STATE-OF-HEALTH AND REMAINING USEFUL LIFE 

As mentioned before for the FE simulations, the rainflow 

counting algorithm is applied in order to transfer the load 

profile and the resulting continuously increasing in-elastic 

strain into separate cycles. By using Coffin-Manson lifetime 

model (equation (1)), which describes the shape of the strain 
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Wöhler curve in the low cycle fatigue range, the number of 

cycles to failure 𝑁𝑓,𝑖  for each cycle 𝑖 is calculated. The in-

elastic strain Δ𝜀𝑐𝑟,𝑖  for each sub-cycle per cycle (closed 

cycles within a larger cycle) is subtracted. From the number 

of cycles to failure the damage per cycle 

𝐷𝑖 = 1/𝑁𝑓,𝑖  (2) 

is calculated. Then Palmgren-Miner linear damage 

accumulation relation (proposed by Palmgren (1924) and 

further developed by Miner (1945)), is used to sum up all 

damage contributions 

𝐷 =  ∑ 𝐷𝑖
𝑖

= ∑
1

𝑁𝑓,𝑖𝑖
  (3) 

From this, the damage can be transferred into the state-of-

health  

𝑆𝑜𝐻 = 1 − 𝐷  (4) 

Subsequently, the state of health was calculated for a series 

of WLTP cycles, whereby initially the WLTP cycles were not 

changed for the entire period. With this a lifetime of 143 days 

is calculated. In addition, when a health status of 50% was 

reached, the load level of the WLTP cycle was reduced. This 

is used to simulate a reduction in power in response to the 

damage reached. As shown in Figure 9, this reduction in 

power significantly increases the lifetime. 

Consequently, this model can be used to adjust the load of the 

TO220 rectifier to the current state of health. Due to the short 

calculation time of the surrogate model, the influence of the 

load reduction on the lifetime can be predicted. This allows 

to adjust the load in a targeted manner, which is necessary for 

a control. 

 

Figure 9: Change of the lifetime due to the reduction of 

the load level of the WLTP cycle. 

5. CONCLUSION 

In this work the methodology of replacing the FE simulation 

model by a surrogate model is shown. The amount of 

calculation time is massively reduced and due to this the 

surrogate model will be implemented on a micro controller in 

order to finalize the digital twin. 

For the prediction of the temperature the final trained model 

is a LSTM model with just one unit layer and six units 

therein. Due to this low complexity, in future work a change 

to a less complicated model type will be taken under 

consideration.  

Additionally, the surrogate model is currently being trained 

with a complete WLTP cycle. This has the disadvantage that 

the generation of the training data requires a relatively large 

amount of resources. However, it can be assumed that it 

contains multiple pieces of information that are not 

necessarily required for training the surrogate model. For this 

reason, the training of the surrogate model is to be simplified 

in future work. The WLTP cycle and other realistic load 

profiles will be analyzed using methods from time series 

analysis (e.g., the matrix profile, what is presented in Imani, 

Madrid, Ding, Crouter, and Keogh (2018) or Mercer, Alaee, 

Abdoli, Singh, Murillo, and Keogh (2021)), the relevant 

patterns and anomalies will be determined and calculated as 

separate profiles, weighted and specified in the training. This 

reduces the effort required to generate the training data. 
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