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extending it to other EMAs faults and to succes$gful

) implement this technique to EMAs for flight control
Flight Control Systems (FCSs) are one of the moskeiyators.

interesting field of research and application fdedio
Mechanical Actuators (EMAS), which are theoretigalble 1. INTRODUCTION

to provide several advantages over the traditionarhe Electro-Mechanical Actuators (EMAS) technoldgs
hydraulic/mechanical ~solution for both primary andpeen opject of several research programmes for ifGiSe
secondary flight control surfages. However, in ipatar _ recent years; EMAs are in fact able to provide Egve
when compared to hydraulic actuators, technologicalyyantages over the traditional Electro-Hydraulid @ven
barriers for a wide adoption of EMAs still persisspecially  ihe novel Electro-Hydrostatic Actuators by elimingt
when considering their sensitivity to certain senglbint of leakage problems, simplifying the installation atie
failures that can lead to mechanical jams. As SEMAS  maintenance operations while keeping the overalghte
are so far not employed for flight safety critiegiplications  ompetitive (Pratt, 2000). Their application onilcaircrafts

as solutions are heavy and costly (redundancy, saié g however severely limited by safety issues assediwith
behavior, etc.), while their certification is madaore single point failures, making them far more suialior
difficult due to the add?tional des_ign complexitffhe experimental vehicles and UAVs (Jensen, Jenney &
development of an effective and reliable PHM system  pay50n, 2000), (Derrien, Tieys, Senegas & Todeschi,
EMAs could help in mitigating the risk of a suddenitical  5011), (Roemer & Tang, 2015). EMAs have found some
failure by properly recognizing and tracking the.gming  gphjications on non-safe critical control surfacesh as
fault and anticipating its evolution, thus offeriagpossible flap/slats control (Christmann, Seemann & Janké102

ABSTRACT

boost to the acceptance of EMAs as primary flightrol
actuators in commercial aircraft. The paper firghgsents

(Recksieck, 2012). A possible solution to thesetyasue
is to study and apply a robust PHM system ableafidty

an enhanced Particle Filter framework for improvedyetect the insurgence of dangerous fault conditems to

prognosis, discussing its benefits and its impleatém

anticipate their evolution into full-blown failureSeveral

inside a general PHM framework developed for EMAS.eqearch efforts can be found in specialized liceea
Further developing on previously published worksieeé  5qqressing the electric motor (Nandi, Toliyat & POS),
degradation modes are hence identified as signifiead (Brown and others, 2009), (Belmonte, Dalla Vedova &
used as case study. The first one is the degradafithe Maggiore, 2015), and (De Martin, Jacazio & Vachtses
magnets of the electric motor, associated with dhna 2017), mechanical components (Balaban, Saxena, é§oeb
performance losses and decrease of the stall ez other Byington, Watson and others, 2009), (Balaban, Saxen
two are the increase of the backlash in the mechhni Narasimhan, Roychoudhury & Gobel, 2010) and
transmission due to the growing wear of its comptsieas (Lessmeier, Enge-Rosenblatt, Bayer & Zimmes, 2Gi)
well the wear of the spherical joints connecting #ttuator  gjactronic power unit (EPU) (Brown, Abbas, Ginai,

to the surface (rod-end). The positive results inkthfrom Kalgren, Vachtsevanos, 2010), (Li, Ye, Chen,
the application of the enhanced Eanicle Filterthgqgwork Vachtsevanos, 2014). Many of the presented studisee

to these faults provide good confidence on theibiisg of  ;5e of Particle Filtering frameworks to perform fladure
prediction and Remaining Useful Life (RUL) estimaide
research presented in this work introduces a novel
declination of this technique specifically studifst FCS
applications to tackle the most prominent issus®aated
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with the Health Monitoring of these devices. Aftebrief
introduction on such practical issues, we presdm t
framework and its expected benefits; hence we ptese
case study based on a flight control surface mdwetivo

only one acquisition per mission is possible; timakes it
difficult to perform an efficient failure prognosand does
not allow to address degradations which last less the
duration of a single mission. A possible solutienthese

EMAs in active-active configuration and compare theissue could be the definition of a framework abte t

results with that obtainable though a traditionalrtigle
filter.

2. PROMINENT ISSUESIN PHM FOR FLIGHT CONTROLS

The field of Flight Control Systems (FCSs) is atrexely
interesting application for PHM technologies, inrtgalar
that of primary flight control actuators; these ideg
provides a significant challenge for PHM techniqusace
they are safety critical, behave following commamadterns
difficult to predict a-priori and their actuatioimte is limited
through most of the mission. The development ofusbb
PHM techniques would allow to mitigate the safetyuies,
enhancing the aircraft availability and eventuaffecting
the design of the actuators, enabling new techmedo@uch
as the EMAS) or novel architectures. At the samme tiFCS
applications could be considered as a benchmark vl
techniques due to a few intrinsic issues that hantpe
feature selection and further complicate the desigra
comprehensive Health Monitoring system. The fastd
most prominent issue is the uncertainty associaiéd the
features computed from signals coming from in-fligh
measures. The operational conditions can be widalying,
the aerodynamic load pattern is often unpredictabie to
gusts and turbulence and so are the pilots commavidsh
are influenced by the pilot performances, contitgéght
situation etc. The effects of this uncertainty dnether
expanded by other issues, such as the low nhumisgméls
available and the absence of direct measures obriammt
guantities such as the aerodynamic load. Vibratieasures
are moreover made difficult by the short duratidneach
actuation and by the rarity of the occurrence eédy-state
conditions. Finally, local measures that
instrumental for PHM are often difficult to maken i
particular for legacy equipment. To address thesaes,
Jacazio, Maggiore, Della Vedova, and Sorli
proposed the use of dedicated pre or post flighacks
based on short, repeatable sequences of commardisdst
to enhance the effects of a selected number afsfaukr the
available signals.
advantage of extracting the features in a semirobed
environment, (negligible external load,
commands) while allowing for sequences of movemtras
cannot be performed in flight; this becomes palgidy
interesting for flight control surfaces controlleg at least
two actuators, since it would allow to use one bé t
actuators to impose a known load on the other, rezihg
the effects of certain fault types (Mornacchi, Jawa&
Vachtsevanos, 2015), (De Martin, Jacazio & Vacldses,

2016). At the same time, a significant drawback is

represented by the time scarcity of the obtaindhbte, since

would be

This approach has the significan

pre-defined

combine the noisy but frequently available inforiomat
obtainable in-flight with the more accurate onesnitg
from dedicated pre-flight test.

3. PARTICLE FILTER FOR FAILURE PROGNOSIS

PHM frameworks are based on three consecutive ,steps
which are,

» Signal conditioning and feature extraction

» Fault diagnosis (detection/identification/isolafion

»  Failure prognosis

Once an incipient failure or fault is detected tigb proper
algorithm with a specified confidence, the progiwst
algorithm is initiated to predict the fault’s timevolution.
The fault state at detection acts as the initialdétion for
the prognosis, which framework is depicted in Hig.The
prognostic framework is based on a nonlinear degiaial
model and a Bayesian estimation method using pertic
filtering and real-time measurements (Vachtsevaand
others, 2006) to perform failure prognosis undenegal
assumptions of non-Gaussian noise structures
nonlinearities in process dynamic models using duced
particle population to represent the state prohghiensity
function (pdf). A complete overview of the Partididter
theory can be found in (Orchard, 2007). The paxtfiter-
based module is built upon the nonlinear dynamatest
model,

x() = fe(xa(®), x(t = 1), w(®))
- (1
y() = hy(xa (), x(8), v(D))

wheref,andh, are non-linear mappingsy is a collection of
Boolean states associated with the presence oftepar
operating condition in the system (normal operati@ult

and

(2010)type #1, #2, etc.) is a set of continuous-valued states that

describe the evolution of the system given thoseraing
conditions (i.e. fault size). We address witlthe feature
measurementw and v are non-Gaussian distributions that
characterize the process and feature noise signals,
respectively.
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Figure 1. The Prognostic Framework
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The functionh; is a mapping between the feature value,The resulting RUL pdf, whergy, refers to RUL, provides
y(t), and the fault state(t). Prognosis is achieved through the basis for the generation of confidence intervaihd
particle filter, which works by performing two semtial expectations for prognosis,

steps, prediction and filtering. Prediction useghbthe n
knowledge of the previous state estimatie; and the A _Z : NG

oL Failure|X = % JH,, H 5
process model(t) to generate the a priori state pdf Prrus - p( | truL’ “Ib “”) ®)
estimate for the next time instant, =1
p(X0:t|Y1:6-1) = fp(xt|yt_1)p(x0:t_1|y1:t_1)dxo:t_l (2) 4. ENHANCED PARTICLE FILTER FRAMEWORK

Unfortunately, this expression does not have arlyical  The Enhanced Particle Filter Framework depicte#im 2
solution in most cases. Sequential Monte Carlo ($MChas been built to improve its prognostic perfornesnioy
algorithms, or patrticle filters, are hence usedumerically
solve this equation in real-time with efficient gaing
strategies (Bishop, 2006). Particle filtering apgmuates the
state pdf using samples or “particles” having asged <+ Reducing the effect of noise propagation for theglo
discrete probability masses (“weightsif), term prediction stage

Adapting the non-linear mappings through continuous
stream of data

o 5 (i i ¢ Using the more accurate data obtainable during pre-
Xe|Vi:e) = We(x6.0 )6 (X0 — X066 )AX 06— 3

p( t!yl't) £ (06:0)8 (o = xbe)Axoes ® flight tests to periodically check and correct ttate
where Xy, is the state trajectory andy, are the estimates performed through in-flight data

measurements up to tinheThe simplest implementation of

this algor_ithm_, the Sequential I_mportan_ce _ReTsangpIi mappings (1) through Recursive Least Square ahgorit
(SIR) particle filter, updates the weights using likelihood | hich has the benefit of being computationally jpexsive
ofyias and hence well-suitable for on-line applicationsother
wy = we_ p(;|x,) 4) possible solution, implemented in the code butshmwn in
Long-term predictions are used to estimate the ghitily ~ this paper, has been recently proposed by Echaain@r,
of failure in a system given a hazard zone thaefined via ~ Curtin, Vasiloglou and Vachtsevanos (2017), thabased
a probability density function with lower and uppmsunds ~ ©Nn the use of parallel pools of Particle Filtersptiorsue a
for the domain of the random variable, denotedHgsand ~ More robust statistical characterization of the -woear
H,,, respectively. The probability of failure at anytdre ~models at the expense of computational efficiency.
time instant is estimated by combining both theghts T reduce the effect of noise propagation we resprn
w',, of predicted trajectories and specifications foe t approach derived from Orchard (2007), where theewi

hazard zone through the application of the Law ofal applied to each iteration of the degradation motel
Probabilities. modified through the coefficierftt + K,,), obtained as the

The first objective is realized by auto-tuning than-linear

Yelflight

Z | ground
G
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Figure 2. The Enhanced Particle Filter Framework
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time integral of the difference between the noisbaviour
of the estimated states and of the projected stateputed
as,

Ko =K | WarGoan) - varGesnlde — (6)
t

wherevar (%,,.ar) is the variance of the projected particles

X obtained projecting the states estimatat timet for a
number of iterations corresponding to a time stgpaé to
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Figure 3. EMA configuration

For this architecture, authors already discusseith loo-

AT, whilevar (x,ar) is the variance of the states’ estimateground and in-flight implementation of PHM technesufor
at timet + AT. The introduction of the on-ground measureswindings faults in (De Martin, Jacazio and Vachtses,

is finally performed by adding to the non-linearppings of

2016) and (De Martin, Jacazio and Vachtsevanosy)201

Eq. (1) the non-linear model linking the on-groundThe presented paper is instead focused on two other

observationgz with the statex

2(8) = g.(x(1), 0(®)) (7

common fault processes of EMAs for FCS applications
such as the permanent magnets degradation in ¢uoériel
motor and the backlash increase due to wear praigren

whereg is non-Gaussian noise. The model is hence useghe mechanical transmission and in the rod-encuiating

along the on-ground observations (when available)pdate
the weights of the Particle Filter as,

we = We_ 1D (Vel XD (Ze| xp) ®

5. CASE STUDY

We focus on the most general scheme for primaghtfli
control surfaces moved by two EMAS representedidgn &
Each of the two EMAs is made of one brushless etect
motor (EM) supplied through its own Electronic Powhmit
and a mechanical transmission made of a satekitebgpx
(GB) and a roller screw. The position control ofclea
actuator is performed through three nested loogschw
modulate the electric motor currents, the drivihgfs speed
and the linear position of the screw. Feedbackalggare
generated by current sensors, a resolver positiomethe

motor shaft and LVDTs, connected to the translating
element of the power screw. The position command is
inter-communicating Flight Control

Computers (FCCs) which generate the control signal

provided by two

following the active/active strategy, which meahattboth
devices are contemporary actuated
receiving the same command input. This controltetya
allows to obtain better dynamics response andntit khe
usage of each motor, but is prone to force fightimbich
occurrence causes one of the actuators to apphgistant

load that must hence be compensated by the otheés. T
phenomenon usually happens when the aerodynamit loa

acting on the system is almost null and it's duethe
inevitable deviation from the nominal value of soofehe
actuators characteristics, such as friction
backlashes, inertia and motor parameters. It mag l®

windings overheating and generally shortens theomot

operative life. Force fighting can be compensatganiotor
current equalization, as in the system under aisalgs by
monitoring the force exerted by each actuator ugpiruper
transducers and a dedicated controller workingeeitin the
position or on the speed loop (Wang, Maré, Fu, 2012

in position while

bemavio

the FMECA provided in (De Martin, Jacazio and
Vachtsevanos, 2016) and here reported in Tableelcam
rank the possible failure modes in occurrence FrQu
(F), effects Severity (S), feature Traceability (@nd
component Replaceability (R), with lower scoresradsing
the more critical conditions. The most critical seén the
three cases is the rod-end wear, which may causse db
positioning accuracy and dynamic stiffness, assediaith
increasing oscillations of the aerodynamic surface.

Table 1. FMECA results

SCORE

COMPONENT MAIN FAILURE MODES

—

EPU Base-drive open circuit
Turn-to-turn short
Magnets degradation

Scoring

Electric motor

Indentation
. Wear
Bearings -
Pitting
Electric erosion
Tracks crack
Crack
Gears Wear
Pitting
Scoring
Wear
Power screw :
Return channel deformation
Indentation
Wear

Rod-end Crack

P RPN R R W R, WIWRERr P NP D R RPINNDNOB

B AIN W BHINNNIN WW W™D WIW PR W
N N W W Wwiw w wiliw w w w wwwwlw >
e e i T T T [ e e e e e S S [ S N

0 0o 0 W IV N VW |V 0w 0 O

Rod deformation

5.1. System model

Lacking of an experimental set-up, we resorted tuigh-

fidelity model of the system, implemented in



EUROPEANCONFERENCE OF THEPROGNOSTICS ANDHEALTH MANAGEMENT SOCIETY 2018

Matlab/Simulink and interfaced with the PHM routind he uniform degradation of the magnetic properties loé t
EPU/brushless motor model have been modeled asa-th magnetic poles pairs, meaning that each pair peigadies
phase system with Field-Oriented-Control (FOC) adicm in the same way and with the same, or only slightly
to the approach proposed by (Mohan, 2003) anddifferent, evolution in time. This kind of degraitet does
(Hanselman, 2006), which neglects the MOSFET dynami not create any asymmetry in the motor currents, ey
in the EPU and concentrate the electrical dynarimicthe instead be caused by shorts in the motor windimgs (
motor windings. Martin, Jacazio and Vachtsevanos, 2016), non-umifor
vl ] [Re O O o Thea Lav Lac]fia degradation of the magnet or failures in the EPeI4¢a,
[vb]—a[lb] = [0 Ry 0|l +E<[La,, Lyp Lbc] H) (9) Saxena, Wysock|, Saha, Goebel, 2010). An exar_nptbenf
ve Ak 100 Rellic Lac Loc Lecllicl/ effect of this degradation on the motor currentslisence
Where the three phase voltages,. are function of the
MOSFET switch statg. R andL; are the electric resistance

of external load is reported in Fig. 5. The weartlie

] A e IE mechanical transmission evolves according to Artkar
and inductance for the i-th phase, whilg is the | aw (1953), which relates the wear ratio to theatiee
concatenated flux. Given the pair poles number, thespeed of the mating bodies and the contact foroth Bie
electromagnetic torque can be obtained, while timelwgs’  re|ative speed and the contact force are obtaimgmbsing
temperature is evaluated through the a simplifieah®s  (egjistic histories of loads and commands to theukited
dimensional heat exchange dynamic model. The méddan system. An example of the effect of the wear inseeaver
transmission has been modelled to include a n@atin  he EMAs behavior is shown in Fig. 6.
friction law and a customizable elasto-backlashofaing
the approach proposed by (Nordin, Gallic, Gutm&97). 04
Each mechanical element is described through it&umhjc
equilibrium equation, while torque disturbances die
imperfect gearing have been over imposed at thehimgs
frequency. The friction law has been approximatedugh
non-linear equations depending on temperature,dspad

ia

04

“*'lisl*mf”.n,.*- A

Phase currents |A|
o

applied load. The aerodynamic surface has beenlfraddes 0 002 09t oge o008 1 45 o092 oo 0o 098 1
a system of parallel springs and dampers, as shiown Time [s] Time [s]
Figure 4. The aerodynamic forde, is function of the

! oA Figure 5. Effect of uniform magnets degradatiorpbase
aircraft speed and of the tab positioning, pluaredom load currents: healthy (left) degraded (right)

which rare occurrence is used to simulate the effegusts.

T3 3
X2, %2 %2 E 2 2
o1 1
IBWW g 0
—{ ©. 1
FLIGHT Fa g 2 2
LOLILOIL - 2 05 1 15 2 2 05 1 15 2
BAAAS SURFACE Time [s] Time [s]
—{ Figure 6. Effect of uniform wear in the screw: hiegl(left)
— severe degradation (right)
X1, %1%,
7.3y 6. PHM FRAMEWORK

Figure 4. Control surface scheme
In the following paragraph we present the PHM freumuek

5.2. Degradations model implementation and the role of the Enhanced Partiter.
The degradations have been implemented in the nesdel g1 pHm strategy

* a progressive decrease of the magnetic flux (magnejn absence of reliable information on the aerodyicdoad,
degradation) the proposed feature for the uniform degradationthef
» progressive increase of the size of the elastothslck permanent magnets has been defined as,
within the screw and the nut, as well as in theend

The magnets degradation follows the evolution deedrin foup = ————= (10)
(Ruoho, Dlala & Arkkio, 2007), which links the . " h""m| " N
progressive loss of residual magnetization with rtotor ereVop are the phase voltage ahdy,|# 0 is the

: . absolute value of the rotational speed of the bessh
temperature and the load cycle. We address inpper a motor. The feature has been chosen from a sharifis
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candidates according to correlation and accuracgsome andp,, the screw's step. It must be stressed that the mos
criteria. This feature has the benefit of beingatigely  significant contribute to the value bfcomes from the latter
inexpensive to compute and only reliant on the laipld  stages of the gearbox and the screw. As such, aihgan
sensors, being hence suitable for on-line operaliomvever  wear in the first stage of the gearing might berlmaked.

it can become quite noisy, since it intrinsicallgpgnds on  Another possibility is represented by the studyhef motors
the mechanical efficiency of the transmission, fiowcof  currents behavior in the transients, which havedthenside
the temperature, humidity and wear conditions. dchswe  of being possibly affected by a high number of ieal
propose its use in combination with the following{ilight  faults. In this case we hence propose to combire th
check, measures obtained from Eq. (11) with the followimg-

. . ... _flight check procedure,
e Actuator 1 is active and commanded along a position g P

ramp corresponding to at least 5 electric periddbh@® +  Actuator 1 is active and commanded along a 2Hz
motor. sinusoid of position.

e Actuator 2 is not supplied and is hence moved by Actuator 2 is not supplied and is hence moved by
actuator 1. The measured phase voltages are then actuator 1.

directly associated with the back-electromotivercéo \ye hence estimate the backlastgsand b, in the two

and hence with the magnets behavior actuators as the average of the four peaks obtaiyed
The procedure is repeated switching the roles efttto  applying Eg. 11. Moreover, we can also estimateotrezall
actuators. The observation of the effect of weartie  backlash on the spherical joints as the averagienfour
mechanical components during flight is made diffidty  peaks of
the significant uncertainty associated with the borad

effect of commands and loads direction. The quatitia bre =_|19m'1 - 19m'2| = |by + by _(_12)
error and the resolution of the digital acquisiteystem for ~1he two pre-flight tests here presented can beedriit one
the position signals has to be considered as wall. CcOmprehensive command sequence, composed of the

principle, we can think to observe the increasiagktash in ~ Sinusoid and the ramp. Each of the presented festuave
the mechanical transmission as been chosen based on correlation and accuracyi@riat

of a pool of other candidates.

(1D

2n
b= fon = ()

s

6.2. Fault diagnosis

whered,,, andx; are the position signals coming from the The first step of the PHM framework is to perfothe
resolver mounted on the motor axis and from the T¥D fault detection and hence its isolation/identificat to
integral with the screw,is the gearbox transmission ratio complete the diagnosis. The anomaly detectionifopaed

EM-TTS EM - DMD EPU - MBDO MT - WEAR RE-WEAR
0.15 0.15 0.15 0.2 0.2
Time @ detection:
= 190 h 0.15 0.15
2 0.1 0.1 0.1
§ 0.1 0.1
o 0.05 0.05 0.05
a 0.05 0.05 ﬂd
0 0 0 0 - - o 0 -
0.05 0.1 015 40 50 60 2.06875 2.0688 2.06885 -0.05 0 0.05 -5 0 5
Feature values Feature values Feature values Feature values Feature valyeg)
[A/V] [Vs/rad] [A] [rad] [rad]
1 T TT T T T T T ——EM - TTS: Confidence
! ====EM - TTS: Detection Flag
; EM - DMD: Confidence
H ====EM - DMD: Detection Flag
—_ i — EPU - MBDO: Confidence
=05 i ===+ EPU - MBDO: Detection Flag
i MT - WEAR: Confidence
i MT - WEAR: Detection Flag
1 RE-WEAR: Confidence
0 o n.aat Tt a0 e i e et [ ot e a2 i 50,5048+~ RE-WEAR: Detection Flag
100 200 300 400 500 600 700 800 900 1000
time [h]

Figure 7. Fault detection output for degradatiothef motor magnets
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Figure 8. Prognosis for magnets degradation

through a simple data-driven method, which compé#nes
moving distribution of probability of each featuséth their
baseline distributions obtained for healthy cowdis. The
condition for the fault declaration is that at ie85% of the
moving distribution overcomes the ®%ercentile of the
related baseline. In this way, we can define arptie type-
I and type-Il errors (Vachtsevanos et al., 2006)}ig.7 it is
reported an example of the results of the anometgation
routine; for each actuator we observe the behaviathe
features associated with the turn-to-turn shorthien motor

temperature conditions. The thresholds for eactufesare
defined as the 3D percentile of their distribution in
correspondence of the final failure conditions. ésample
of the prognostics framework output for the
demagnetization fault mode is reported in Fig. Beke we
can observe the probability distributions assodiatéh the
feature values and the estimated fault size (hiddate) in
correspondence of the fault detection and of thealiption
instants. For each prediction, three values of Rt
estimated, each associated with a different contiddevels

(code: EM-TTS) (De Martin, Jacazio and Vachtsevanos(traditionally 5%, 50% and 95%). We address eacthese

2017), the magnets degradation (code:
MOSFET base-drive open circuit issues in the EPBUE

EM-DMD),RUL

estimates as “early maintenance”, “advised
maintenance” and “late maintenance”. These thrdeesa

MBDO), wear inside the mechanical transmission écodtends naturally to convergence toward the latemjest of
MT-WEAR) and in the rod-end (RE-WEAR). When the the fault evolution. Traditionally, the referenc&JRis the

onset of a fault progression is detected, the featualues,
normalized between 0 and 1, are sent to an Adifideural
Network which performs the classification. The stdd
features are characterized by low values of cdioglavith
other classes, meaning that their behavior is fagmitly
affected only by one of the selected fault procésssuch,
fault  classification is straight-forward and

misclassifications have been recorded. The syseable to
recognize the occurrence of magnets degradatidrinnihe
12.3% of its growth, while the fault percentagaletection

no

one associated with the 50% confidence. To eachmalous
condition corresponds a different Particle Filtedl cand
hence a different RUL estimate.

6.4. Perfor mance assessment and discussion

Prognosis performance has been analyzed througtate
of-the-art metrics proposed by Saxena, Celaya, Bala
Goebel, Sasha and Schwabacher (2008), namelyrtie
analysis, the Relative Accuracy (RA) and the Cuninga

for the wear progression is 8.5% in average for thételative Accuracy (CRA).

mechanical transmission and 8.5% for the rod-end.

6.3. Failure prognosis

The failure prognosis is performed applying the sended
Particle Filter presented in section 4. Data fds thtage

The a-A analysis, hereby reported in non-dimensional form,
is used to graphically describe the convergencheRUL
estimate to the ground truth RUL. On the absciss® is
reported as\ in non-dimensional form with respect to the
component End Of Life (EOL), while on ordinate & i

have been obtained by applying the models preseinted reported the ratio between the RUL and the real RUL

section 5.2 under realistic profiles of commandide and

(RUL,) at fault detection. Tolerance bands, usually
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correspondent t&-20%, are depicted as well. Through the the fault progression which, according to van desdghe

a-A it is possible to identify the Prognostic Horiz@H) of
the system for the investigated fault mode, thahes first
real RUL value for which the prognosis falls withihe
afore-mentioned tolerance bands. The Relative Aamurs
defined as in Eq. (13), where its mean value isduse
assess the average accuracy of the prediction warke

|RUL, — RUL|
RUL,

The Cumulative Relative Accuracy is instead usedsess
the behavior of the prognostic framework giving Heg
importance to the predictions performed when neathe

RA=1 (13)

(2009), can be extremely lengthy (up td 1i@ht hours).

To assess the merits of the proposed approach rowedp
the results of a comparison of the performanceb®PHM
system making full use of the Enhanced Particléeftiig
strategy detailed in section 4, with respect to téesults
obtainable through the framework presented by astio
(De Martin, Jacazio, & Vachtsevanos, 2016), whiih rebt
include the noise compensation for long-term pitézticnor
the periodical check through on-ground measureméiuts
this example, we focus on the magnets degradatidnita
noisy feature. In Fig. 12, we compare thied analysis of
the Enhanced Particle Filter with that of the mivaelitional

EOL. This is achieved by a weighted sum of the RAgne Due to the noisiness of the feature and ttie ¢4 the

computed at several prediction instants, wherewbights
are often the values af

integration of the more precise information comiirggm on-
ground tests, the old system converge to the radl R

1 extremely late in the fault development, providirg
CRA =Z—/12 A; RA; (14)  prognostic horizon of 24 hours, an average RA aB%6

P and a CRA of 34.76%.

The a-A analysis for the selected fault modes (magnets 12 10050900550

degradation, wear in the mechanical transmissiahvesar —Redla < CH S90ec0et

in the spherical joints of the actuator rod-endd seported 1 D ey maonance || = 50 o

in Figs. 9, 10 and 11. The Prognostic Horizon foe t ¢ aoviced maintenance &

magnets degradation is up to more than 240 hourshéo o . % 05 ]

case under examination; the average RA, computed 2§ 08§ WA\ 100

equally spaced predictions, is 87.85% and the CRA i = § \ = oono°°°°°°°°°°oo

90.18%. For the wear in the mechanical transmisdios 30‘6; \ \‘ = sl°

Prognostic Horizon for the magnets degradation gsta § | \\ ! 5

more than 760 hours for the case under examinatiom; l ANNW 0

average RA, computed over 20 predictions, is 90.@5fkb o4 NN\ 00 0° !

the CRA is 81.02%. Finally, for the wear in the sptal N e

joints of the actuators rod-ends, the Prognosticizéa is 02 N %102

680 hours circa; while the average RA, is 72.47% tre SN 8

CRA is 82.03%. Please notice that, while the averdé 0 SNE

value is low if computed over the whole range oémgpion 0 ;’[5] ! 0 itei‘g’n# 10000

of the prognostic framework, the achieved progmosti

horizon is still high. The low value of the mean Rfhence
due to the system lack of accuracy during the $itatjes of

050%T

1.2 — 100

TG0
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7. CONCLUSIONS

The paper at first presented the major issues tdabed
while designing a PHM system for flight control aators,
highlighting the possible effects of the highly-yiag
operative conditions and the lack of dedicated @mnsn
prognostic applications. To address these issues,
proposed the combined use of data obtained dufigigt f
and during dedicated pre-flight checks,
highlight the effects of the degradation. An entehc
version of particle filtering framework for prognssble to
exploit this scheme has been introduced, discussed
hence applied to EMAs for flight control. The rowgs for
fault detection and failure prognosis have beercrieed,
while their performances discussed through statdhefart
metrics. Finally, the benefits of the novel progimscheme
have been highlighted through comparison with tssul
obtainable through previously published methods.e Th
presented approach lacks of any experimental aoafion,
that will represent the most significant effortdantinuing
the research program. Activities in this subje@ already
planned and a dedicated high-performance test bbash
been prepared. Moreover, the performances of tbsepted
algorithm depends on the availability and frequeatyhe
pre/post flight data and might by less suitableléoig-range
applications.  Although defined for flight control
applications, the approach of combining featuretwinbd
during normal operation with other measured in semi
controlled condition is easily extendable to otegstems or
application fields.
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