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ABSTRACT 

Flight Control Systems (FCSs) are one of the most 
interesting field of research and application for Electro 
Mechanical Actuators (EMAs), which are theoretically able 
to provide several advantages over the traditional 
hydraulic/mechanical solution for both primary and 
secondary flight control surfaces. However, in particular 
when compared to hydraulic actuators, technological 
barriers for a wide adoption of EMAs still persist, especially 
when considering their sensitivity to certain single point of 
failures that can lead to mechanical jams. As such, EMAs 
are so far not employed for flight safety critical applications 
as solutions are heavy and costly (redundancy, fail safe 
behavior, etc.), while their certification is made more 
difficult due to the additional design complexity. The 
development of an effective and reliable PHM system for 
EMAs could help in mitigating the risk of a sudden critical 
failure by properly recognizing and tracking the on-going 
fault and anticipating its evolution, thus offering a possible 
boost to the acceptance of EMAs as primary flight control 
actuators in commercial aircraft. The paper firstly presents 
an enhanced Particle Filter framework for improved 
prognosis, discussing its benefits and its implementation 
inside a general PHM framework developed for EMAs. 
Further developing on previously published works, three 
degradation modes are hence identified as significant and 
used as case study. The first one is the degradation of the 
magnets of the electric motor, associated with dynamic 
performance losses and decrease of the stall load. The other 
two are the increase of the backlash in the mechanical 
transmission due to the growing wear of its components, as 
well the wear of the spherical joints connecting the actuator 
to the surface (rod-end). The positive results obtained from 
the application of the enhanced Particle Filtering framework 
to these faults provide good confidence on the possibility of 

extending it to other EMAs faults and to successfully 
implement this technique to EMAs for flight control 
actuators. 

1. INTRODUCTION 

The Electro-Mechanical Actuators (EMAs) technology has 
been object of several research programmes for FCS in the 
recent years; EMAs are in fact able to provide several 
advantages over the traditional Electro-Hydraulic and even 
the novel Electro-Hydrostatic Actuators by eliminating 
leakage problems, simplifying the installation and the 
maintenance operations while keeping the overall weight 
competitive (Pratt, 2000). Their application on civil aircrafts 
is however severely limited by safety issues associated with 
single point failures, making them far more suitable for 
experimental vehicles and UAVs (Jensen, Jenney & 
Dawson, 2000), (Derrien, Tieys, Senegas & Todeschi, 
2011), (Roemer & Tang, 2015). EMAs have found some 
applications on non-safe critical control surfaces such as 
flap/slats control (Christmann, Seemann & Janker, 2010),  
(Recksieck, 2012). A possible solution to these safety issue 
is to study and apply a robust PHM system able to rapidly 
detect the insurgence of dangerous fault conditions and to 
anticipate their evolution into full-blown failures. Several 
research efforts can be found in specialized literature, 
addressing the electric motor (Nandi, Toliyat & Li, 2005), 
(Brown and others, 2009), (Belmonte, Dalla Vedova & 
Maggiore, 2015), and (De Martin, Jacazio & Vachtsevanos 
2017), mechanical components (Balaban, Saxena, Goebel, 
Byington, Watson and others, 2009), (Balaban, Saxena, 
Narasimhan, Roychoudhury & Gobel, 2010) and 
(Lessmeier, Enge-Rosenblatt, Bayer & Zimmes, 2014) and 
electronic power unit (EPU) (Brown, Abbas, Ginart, Ali, 
Kalgren, Vachtsevanos, 2010), (Li, Ye, Chen, 
Vachtsevanos, 2014). Many of the presented studies make 
use of Particle Filtering frameworks to perform the failure 
prediction and Remaining Useful Life (RUL) estimate. The 
research presented in this work introduces a novel 
declination of this technique specifically studied for FCS 
applications to tackle the most prominent issues associated 
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with the Health Monitoring of these devices.  After a brief 
introduction on such practical issues, we present the 
framework and its expected benefits; hence we present a 
case study based on a flight control surface moved by two 
EMAs in active-active configuration and compare the 
results with that obtainable though a traditional particle 
filter. 

2. PROMINENT ISSUES IN PHM FOR FLIGHT CONTROLS  

The field of Flight Control Systems (FCSs) is an extremely 
interesting application for PHM technologies, in particular 
that of primary flight control actuators; these devices 
provides a significant challenge for PHM techniques, since 
they are safety critical, behave following command patterns 
difficult to predict a-priori and their actuation time is limited 
through most of the mission. The development of robust 
PHM techniques would allow to mitigate the safety issues, 
enhancing the aircraft availability and eventually affecting 
the design of the actuators, enabling new technologies (such 
as the EMAs) or novel architectures. At the same time, FCS 
applications could be considered as a benchmark for PHM 
techniques due to a few intrinsic issues that hamper the 
feature selection and further complicate the design of a 
comprehensive Health Monitoring system.  The first and 
most prominent issue is the uncertainty associated with the 
features computed from signals coming from in-flight 
measures. The operational conditions can be widely varying, 
the aerodynamic load pattern is often unpredictable due to 
gusts and turbulence and so are the pilots commands, which 
are influenced by the pilot performances, contingent flight 
situation etc. The effects of this uncertainty are further 
expanded by other issues, such as the low number of signals 
available and the absence of direct measures of important 
quantities such as the aerodynamic load. Vibration measures 
are moreover made difficult by the short duration of each 
actuation and by the rarity of the occurrence of steady-state 
conditions. Finally, local measures that would be 
instrumental for PHM are often difficult to make, in 
particular for legacy equipment. To address these issues, 
Jacazio, Maggiore, Della Vedova, and Sorli (2010) 
proposed the use of dedicated pre or post flight checks 
based on short, repeatable sequences of commands studied 
to enhance the effects of a selected number of faults over the 
available signals. This approach has the significant 
advantage of extracting the features in a semi-controlled 
environment, (negligible external load, pre-defined 
commands) while allowing for sequences of movements that 
cannot be performed in flight; this becomes particularly 
interesting for flight control surfaces controlled by at least 
two actuators, since it would allow to use one of the 
actuators to impose a known load on the other, enhancing 
the effects of certain fault types (Mornacchi, Jacazio & 
Vachtsevanos, 2015), (De Martin, Jacazio & Vachtsevanos, 
2016). At the same time, a significant drawback is 
represented by the time scarcity of the obtainable data, since 

only one acquisition per mission is possible; this makes it 
difficult to perform an efficient failure prognosis and does 
not allow to address degradations which last less than the 
duration of a single mission. A possible solution to these 
issue could be the definition of a framework able to 
combine the noisy but frequently available information 
obtainable in-flight with the more accurate ones coming 
from dedicated pre-flight test. 

3. PARTICLE FILTER FOR FAILURE PROGNOSIS 

PHM frameworks are based on three consecutive steps, 
which are, 

• Signal conditioning and feature extraction 

• Fault diagnosis (detection/identification/isolation) 

• Failure prognosis 

Once an incipient failure or fault is detected through proper 
algorithm with a specified confidence, the prognostic 
algorithm is initiated to predict the fault’s time evolution. 
The fault state at detection acts as the initial condition for 
the prognosis, which framework is depicted in Fig. 1. The 
prognostic framework is based on a nonlinear degradation 
model and a Bayesian estimation method using particle 
filtering and real-time measurements (Vachtsevanos and 
others, 2006) to perform failure prognosis under general 
assumptions of non-Gaussian noise structures and 
nonlinearities in process dynamic models using a reduced 
particle population to represent the state probability density 
function (pdf). A complete overview of the Particle Filter 
theory can be found in (Orchard, 2007). The particle filter-
based module is built upon the nonlinear dynamic state 
model, 

����� � ��	�
���, ��� � 1�, �����
���� � ��	�
���, ����, �����	  �1� 

where ��and �� are non-linear mappings, xd is a collection of 
Boolean states associated with the presence of a particular 
operating condition in the system (normal operation, fault 
type #1, #2, etc.), � is a set of continuous-valued states that 
describe the evolution of the system given those operating 
conditions (i.e. fault size). We address with y the feature 
measurement, ω and ν are non-Gaussian distributions that 
characterize the process and feature noise signals, 
respectively.  

 
Figure 1. The Prognostic Framework 
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The function ht is a mapping between the feature value, ����, and the fault state ����. Prognosis is achieved through 
particle filter, which works by performing two sequential 
steps, prediction and filtering. Prediction uses both the 
knowledge of the previous state estimate ����	  and the 
process model ����  to generate the a priori state pdf 
estimate for the next time instant, 

����:�|��:���� � �����|���������:���|��:���� ���:��� �2� 
Unfortunately, this expression does not have an analytical 
solution in most cases. Sequential Monte Carlo (SMC) 
algorithms, or particle filters, are hence used to numerically 
solve this equation in real-time with efficient sampling 
strategies (Bishop, 2006). Particle filtering approximates the 
state pdf using samples or “particles” having associated 
discrete probability masses (“weights”)  ���, 

����|��:�� � ���	��:� �!	��:� � ��:� ����:��� �3� 
where xi

0:t is the state trajectory and y1:t are the 
measurements up to time t. The simplest implementation of 
this algorithm, the Sequential Importance Re-sampling 
(SIR) particle filter, updates the weights using the likelihood 
of yt as  

�� � ��������|��� �4� 
Long-term predictions are used to estimate the probability 
of failure in a system given a hazard zone that is defined via 
a probability density function with lower and upper bounds 
for the domain of the random variable, denoted as Hlb and 
Hup, respectively. The probability of failure at any future 
time instant is estimated by combining both the weights 
w(i)

t+k of predicted trajectories and specifications for the 
hazard zone through the application of the Law of Total 
Probabilities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The resulting RUL pdf, where tRUL refers to RUL, provides 
the basis for the generation of confidence intervals and 
expectations for prognosis, 

�̂�%&' � (�	Failure|0 � �1�%&'
� � , 234, 256�

7

 8�
 �5� 

4. ENHANCED PARTICLE FILTER FRAMEWORK 

The Enhanced Particle Filter Framework depicted in Fig. 2 
has been built to improve its prognostic performances by 

• Adapting the non-linear mappings through continuous 
stream of data 

• Reducing the effect of noise propagation for the long-
term prediction stage 

• Using the more accurate data obtainable during pre-
flight tests to periodically check and correct the state 
estimates performed through in-flight data 

The first objective is realized by auto-tuning the non-linear 
mappings (1) through Recursive Least Square algorithm, 
which has the benefit of being computationally inexpensive 
and hence well-suitable for on-line applications. Another 
possible solution, implemented in the code but not shown in 
this paper, has been recently proposed by Echauz, Gardner, 
Curtin, Vasiloglou and Vachtsevanos (2017), that is based 
on the use of parallel pools of Particle Filters to pursue a 
more robust statistical characterization of the non-linear 
models at the expense of computational efficiency.  
To reduce the effect of noise propagation we resort to an 
approach derived from Orchard (2007), where the noise � 
applied to each iteration of the degradation model is 
modified through the coefficient �1 : ;<�, obtained as the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. The Enhanced Particle Filter Framework 
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time integral of the difference between the noise behaviour 
of the estimated states and of the projected states computed 
as, 

;< � ;= � >?@A���BCD� � ?@A��1�BCD�E� �� �6� 
where ?@A��1�BCD� is the variance of the projected particles �1 obtained projecting the states estimate x at time t for a 
number of iterations corresponding to a time step equal to ΔH, while ?@A���BCD� is the variance of the states’ estimate 
at time � : ΔH. The introduction of the on-ground measures 
is finally performed by adding to the non-linear mappings of 
Eq. (1) the non-linear model linking the on-ground 
observations z with the states x 

I��� � J�	����, K����	 �7� 
where K is non-Gaussian noise. The model is hence used 
along the on-ground observations (when available) to update 
the weights of the Particle Filter as, 

�� � ��������|�����I�|��� �8� 
5. CASE STUDY 

We focus on the most general scheme for primary flight 
control surfaces moved by two EMAs represented in Fig. 3. 
Each of the two EMAs is made of one brushless electric 
motor (EM) supplied through its own Electronic Power Unit 
and a mechanical transmission made of a satellite gearbox 
(GB) and a roller screw. The position control of each 
actuator is performed through three nested loops, which 
modulate the electric motor currents, the driving shaft speed 
and the linear position of the screw. Feedback signals are 
generated by current sensors, a resolver positioned on the 
motor shaft and LVDTs, connected to the translating 
element of the power screw. The position command is 
provided by two inter-communicating Flight Control 
Computers (FCCs) which generate the control signal 
following the active/active strategy, which means that both 
devices are contemporary actuated in position while 
receiving the same command input. This control strategy 
allows to obtain better dynamics response and to limit the 
usage of each motor, but is prone to force fighting, which 
occurrence causes one of the actuators to apply a resistant 
load that must hence be compensated by the other. This 
phenomenon usually happens when the aerodynamic load 
acting on the system is almost null and it’s due to the 
inevitable deviation from the nominal value of some of the 
actuators characteristics, such as friction behavior, 
backlashes, inertia and motor parameters. It may lead to 
windings overheating and generally shortens the motor 
operative life. Force fighting can be compensated by motor 
current equalization, as in the system under analysis, or by 
monitoring the force exerted by each actuator using proper 
transducers and a dedicated controller working either on the 
position or on the speed loop (Wang, Maré, Fu, 2012). 

 

Figure 3. EMA configuration 

For this architecture, authors already discussed both on-
ground and in-flight implementation of PHM techniques for 
windings faults in (De Martin, Jacazio and Vachtsevanos, 
2016) and (De Martin, Jacazio and Vachtsevanos, 2017). 
The presented paper is instead focused on two other 
common fault processes of EMAs for FCS applications, 
such as the permanent magnets degradation in the electric 
motor and the backlash increase due to wear progression in 
the mechanical transmission and in the rod-end. By updating 
the FMECA provided in (De Martin, Jacazio and 
Vachtsevanos, 2016) and here reported in Table 1, we can 
rank the possible failure modes in occurrence Frequency 
(F), effects Severity (S), feature Traceability (T) and 
component Replaceability (R), with lower scores addressing 
the more critical conditions. The most critical between the 
three cases is the rod-end wear, which may cause loss of 
positioning accuracy and dynamic stiffness, associated with 
increasing oscillations of the aerodynamic surface. 

Table 1. FMECA results 

COMPONENT MAIN FAILURE MODES 
SCORE 

F S T R TOT 

EPU Base-drive open circuit 3 2 4 1 10 

Electric motor 
Turn-to-turn short 1 2 4 1 8 

Magnets degradation 3 2 3 1 9 

Bearings 

Scoring 3 1 3 1 8 

Indentation 4 1 3 1 9 

Wear 4 4 3 1 12 

Pitting 4 4 3 1 12 

Electric erosion 3 2 3 1 9 

Tracks crack 3 1 3 1 8 

Gears 

Crack 3 1 3 1 8 

Wear 2 3 3 1 9 

Pitting 2 3 3 1 9 

Power screw 

Scoring 2 1 3 1 7 

Wear 2 3 3 1 9 

Return channel deformation 4 1 3 1 9 

Indentation 3 1 3 1 8 

Rod-end 

Wear 2 2 3 1 8 

Crack 4 1 2 1 8 

Rod deformation 4 1 2 1 8 

5.1. System model 

Lacking of an experimental set-up, we resorted to a high-
fidelity model of the system, implemented in 
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Matlab/Simulink and interfaced with the PHM routines. The 
EPU/brushless motor model have been modeled as a three-
phase system with Field-Oriented-Control (FOC) according 
to the approach proposed by (Mohan, 2003) and 
(Hanselman, 2006), which neglects the MOSFET dynamics 
in the EPU and concentrate the electrical dynamics in the 
motor windings. 

N?O?4?P
Q � ��� NROR4RP

Q � NSO 0 00 S4 00 0 SP
Q NUOU4UPQ : ��� VNWOO WO4 WOPWO4 W44 W4PWOP W4P WPP

Q NUOU4UP QX �9� 
Where the three phase voltages va,b,c are function of the 
MOSFET switch state q. Ri and Li are the electric resistance 
and inductance for the i-th phase, while λi is the 
concatenated flux. Given the pair poles number, the 
electromagnetic torque can be obtained, while the windings’ 
temperature is evaluated through the a simplified mono-
dimensional heat exchange dynamic model. The mechanical 
transmission has been modelled to include a non-linear 
friction law and a customizable elasto-backlash following 
the approach proposed by (Nordin, Gallic, Gutman, 1997). 
Each mechanical element is described through its dynamic 
equilibrium equation, while torque disturbances due to 
imperfect gearing have been over imposed at the meshing 
frequency. The friction law has been approximated through 
non-linear equations depending on temperature, speed and 
applied load. The aerodynamic surface has been modelled as 
a system of parallel springs and dampers, as shown in 
Figure 4. The aerodynamic force FA is function of the 
aircraft speed and of the tab positioning, plus a random load 
which rare occurrence is used to simulate the effect of gusts. 

 
Figure 4. Control surface scheme 

5.2. Degradations model 

The degradations have been implemented in the model as  

• a progressive decrease of the magnetic flux (magnets 
degradation) 

• progressive increase of the size of the elasto-backlash 
within the screw and the nut, as well as in the rod-end 

The magnets degradation follows the evolution described in 
(Ruoho, Dlala & Arkkio, 2007), which links the 
progressive loss of residual magnetization with the rotor 
temperature and the load cycle. We address in this paper a 

uniform degradation of the magnetic properties of the 
magnetic poles pairs, meaning that each pair pole degrades 
in the same way and with the same, or only slightly 
different, evolution in time. This kind of degradation does 
not create any asymmetry in the motor currents, that may 
instead be caused by shorts in the motor windings (De 
Martin, Jacazio and Vachtsevanos, 2016), non-uniform 
degradation of the magnet or failures in the EPU (Celaya, 
Saxena, Wysocki, Saha, Goebel, 2010). An example of the 
effect of this degradation on the motor currents in absence 
of external load is reported in Fig. 5. The wear in the 
mechanical transmission evolves according to Archard’s 
Law (1953), which relates the wear ratio to the relative 
speed of the mating bodies and the contact force. Both the 
relative speed and the contact force are obtained imposing 
realistic histories of loads and commands to the simulated 
system. An example of the effect of the wear increase over 
the EMAs behavior is shown in  Fig. 6. 

 
Figure 5. Effect of uniform magnets degradation on phase 

currents: healthy (left) degraded (right) 

 
Figure 6. Effect of uniform wear in the screw: healthy (left) 

severe degradation (right) 

6. PHM FRAMEWORK 

In the following paragraph we present the PHM framework 
implementation and the role of the Enhanced Particle Filter. 

6.1. PHM strategy 

In absence of reliable information on the aerodynamic load, 
the proposed feature for the uniform degradation of the 
permanent magnets has been defined as, 

�Z[Z � S\]	?O,4,P�|�^|  �10� 
Where _O,4,P  are the phase voltage and |�^| ` 0  is the 
absolute value of the rotational speed of the brushless 
motor. The feature has been chosen from a short list of 

FLIGHT 

CONTROL 

SURFACE 
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candidates according to correlation and accuracy measure 
criteria. This feature has the benefit of being relatively 
inexpensive to compute and only reliant on the available 
sensors, being hence suitable for on-line operation. However 
it can become quite noisy, since it intrinsically depends on 
the mechanical efficiency of the transmission, function of 
the temperature, humidity and wear conditions. As such, we 
propose its use in combination with the following pre-flight 
check, 

• Actuator 1 is active and commanded along a position 
ramp corresponding to at least 5 electric periods of the 
motor. 

• Actuator 2 is not supplied and is hence moved by 
actuator 1. The measured phase voltages are then 
directly associated with the back-electromotive  force 
and hence with the magnets behavior 

The procedure is repeated switching the roles of the two 
actuators. The observation of the effect of wear in the 
mechanical components during flight is made difficult by 
the significant uncertainty associated with the combined 
effect of commands and loads direction. The quantization 
error and the resolution of the digital acquisition system for 
the position signals has to be considered as well. In 
principle, we can think to observe the increasing backlash in 
the mechanical transmission as, 

a � bc^ � def4 2g�hij �ib	 �11� 
where c^ and �i  are the position signals coming from the 
resolver mounted on the motor axis and from the LVDTs 
integral with the screw; ef4is the gearbox transmission ratio 

and �hi the screw’s step. It must be stressed that the most 
significant contribute to the value of b comes from the latter 
stages of the gearbox and the screw. As such, advancing 
wear in the first stage of the gearing might be overlooked. 
Another possibility is represented by the study of the motors 
currents behavior in the transients, which have the downside 
of being possibly affected by a high number of electrical 
faults. In this case we hence propose to combine the 
measures obtained from Eq. (11) with the following pre-
flight check procedure,  

•  Actuator 1 is active and commanded along a 2Hz 
sinusoid of position. 

• Actuator 2 is not supplied and is hence moved by 
actuator 1.  

We hence estimate the backlashes b1 and b2 in the two 
actuators as the average of the four peaks obtained by 
applying Eq. 11. Moreover, we can also estimate the overall 
backlash on the spherical joints as the average of the four 
peaks of  

ahk � lc^,� � c^,ml � |a� : am| �12� 
The two pre-flight tests here presented can be united in one 
comprehensive command sequence, composed of the 
sinusoid and the ramp. Each of the presented features have 
been chosen based on correlation and accuracy criteria out 
of a pool of other candidates. 

6.2. Fault diagnosis 

  The first step of the PHM framework is to perform the 
fault detection and hence its isolation/identification to 
complete the diagnosis. The anomaly detection is performed 

Figure 7. Fault detection output for degradation of the motor magnets 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

7 

through a simple data-driven method, which compares the 
moving distribution of probability of each feature with their 
baseline distributions obtained for healthy conditions. The 
condition for the fault declaration is that at least 95% of the 
moving distribution overcomes the 95th percentile of the 
related baseline. In this way, we can define a-priori the type-
I and type-II errors (Vachtsevanos et al., 2006). In Fig.7 it is 
reported an example of the results of the anomaly detection 
routine; for each actuator we observe the behavior of the 
features associated with the turn-to-turn short in the motor 
(code: EM-TTS) (De Martin, Jacazio and Vachtsevanos, 
2017), the magnets degradation (code: EM-DMD), 
MOSFET base-drive open circuit issues in the EPU (EPU-
MBDO), wear inside the mechanical transmission (code 
MT-WEAR) and in the rod-end (RE-WEAR). When the 
onset of a fault progression is detected, the features values, 
normalized between 0 and 1, are sent to an Artificial Neural 
Network which performs the classification. The selected 
features are characterized by low values of correlation with 
other classes, meaning that their behavior is significantly 
affected only by one of the selected fault process. As such, 
fault classification is straight-forward and no 
misclassifications have been recorded. The system is able to 
recognize the occurrence of magnets degradation within the 
12.3% of its growth, while the fault percentage at detection 
for the wear progression is 8.5% in average for the 
mechanical transmission and 8.5% for the rod-end. 

6.3. Failure prognosis 

The failure prognosis is performed applying the enhanced 
Particle Filter presented in section 4. Data for this stage 
have been obtained by applying the models presented in 
section 5.2 under realistic profiles of command, loads and 

temperature conditions. The thresholds for each feature are 
defined as the 50th percentile of their distribution in 
correspondence of the final failure conditions. An example 
of the prognostics framework output for the 
demagnetization fault mode is reported in Fig. 8, where we 
can observe the probability distributions associated with the 
feature values and the estimated fault size (hidden state) in 
correspondence of the fault detection and of the prediction 
instants. For each prediction, three values of RUL are 
estimated, each associated with a different confidence levels 
(traditionally 5%, 50% and 95%). We address each of these 
RUL estimates as “early maintenance”, “advised 
maintenance” and “late maintenance”. These three values 
tends naturally to convergence toward the latest stages of 
the fault evolution. Traditionally, the reference RUL is the 
one associated with the 50% confidence. To each anomalous 
condition corresponds a different Particle Filter call and 
hence a different RUL estimate.  

6.4. Performance assessment and discussion 

Prognosis performance has been analyzed through the state-
of-the-art metrics proposed by Saxena, Celaya, Balaban, 
Goebel, Sasha and Schwabacher (2008), namely the α−λ 
analysis, the Relative Accuracy (RA) and the Cumulative 
Relative Accuracy (CRA).  

The α−λ analysis, hereby reported in non-dimensional form, 
is used to graphically describe the convergence of the RUL 
estimate to the ground truth RUL. On the abscissa, time is 
reported as λ in non-dimensional form with respect to the 
component End Of Life (EOL), while on ordinate it is 
reported the ratio between the RUL and the real RUL 
(RULr) at fault detection. Tolerance bands, usually 

Figure 8. Prognosis for magnets degradation 
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correspondent to n20%, are depicted as well. Through the 
α−λ it is possible to identify the Prognostic Horizon (PH) of 
the system for the investigated fault mode, that is the first 
real RUL value for which the prognosis falls within the 
afore-mentioned tolerance bands. The Relative Accuracy is 
defined as in Eq. (13), where its mean value is used to 
assess the average accuracy of the prediction framework: 

RA � 1 � |RULt � RUL|	RULt  (13) 

The Cumulative Relative Accuracy is instead used to assess 
the behavior of the prognostic framework giving higher 
importance to the predictions performed when near to the 
EOL. This is achieved by a weighted sum of the RA 
computed at several prediction instants, where the weights 
are often the values of λ: 

CRA � 1∑ R  (R 
 

RA  (14) 

The α−λ analysis for the selected fault modes (magnets 
degradation, wear in the mechanical transmission and wear 
in the spherical joints of the actuator rod-end) are reported 
in Figs. 9, 10 and 11. The Prognostic Horizon for the 
magnets degradation is up to more than 240 hours for the 
case under examination; the average RA, computed over 20 
equally spaced predictions, is 87.85% and the CRA is 
90.18%. For the wear in the mechanical transmission, the 
Prognostic Horizon for the magnets degradation is up to 
more than 760 hours for the case under examination; the 
average RA, computed over 20 predictions, is 90.05% and 
the CRA is 81.02%. Finally, for the wear in the spherical 
joints of the actuators rod-ends, the Prognostic Horizon is 
680 hours circa; while the average RA, is 72.47% and the 
CRA is 82.03%. Please notice that, while the average RA 
value is low if computed over the whole range of operation 
of the prognostic framework, the achieved prognostic 
horizon is still high. The low value of the mean RA is hence 
due to the system lack of accuracy during the first stages of  

 
Figure 9. Prognostic performances for magnets degradation 

 

the fault progression which, according to van den Bossche 
(2009), can be extremely lengthy (up to 104 flight hours). 

To assess the merits of the proposed approach, we provide 
the results of a comparison of the performances of the PHM 
system making full use of the Enhanced Particle Filtering 
strategy detailed in section 4, with respect to the results 
obtainable through the framework presented by authors in 
(De Martin, Jacazio, & Vachtsevanos, 2016), which did not 
include the noise compensation for long-term prediction nor 
the periodical check through on-ground measurements. For 
this example, we focus on the magnets degradation and its 
noisy feature. In Fig. 12, we compare the α−λ analysis of 
the Enhanced Particle Filter with that of the more traditional 
one. Due to the noisiness of the feature and the lack of the 
integration of the more precise information coming from on-
ground tests, the old system converge to the real RUL 
extremely late in the fault development, providing a 
prognostic horizon of 24 hours, an average RA of 26.3% 
and a CRA of 34.76%. 

 
Figure 10. Prognostic performance for wear in the 

mechanical transmission 

 
Figure 11. Prognostic performance for wear in the rod-end 
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Figure 12. α−λ analysis for different PF frameworks 

7. CONCLUSIONS 

The paper at first presented the major issues to be faced 
while designing a PHM system for flight control actuators, 
highlighting the possible effects of the highly-varying 
operative conditions and the lack of dedicated sensors on 
prognostic applications. To address these issues, we 
proposed the combined use of data obtained during flight 
and during dedicated pre-flight checks, designed to 
highlight the effects of the degradation. An enhanced 
version of particle filtering framework for prognosis able to 
exploit this scheme has been introduced, discussed and 
hence applied to EMAs for flight control. The routines for 
fault detection and failure prognosis have been described, 
while their performances discussed through state of the art 
metrics. Finally, the benefits of the novel prognostic scheme 
have been highlighted through comparison with results 
obtainable through previously published methods. The 
presented approach lacks of any experimental confirmation, 
that will represent the most significant effort in continuing 
the research program. Activities in this subject are already 
planned and a dedicated high-performance test bench has 
been prepared. Moreover, the performances of the presented 
algorithm depends on the availability and frequency of the 
pre/post flight data and might by less suitable for long-range 
applications. Although defined for flight control 
applications, the approach of combining features obtained 
during normal operation with other measured in semi-
controlled condition is easily extendable to other systems or 
application fields.  
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