
 1 

Simulation of wind turbine faulty production profiles and 

performance assessment of fault monitoring methods  

Usama Aziz 1, 2, Sylvie Charbonnier1, Christophe Bérenguer1, Alexis Lebranchu2, Frederic Prevost2 

1Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, F-38000 Grenoble, France  

 sylvie.charbonnier@gipsa-lab.grenoble-inp.fr  

christophe.berenguer@gipsa-lab.grenoble-inp.fr 

2 Valemo S.A.S, F-33323, Bègles, France   

usama.aziz, alexis.lebranchu, frederic.prevost @valemo.fr 

 
ABSTRACT 

Wind turbines being one of the fastest growing sources of 

renewable energy have garnered significant scientific interest 

for the monitoring and fault analysis using SCADA 

(supervisory control and data acquisition) data. Various 

monitoring approaches using power curves, i.e. industry wide 

characteristic curves expressing produced power as a 

function of wind speed, have been proposed in the literature. 

However, an objective comparison of the performance of 

these methods is difficult. The difficulty comes from (i) the 

variability in operational and environmental conditions taken 

into account; (ii) the nature, size and type of data-sets used 

and (iii) the type and signatures of faults considered for 

validation.  To solve this problem, an approach with a 

twofold contribution is proposed in this work: 1) an original 

procedure to generate realistic and controlled simulations of 

10 minutes SCADA data, simulating situations when the 

wind turbine is operating in normal or faulty conditions, is 

presented; 2) a framework for objective performance 

assessment of the fault detection methods, based on the 

proposed controlled and standardized simulation scheme is 

presented. Objective performance evaluation metrics, such as 

detection probability and false alarm rates are computed and 

represented as characteristic receiver operating curves 

(ROC). The proposed simulation approach is shown to 

provide a useful global framework for objective performance 

analysis. A number of realistically simulated and controlled 

data streams are used to compare and discuss the 

performances of two fault detection methods referenced in 

the literature. 

 

1. INTRODUCTION 

The global installed capacity of wind power production has 

seen significant increase in recent years, from around 432 

GW reported at the end of 2015 to 539 GW at the end of 2017 

(Global Wind Energy Council, 2017). This growth also 

reported by Beiter & Tian, 2016 is a result of increased global 

efforts for environmental protection, to combat greenhouse 

effects and to address climate change.  

With an increasing number of wind turbines installations, 

wind turbine operations and maintenance teams need reliable 

health indicators and monitoring tools for condition 

monitoring and predictive maintenance. At the same time, 

increasingly competitive market has driven renewable energy 

producers to become more efficient and cost effective in 

terms of operational maintenance.  

The typical cost of operation and maintenance (O&M) as a 

percentage of the total asset cost can be 12% for onshore wind 

turbines and can go as high as 18% - 23% for offshore 

installations (Tavner, 2012). The O&M cost for European 

offshore installations can be as high as 45 Euros/MWh 

(Röckmann, Lagerveld, & Stavenuiter, 2017). 

These costs have encouraged both manufacturers and 

operators to be more intelligent with the monitoring of wind 

turbine (WT) state of health, generally referred to as 

condition monitoring (CM). A number of ‘add-ons’ in the 

form of so-called condition monitoring systems (CMS) have 

been developed by manufactures to monitor key wind turbine 

components. Although early fault detection capabilities for  

these systems resulting in financial benefits has been shown  

(Yang, Tavner, Crabtree, Feng, & Qiu, 2014) but a major 

deterrent for operators is the installation cost. For example, 

the vibration analysis based CMS’s usually cost more than 

11,000 Euros/turbine (Yang, Court, & Jiang, 2013).  
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On the contrary, all large utility scale WTs already have a 

standard supervisory control and data acquisition (SCADA) 

system installed that is principally used for performance 

monitoring. SCADA systems provide a wealth of data 

normally at 10 minutes resolution with records for various 

parameters. These parameters can be sectioned into four 

major categories of variables, including environmental 

measurements (e.g. wind speed, direction, ambient temp.) 

electrical characteristics (e.g. active power), component 

temperatures (e.g. gearbox bearings) and control variables 

(e.g. pitch angle, rotor speeds).   

Due to the easy availability and accessibility of SCADA data, 

it can be interesting to investigate the extent to which they 

can be used for finer monitoring and fault detection purposes. 

Hence, various methods have been proposed in the literature 

when it comes to wind turbine monitoring using SCADA 

data. The approaches can be globally classified into measured 

temperature based methods and produced power based 

methods. (Lydia, Kumar, Selvakumar, & Prem Kumar, 

2014).  Power Curve is the official performance indicator that 

is often used to calculate the performance of a wind turbine. 

This curve, expressing the power output of wind turbine as a 

function of wind speed is an industrial standard and is used 

to calculate contractual performance guarantee by the 

manufacturers.  

The relationship between the power produced by a wind 

turbine and wind speed recorded is expressed by a curve as 

shown on Figure 1. Based on the produced power, this 

relationship can be further divided into different modes of 

operation shown in terms of Zones I-IV.  For wind speeds 

that are below the cut-in value (Zone I on Fig. 1), there is no 

power produced, since the wind does not have enough energy 

to move the rotor. At wind speeds above the nominal speed 

(Zone III), the power reaches its nominal value. Mechanisms 

such as pitch angle attenuation for active control turbines are 

used in order to maintain power at its nominal value. At 

extreme wind speeds, the wind turbine is stopped in order to 

ensure the structural integrity of the wind turbine (Zone IV). 

The cubic relationship between wind speed (𝑣) and produced 

power (𝑃) is only observed between the cut-in speed and the 

nominal speed as shown by Zone II of Figure 1.  (Cambron, 

Lepvrier, Masson, Tahan, & Pelletier, 2016).This cubic 

relationship is given by Eq. (1) below 

 
𝑃 =

1

2
𝜌𝑐𝑝𝐴𝑣3 

 

                       (1) 

with 𝜌 the air density; 𝐴 the area swept by the rotor; and 𝑐𝑝 

the power coefficient of the wind turbine generator. 

A failure or loss in performance is identified when the 

produced power deviates from the normal power curve. 

Several failures can reduce and impact the power production 

capabilities of a wind turbine. These include but may not be 

limited to Down-rating, pitch control malfunction, icing on 

turbine blades, erosion, and wind speed under reading, dirt or 

bugs on blades and so on etc. (Park, Lee, Oh, & Lee, 2014).   

Figure 2 shows some of the fault cases having peculiar 

signatures on the power curve. 

 
Figure 1. Example of a power curve 

 

Based on this observation various monitoring approaches 

using power curves have been proposed in the literature. 

(Kim, Ra, & Kim, 2012)), (Bi, Zhou, & Hepburn, 2017) 

(Kusiak & Verma, 2013), (Kusiak, Zheng, & Song, 2009), 

(de Andrade Vieira & Sanz-Bobi, 2015), (Cambron et al., 

2016). 

 
Figure 2.Types of power curves in various failures (a) 

Down-rating & (b) Icing on blades 

 

While performing a literature review and analysis, a major 

obstacle can be observed while comparing the research 

discussing the wind turbine monitoring approaches using 

power curves. The general lack of a comparative benchmark 

and difficulty in selection of the most appropriate approach 

become evident. The problem comes from the fact that there 

is a huge variation in terms of the operational conditions, 

environmental factors and geographical locations of the wind 

turbines on which different methods proposed are developed. 

Additional factors include the type and resolution of the data 

sets being used in case of real data or in case of simulations, 

the over-simplifying assumption of Gaussian noise. And 

finally the variation in performance evaluation techniques 

make it difficult to compare the proposed methods in the 

domain of fault monitoring using power curves. 
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To solve this problem, an approach with a twofold 

contribution is proposed. First an original procedure to 

generate realistic and controlled simulations of 10 minutes 

SCADA data is presented. This method is used to model 

realistic faulty and normal behavior data sets. Secondly, the 

framework for performance assessment of various methods 

proposed in the literature is presented. The suggested 

framework is also used to explore performance comparison 

of two methods presented in literature and the results are 

summarized. 

The work presented in this paper provides the ability to create 

power profiles of desired lengths. The conditions to generate 

the data streams are controlled and the faults can be injected 

at desired time period (winter, summer) and for desired 

lengths. This enables the opportunity of rigorous testing and 

extensive comparative analysis. 

2. PROPOSED APPROACH 

2.1. Overview 

As explained earlier, a problem is faced due to the lack for an 

efficient, controlled and standardized comparison framework 

for the methods using power curves. In order to compare 

methods using power curves as performance monitoring 

tools, a two-step approach is presented. First a realistic 

simulation creation method based on the real dispersion of 

wind turbine data is devised. 

This simulation procedure has two significant sub-stages. 

a) First, various realistic and useful reference 

fault power curve patterns, replicating multiple 

practical faults scenarios are identified and 

created.  

b) Secondly, a realistic dispersion profile is 

added around the fault models to create practical 

simulations of fault scenarios. 

A framework for performance analysis is also presented. The 

performance analysis is done by creating ROC (Receiver 

Operating Characteristic) curves that express the relationship 

between probabilities of fault detection and probabilities of 

false alarms. (Van Trees, 2001)  

2.2. Simulation Process 

The first step in order to create a realistic simulation of power 

curve is to model the normal behavior for reference.  

2.2.1. Reference Power Curves (PC) 

Reference power curves can be created in two ways. A 

manufacturer provided power curve can be used as a nominal 

reference to depict the production behavior of a wind turbine 

or more practically a measured reference power curve can be 

calculated. (IEC 61400-12-1, 2005) provides a method to 

calculate mean reference power curve. The mean power 

curve is determined by applying the "method of bins" for the 

measured data sets. Using 0.5 m/s as the size of a single bin, 

the data set is divided into corresponding wind bins. The 

mean values of the measured wind speed and measured 

power output for each wind speed bin is calculated. This 

results in the assignment of one mean reference power value 

per wind speed bin.  

2.2.2. Faulty and Fault Free PC 

As referred to in Figure 2, different failures can have different 

fault patterns. Based on the literature review (Park et al., 

2014), expert knowledge and using the method presented by 

(IEC 61400-12-1, 2005) several fault free and faulty power 

curve references are created. Figures 3a & 3b show the power 

curves replicating behavior of a wind turbine power curve 

under faults like icing on the blade and down rating of a 

power turbine. The choice of these two faults is a result of 

their fault signatures on the Power Curve. These faults have 

a direct impact on the link of produced power as a result of 

observed wind speed. The ability to isolate the source and 

impacts of these faults makes them the suitable candidate for 

comparison of Power Curve based methods.  

These realistic reference curves for icing on the blades and 

down rating can now be used to replicate and simulate the 

behavior of real data experiencing these faults.  

(a)  

 

 (b)  

Figure 3. Fault Reference Power Curves for (a) Icing & (b) 

Down-rating 
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2.2.3. Dispersion Profile 

2.2.3.1 Learning Phase 

In order to achieve a realistic fault model, a realistic data 

dispersion profile needs to be replicated. To simulate the 

dispersion profile, real 10 minutes SCADA data from real 

wind turbines operated by VALEMO, operating in normal 

conditions during several years is used. Figure 4 shows the 

power curve data from a 2 MW wind turbine operating under 

normal conditions for the year 2014-2017. It also shows the 

mean power curve calculated using IEC binning method.   

 
Figure 4. Real Power Curve Data for dispersion learning  

This normal behavior data set is used to calculate a large 

number of dispersion residuals. The residuals referred to here 

are the difference between the power produced (measured 

data) and the mean wind turbine power curve (IEC Mean 

Curve). They express the data dispersion around the mean 

power curve.  Figure 5 shows the dispersion of the residuals 

calculated as a function of wind speed and corresponding 

temperature values.  

These dispersion residuals calculated are then further 

grouped into 2 dimensional bins according to their 

corresponding wind speeds and external temperature values. 

Within a certain range of wind speeds and external 

temperatures, these further grouped samples serve as 

wind/temperature reference subsets. Based on the amount of 

reference data available, each Wind/Temperature bin can 

have several data samples.  

 
Figure 5. Learnt Dispersion Residual (w.r.t wind speed 

&Temperature)  

The resolution of these 2D bins is chosen to be 0.5 m/s for 

the wind and 1 °C for the temperature. The dispersion 

observed here is realistic to the behavior of a wind turbine in 

operation and not simply Gaussian. 

2.2.3.2 Simulation Phase 

In order to create new 10 minutes power profiles, yearly 

recordings of wind speed and external temperature measured 

on different wind farms are used. These new wind farms are 

geographically distant from the one used to build the 

dispersion residuals data set. Figure 6a & b show the wind 

and temperature profiles recorded for a separate 2 MW wind 

turbine over a period of 4 years (2014-2018) used for creating 

new simulations of power data.  

 
Figure 6. Input Profiles (Real data) (a) Wind and (b) Temp.  

 For each new (Wind, Temperature) pair of 10 minutes data 

sample, a residual is randomly drawn from the corresponding 

wind speed and temperature subset. Since there are several 

corresponding dispersion residuals in each reference (W, T) 

bin, the process is randomized as a residual sample is drawn 

at random for each new sample data pair.  

The randomly selected dispersion value is then added to the 

reference power curves (Figures 3a &b) for the normal and 

faulty behavior modelling. This is done in a bootstrap-like 

approach using the real wind and temperature profiles shown 

in (Figures 6a &b).  The normal behavior simulated power 

data as a result of input wind profile is shown in Figure 7 for 

a short duration of time. (15th April 2015- 1st May 2015). 

 
Figure 7. (a) Input Real Wind Profile & (b) Corresponding 

Simulated Power Profile  

Based on the relationship of wind speed and produced power 

for a 2MW turbine as shown in Figure1, the produced power 

is stalled at 2MW for wind speeds greater than nominal 
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speeds. Figure 7 shows the same relationship for simulated 

power with red line indicating the nominal wind speed, at 

which the produced power reaches nominal power. The same 

process is used to generate multiple simulation streams 

(normal and faulty) through various iterations to further 

randomize the process, which allows to build a realistic 

simulated data set with controlled faulty behaviors that can 

be used for performance analysis of the fault detection 

methods. 

New normal or faulty power profiles can be created at length, 

in totally controlled conditions for the mean pattern of the 

power curve, with data dispersion replicating the dispersion 

observed in the real world. 

2.3. Framework of Performance Analysis 

Objective performance analysis is done by the selection of 

appropriate evaluation metrics. Receiver operating 

characteristic curves are used to compare the performance of 

the different methods. The ROC curve plots probability of 

detection (PD) for each method tested as a function of 

varying probabilities of false alarms (PFA). (Van Trees, 

2001).   

For one set of measured wind speed and temperature data, 10 

randomized and realistic power profiles are created. For each 

simulated data stream, desired fault data is inserted at the 

desired locations and for the desired durations. Methods 

using power curves for monitoring as presented in literature 

(Uluyol, Parthasarathy, Foslien, & Kim, 2011) , (Cambron et 

al., 2016) etc. can then be used to calculate residuals.  

The approach for performance analysis of these methods is as 

follows: 

Step 1: A four-year long data set is generated: where one year 

is to learn the threshold for desired PFA, one year to validate 

PFA, and one year is for PD estimation. 

Step 2: Each desired probability of false alarm (PFAD) is used 

to calculate the corresponding threshold (Th) on first year of 

fault free residual data. 

Step 3: The calculated threshold (Th) is then validated on the 

second year of fault free residual data and the estimated 

probability of false alarms is calculated (PFAEST). 

𝑃𝐹𝐴𝐸𝑆𝑇 =
𝑁𝑜.  𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑇ℎ)

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.  𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑
 

Step 4: The estimated probability of detection (PDEST) is 

calculated on the faulty data stream of residual data (year 

three). 

𝑃𝐷𝐸𝑆𝑇 =
𝑁𝑜.  𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑏𝑜𝑣𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑇ℎ)

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.  𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑓𝑎𝑢𝑙𝑡 𝑝𝑒𝑟𝑖𝑜𝑑
 

Step 5: Steps 1-4 are repeated for all 10 iterations of 

simulated data streams and averaged to compute 𝑃𝐹𝐴𝐸𝑆𝑇
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  & 

𝑃𝐷𝐸𝑆𝑇
̅̅ ̅̅ ̅̅ ̅̅  

Step 6: This averaged value gives one data sample of PD as 

a function of PFA on the ROC curve.  

The method explained above is used to calculate PDs for all 

desired PFAs, for all fault types and to create a ROC curves 

for all the considered fault detection methods. 

3. RESULTS 

3.1. Experimental setup 

As referred to earlier, a four year (2014-2018) long simulated 

data stream is used to calculate residuals based on different 

methods. One year of fault period was introduced as year 

three of the overall stream. For the performance evaluation, 

first year is taken as the learning period, year two as 

validation and year three being the faulty period is for testing. 

Two major groups of faults of various intensities (icing: low, 

medium, high) and Down-rating (15%, 33% and 53% of the 

nominal power) are simulated and inserted as fault periods 

(year three).  

3.2. Methods Comparison 

The simulation procedure is used to assess the performance 

and compare two different methods. These two methods of 

residuals calculations are tested for the faults implemented. 

These normal behavior model based methods applied to 

power curves include a simple residual method using method 

of bins (IEC 61400-12-1, 2005)  and a method proposed by 

(Cambron et al., 2016)  referred to hereafter as EWMA 

(exponentially weighted moving average) Residual Method. 

3.2.1. Simple Residual Method 

The simple residual method calculates, for each wind bin of 

0.5 m/s resolution, a difference between the simulated power 

data samples and mean power curve calculated on normal 

behavior period using method of bins (IEC 61400-12-1, 

2005). Figure 8a shows the simple residual and Figure 8b 

shows the same residual with a moving average of 1 day for 

smoothing.  

 
Figure 8. Simple Residual for: Down-rating15% (a) 

Unprocessed and (b) Moving Averaged 

 

The example fault shown is Down-rating15% (ref. Figure 

3b). 
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3.2.2. EWMA Residuals 

The EWMA residual method as presented by (Cambron et al., 

2016) is implemented with varying parameters and has 

following three main stages: 

a) Pre-processing 

i. Density Correction: Wind speed values are corrected 

to reference density (1.225 kg m-3) (IEC 61400-12-1, 

2005). 

b) Residual Creation 

ii. Reference Creation: Average of the data points per 

wind bin (0.5 ms-1) is calculated. (IEC 61400-12-1, 

2005)  

iii. Data Translation: Translation of data samples within 

a wind bin towards the center of the bin is done. 

iv. Residual Calculation: the difference between the 

translated data and the reference value within a wind 

bin is calculated. (Translated Data – Reference) 

v. Residual Normalization: The residuals are then 

normalized with mean & standard deviation of 

reference data. 

c) Post Processing 

vi. Post Processing °1 = Simple Moving Average is 

calculated to reduce noise. 

vii. Post Processing °2 = Exponentially Weighted 

Moving Average (λ =0.1, 0.069) 

Figures 9 a & b show the residuals calculated for the example 

fault type Down-rating 15% using the described method with 

(λ = 0.001). 

 

Figure 9. EWMA Residual for: Down-rating15% (a) 

Unprocessed and (b) Moving Averaged  

3.3. Performance Evaluation 

Both methods explained above are used to calculate residuals 

for all fault types and for 10 iterations of data. The real input 

wind and temperature profiles from the same wind turbine 

were used to generate these data streams. Performance 

analysis of the fault detection by thresholding the calculated 

residuals is done adopting the framework explained in 

Section 2.3. Note that different tests have been performed 

with various iterations of data with multiple cases and 

combinations of post processing techniques like moving 

mean, median, variance, kurtosis, standard deviation and 

various values of smoothing parameter λ of exponentially 

weighted moving average (EWMA). Post-processing the 

residuals or the filtered residuals with "statistic" filters such 

as median, variance, kurtosis did not improve the fault 

detection performance, but varying valued of smoothing 

parameter (λ) had significant impact on the results.  

3.4. Receiver Operating Characteristic Curves 

The receiver operating characteristic curves showing the 

relationship between the probability of false alarms (false 

positive rate) and the probability of detection (true positive 

rate) are shown for each type of fault. These curves compare 

the detection capability of both methods with varying 

smoothing parameter λ for EWMA residual method. The area 

of interest in terms of false alarm rates is restricted to 50% 

and the results are presented for various fault types. 

3.4.1. Fault Type: Low Icing 

Figure 10 shows the ROC Curves calculated for the low icing 

type faults. All configurations except simple residual reach 

close to optimal detection 100% for a false alarm rate of <5% 

 
Figure 10. ROC Curve: Icing Low  

3.4.2. Fault Type: Medium Icing 

The fault type medium icing is efficiently detected by both 

methods and high true detection rates are reached for low 

false alarm rates. Figure 11 shows the ROC Curves calculated 

for the medium icing type faults.  

 
Figure 11. ROC Curve: Icing Medium 
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3.4.3. Fault Type: High Icing 

Similar to fault types low and medium icing, both methods 

were able to optimally detect the high impact icing fault type. 

Figure 12 shows the ROC Curves calculated for the high 

icing type faults using simple residual calculation method and 

EWMA Method for varying smoothing parameter λ. 

 

Figure 12. ROC Curve: Icing High 

3.4.4. Fault Type: Down-rating 15% 

The fault signature and hence the behavior of down rating 

fault types is different than the icing faults hence the 

performance of detection is visibly different as well.  Figure 

13 shows the ROC Curves calculated for the Down-rating 

15% type faults. Due to the nature of this fault (only visible 

for wind speeds > ~9m/s) the overall performance of both 

methods is low. Only EWMA method with smoothing 

parameter λ=0.001 achieved a true detection rate of 60% for 

false alarm rate of 15%. 

 
Figure 13. ROC Curve: Down-rating 15% 

3.4.5. Fault Type: Down-rating 33% 

The true detection rates for down-rating of 33% are generally 

improved for all the residuals as compared to 15% down 

rating. The residual with a smoothing parameter λ = 0.001  

shows the best detection results for this type of fault with 

(85% true detection for false alarm rate of 10%). Figure 14 

shows the ROC Curves calculated for the Down-rating 33% 

type faults. 

 

Figure 14. ROC Curve: Down-rating 33% 

3.4.6. Fault Type: Down-rating 53% 

The down rating of more than 50% has a significant fault 

signature and hence the true detection rates are increased 

considerably. With 4 of 5 configurations reaching a true 

detection rate of 85% or more for 10% false alarm rate, figure 

15 shows the ROC Curves calculated for the fault type of 

53% down-rating. 

 

Figure 15. ROC Curve: Down-rating 53% 

4. CONCLUSION 

The proposed approach presented in Section 2 enables the 

creation of a SCADA data simulator that can be used to test 

fault detection methods. Section 3 uses the developed 

simulation procedure to generate a controlled and well-

known data set to test and assess the performance of fault-

detection procedures. The ideas presented in this paper were 

tested and used to compare two methods presented in 

literature for a controlled benchmarking of the detection 

capacity and utility of these approaches.  

The overall summary and conclusions drawn through 

analysis are as follows: 

- An overall procedure for SCADA data simulation has been 

developed: it allows to simulate SCADA data following a 

user-controlled faulty (or normal) power curve pattern, while 

at the same time, mimicking the real dispersion of the 

SCADA data] 
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- Two realistic faults of varying intensity levels were created 

and simulated namely: (icing (low, medium, high) and down-

rating (15%, 33% and 53% of the nominal power) 

- Computing the residuals or the filtered residuals with 

"statistic" filters such as median, variance, kurtosis does not 

improve the results (not presented here). 

- Using the EWMA method on the data set, the best results 

are obtained with the value of smoothing parameter λ = 

0.001, when the filtering effect is maximal. 

- The EWMA method with smoothing parameter λ =0.001 

outperforms the simple residual method for all the considered 

fault types. 

- Icing is a fault which is easy to detect, whatever the method 

used. The performance of all variations were optimal for all 

intensities. 

- The fault effect of icing is easily visible on the residuals 

because it is visible when the wind speed is between cut-in 

and nominal wind speeds (3m/s – 11.2 m/s approx.). 

- Down-rating 15% is the most difficult to detect because it 

is visible only when the wind speed is higher than the ~9 m/s 

for the case taken as reference.  
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