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ABSTRACT

Wheel defects are detrimental for railway train and track com-
ponents and should be detected and identified as early as pos-
sible. Wheel Impact Load Detector (WILD) is a commercial
condition monitoring system used for detecting the defective
wheels. This system usually measures the rail strain at dif-
ferent points by multiple sensors. WILD converts the mea-
sured strains to the force and uses the peak force, dynamic
force, and ratio of the peak force to the static force to es-
timate the condition of the in-service wheels. These meth-
ods are useful for detecting the severe defects contributing to
the contact force to the extent that exceed a predetermined
threshold. Therefore, in the prior research a fusion method
has been developed to reconstruct a new informative pattern
from the data collected by the multiple sensors. The recon-
structed pattern provides a comprehensive description of the
wheel condition. This paper validates the fusion method us-
ing a set of lab tests to investigate the applicability of the
proposed method. For this purpose, a test rig has been built
consisting of a circular rail, a rotating arm, and a wheel. Six
strain sensors have been installed under the rail in the sym-
metric locations over the rail circle with 60 degree intervals.
The fusion method used to reconstruct a signal from the bend-
ing strain signals measured by the multiple sensors. Differ-
ent wheel defects including the flat and out-of-round wheels
have been tested and the results validated the fusion method
by providing informative patterns.

1. INTRODUCTION

Railway wheels are critical components and detecting their
defects is important from safety, maintenance, and operation
perspectives. Therefore, several condition monitoring sys-
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tems have been developed to detect the defective wheels (Alemi,
Corman, & Lodewijks, 2017). Wheel Impact Load Detec-
tor (WILD) is a condition monitoring system introduced in
1983 to measure high impact forces generated by defective
wheels (Partington, 1993). This system exploits the rail vi-
bration (Belotti, Crenna, Michelini, & Rossi, 2006) or the rail
strain (Stratman, Liu, & Mahadevan, 2007) to estimate the
wheel-rail contact force.

Since the sensors have a limited effective zone, multiple sen-
sors are normally used to sample from the whole wheel cir-
cumference. Partington proposed two methods to analyse
the data collected by the multiple sensors (Partington, 1993).
These methods use the peak force and the average force mea-
sured by the sensors. The first method is the ratio of the peak
force to the average force that is called the force ratio, and
the second method is the subtraction of the peak force and the
average force that is called the dynamic force. These values
provide bit of information about the wheel out-of-roundness.
In addition, the wheel velocity and axle load influence these
values (Johansson & Nielsen, 2003). Moreover, using these
values to identify the defect type is challenging. Therefore a
new method has been proposed to process the data collected
by WILD to provide detailed information about the wheel de-
fects (Alemi, Corman, Pang, & Lodewijks, 2017).

The wheel movement over the rail generates a periodic wheel-
rail contact force signal. The multiple sensors are sampling
from the periodic contact force signal in different locations.
Since the location of the sensors and the wheel diameter are
the known values, the collected samples can be mapped over
the circumferential coordinate to generate a pattern in the
space domain. This pattern has a correlation with the wheel
geometry, and the contact force. Therefore, the reconstructed
patterns can be attributed to the wheel defect to identify the
defect type and estimate its severity. This process was already
validated using the data simulated by VI-Rail (Alemi, Pang,
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Corman, & Lodewijks, 2017), but experimental validation of
the multi-sensor data fusion model has been a gap.

This paper aims to validate the data fusion model using the
data generated by a laboratory test. Due to the lack of ex-
perimental facility, a new test rig has been designed and con-
structed to model the wheel-rail interaction and to generate
the real data required for the fusion model. This paper ex-
plains the structure of the new test rig. In this test rig, a rotat-
ing arm moves a wheel over a circular rail that is supported
by 24 sleepers. According to this symmetric configuration,
six strain sensors have been mounted under the rail with con-
stant intervals to measure the rail bending strain. The strain
sensors measure different portions of the wheel in discrete
points. Therefore, the signals acquired from this measure-
ment presents fragments of information. The fusion model
reconstructs patterns from the data collected by the multiple
strain sensors for different wheel defects. By reconstructing
the informative patterns correlated to the wheel defects, the
fusion model is validated.

The paper is structured as follows. Since the detailed expla-
nation of the fusion method has been presented in (Alemi,
Corman, Pang, & Lodewijks, 2017), the second section only
presents an overview on the data fusion model. Section 3
describes the new test rig and marks the test conditions. Sec-
tion 4 presents the outputs of the tests and discusses the re-
sults obtained from the fusion model using the real data gen-
erated by the experimental tests. Finally, section 5 draws the
main conclusions.

2. DATA FUSION MODEL

Rail is usually supported by sleepers to transfer the load to
the ground. The track structure limits the potential locations
for installing the sensors, because the sensors should be in-
stalled in the symmetric configuration to give the comparable
outputs. Figure 1 presents the schematic view of the rail, and
the configuration of the sleepers and sensors. In this figure,
the sensors were installed under the rail in the middle point
between two consecutive sleepers to measure the rail bending
strain. The locations of the sensors are known as a distance
vector (X) that is defined with respect to the location of the
first sensor.

The wheel is moving over the sensors and each sensor sam-
ples from a portion of the wheel. When the wheel is far
from the sensor, the output of the sensor is zero. By clos-
ing the wheel to the sensor, the output of the sensor increases
to a maximum and then decreases to zero. That maximum
is called the effective zone and a limited number of samples
can be selected from that area. Two sampling methods were
developed in the prior research, the Single Sampling Method
(SSM) and the Multiple Sampling Method (M SM). Using
the M SM more than one sample can be selected from each
sensor. When M sensors collect NV samples on the effective
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Figure 1. The schematic view of the rail, sleepers and sensors

zone, a dataset from the samples is generated as follows:
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This dataset is the magnitude of the samples collected by mul-
tiple sensors. Each row presents the samples of a sensor. The
sample sq ;1 is the first samples collected from the wheel by
the first sensors. The sample s ; is the first samples collected
from the wheel by the second sensors. The space distance be-
tween the sample s;,; and so 1 is equal the sensor distance
that is a known value. Since the wheel circumference is a
known value, the data collected by the sensors can be mapped
over the circumferential coordinate using the following equa-
tion:

)/m,l = Xm - (L'w X LiJ) (2)

In this equation, X, is the sensor position vector, L,, is the
wheel circumference, | | is the round operator toward the
nearest integer less than or equal to the element, and Y,,, ; is
the position vector of the data over the circumferential coor-
dinate. The portion of the wheel that is sensed by each sensor
is determined using Eq. 2. The remainder after division of the
sensor position by the wheel circumference length determines
the sample position over the circumferential coordinate. Eq. 2
uses the first column of dataset 1 and maps them over the cir-
cumferential coordinate. For mapping the other samples of
the dataset, Eq. 2 can be extended to the following equation:

Yion =Ym1+(n—1)xA) 3)

in which Y}, 1 is the positions of the first sample of each sen-
sor and ) is space interval between the samples that is defined
as follows:
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Figure 2. The test rig constructed to generate real data from
the wheel-rail interaction
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In this equation, V' is the wheel velocity and f; is the sam-
pling frequency of the sensors in the time domain. To see
more detailed explanation of the fusion method refer (Alemi,
Corman, Pang, & Lodewijks, 2017).

A “

3. TEST RIG

The fusion model combines the samples collected by multiple
sensors to generate a new signal. To validate this model, the
data simulated by VI-Rail used and the informative patterns
were reconstructed (Alemi, Pang, et al., 2017). This paper
validates the fusion model using the real data generated in
laboratory. To achieve this purpose, a new test rig has been
designed and constructed to generate real data as the input of
the data fusion model by modelling the wheel-rail interaction.

Figure 2 shows the test rig consisting of a rail, rotating arm,

wheel, motor, sleepers, clamps, rubbers, wheel hub, and spring.

The circular aluminium rail was connected by clamps to 24
PVC plate as the sleepers that supports the wheel load. One
side of the rotating arm was connected to a motor through a
shaft and the other side had the wheel hub to hold the wheel.
The load of the wheel on the track is adjustable using a spring
connected to the wheel hub.

Six strain sensors were installed in the symmetric positions
with 60° intervals. The rail was polished and the sensors
were glued to the rail. These sensors measured the rail bend-
ing strain generated by the wheel-rail contact force. Fig-
ure 3 presents the schematic top view of the sensors positions,
wheel, rail, sleepers and rotating arm.

The rail had a rectangular profile with 20mm height and 15mm
width. The rail diameter is 1007.5mm (central contact point
between the wheel and rail) and the wheel diameter is 100mm.
According to Eq. 2 and 3, the positions of the sensors (X,,)
and the wheel circumference (L,,) are required for fusing the
collected data. On each rotation of the arm over the rail, six

Sensor 5

Figure 3. The configuration of six sensors installed under the
rail

sensors sample from the wheel. For sampling with more sen-
sors, the arm should have more rotations. This process can
be continued to the extent that whole wheel circumference be
sampled.

The strain sensors measure the rail bending signal as the re-
sponse of the rail to the wheel-rail contact force. The rail
response is influenced by the wheel load and velocity. There-
fore, during each measurement, the wheel load and velocity
were kept constant.

To investigate the fusion model, three wheels were tested in-
cluding a healthy wheel and two other wheels with flat and
out-of-round (OOR) defects. The flat wheel had 99.01mm di-
ameter and 0.11mm flat depth. The third order OOR wheel
had 98.92mm diameter and 0.08mm amplitude. Next section
presents the results of the fusion model using the data gener-
ated by the test rig.

4. RESULTS AND DISCUSSION

The sensors were connected through an amplifier to the com-
puter. The output of the sensors was the voltage variation over
time. Normally the measured voltage signal is converted to
the strain signal and then using a known force is converted to
the force signal. Since the output of the data fusion model is a
pattern, the sensor output in the voltage was directly used for
further processing without converting to the strain or force.
Figure 4 presents the output of a sensor during the passage
of the healthy wheel. In this signal, the output of the sensor
is zero when the wheel is far from the sensor. By approach-
ing the wheel to the sensor, the output of the sensor changed.
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Figure 4. The output of a strain sensor during the passage of
the healthy wheel

When the wheel is close to the sensor in a way that is not on
top of the sensor, the rail goes up and compresses the sensor
and provides negative output. When the wheel passes the sen-
sor, the output of the sensor increases to a maximum that de-
pends on the wheel-rail contact force. This signal depends on
the dynamic parameters of the test rig but it is generally com-
parable to the signal measured from the field tests (Filograno,
Corredera, Rodriguez-Plaza, Andres-Alguacil, & Gonzalez-
Herraez, 2013).

According to Figure 3, the sensors were configured with a
constant distance. When the wheel is healthy and moving
with constant velocity, the sensors provide similar outputs
with a constant delay. Figure 5 presents the outputs of the six
sensors in the first round of the healthy wheel rotation over the
sensors. Each sensor measures a portion of the wheel. The
magnitude of the peaks in the signals measured by each sen-
sor depends on the wheel-rail contact force and basically on
the wheel portion that contacts with rail. When the wheel is
healthy, the sensors measure signals with similar magnitude
in the peaks.

In this circular test rig, more rotations of the wheel is equal
the extension of the number of sensors. On each rotation, 6
sensors sample from the wheel. Therefore, 10 rotations of the
wheel lead to sampling with 60 sensors. Figure 6 presents the
outputs of 60 sensors for the healthy wheel. In this Figure,
the sensors provided similar outputs with small variations.

By selecting few samples from the peak on each sensor, a
dataset like presented in Eq. 1 can be generated. Figure 7
compares the samples measured by 60 sensors after selecting
11 samples per sensor using the M.SM for the healthy, flat,
and OOR wheels. In Figure 7(a) that the wheel is healthy, the
samples have very small deviation from their average. In Fig-
ure 7(b) and (c) that correspond to the flat, and OOR wheels,
the samples have a considerable deviation from their average.
This deviation acknowledges the existence of the wheel de-
fects but fails in providing detailed insight about the wheel
defects.
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Figure 5. The outputs of the strain sensors during the first
passage of the wheel
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Figure 6. The outputs of the 60 sensors for the healthy wheel
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Figure 7. The comparison between the samples selected from
60 sensors for a) the healthy wheel. b) the OOR wheel, and
¢) the flat wheel

Using the Eq. (1-3) the selected samples presented in Fig-
ure 7, have been fused and mapped over the circumferential
coordinate to generate a pattern. Figure 8 compares the re-
sults of the fusion model for three wheels. In this Figure,
the length of the signals equals to the wheel circumference.
Figure 8(a) shows a flat pattern corresponding to the healthy
wheel. Figure 8(b) displays a sinusoidal pattern correspond-
ing to the 3rd order out of round wheel. Figure 8(c) demon-
strates a pattern containing a peak corresponding to the flat.

The comparison between the patterns reconstructed in Fig-
ure 8 clearly shows the nature of the defects generated the
wheel-rail contact force. These results perfectly validate the
fusion model and the possibility of generating informative
signals from the samples collected by WILD.

5. CONCLUSION

Wheel defect Identification is a vital task and a common method

for detecting the sever wheel defect is measuring the wheel
load using Wheel Impact Load Detectors. Since WILDs mea-

Voltage [v]

0 50 100 150 200

Circumferential coordinate [mm]

250 300

Figure 8. The comparison between the patterns reconstructed
using the samples collected from 60 sensors for a) the healthy
wheel. b) the OOR wheel, and c) the flat wheel

sure the wheel force in discrete points, a fusion method has
been proposed to reconstruct a pattern from the samples col-
lected by WILDs. This research validated the fusion method
using the data collected in the laboratory. A test rig has been
built and three wheels have been used to generate the re-
quired data. The patterns reconstructed by the fusion method
demonstrated a considerable similarity with the wheel de-
fects. Therefore, the reconstructed signals can be used in the
further research for identifying the defect type and severity.
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