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ABSTRACT 

Modern rotorcrafts rely on Health and Usage Monitoring 

Systems (HUMS) to enhance their availability, reliability and 

safety. The complexity of the transmission system of new 

helicopter designs such as the Airbus Racer provides 

additional challenges for HUMS. The work presented here 

demonstrates a vibration-based monitoring approach for the 

lateral gearboxes of the racer. This approach relies on the 

statistical analysis of different condition indicators (CIs) 

extracted from vibration signals under different operating 

regimes to define a baseline for these CIs during normal 

operation. This permits the normalization of CIs from newly 

acquired signals with respect to the expected baseline value, 

facilitating the detection of anomalies in the signal 

characteristics for a variety of operating regimes. The 

monitoring capabilities of the proposed approach are tested 

using experimental data where the vibration response to 

different mechanical malfunctions was artificially seeded in 

to the acquired signals.  

1. INTRODUCTION 

Power transmissions in rotorcrafts are exposed to extreme 

loads and sustained high levels of vibration. Typically, 

lightweight materials and designs are used to improve the 

performance of the aircraft. As a consequence many 

maintenance actions in helicopters are triggered by premature 

degradation due to fatigue in critical components (Samuel & 

Pines, 2005). Health and Usage Monitoring Systems 

(HUMS) use data collected from a number of sensors and 

different signal processing techniques to provide information 

about the health condition of the machine. This information 

is then used for maintenance scheduling, which reduces 

maintenance and operating costs by improving the 

availability, reliability and safety of the aircraft.  

Vibration-based condition monitoring is probably the most 

common method for detection and diagnosis of mechanical 

faults in rotating machinery. HUMS systems typically rely on 

vibration signals in order to monitor the condition of the 

transmission system (Morgan, Berrigan, Lopez, & Prasad, 

2017).  Typically vibration-based monitoring techniques rely 

on the analysis of key signal features that are particularly 

sensitive to different mechanical malfunctions. The baseline 

values for these features are obtained under healthy 

conditions, and values extracted from new observations are 

compared with this baseline in order to detect anomalies in 

the signal. However, different operating regimes will produce 

different vibration characteristics (McFadden, 1986). 

Consequently this direct comparison is only effective if all of 

the measurements were obtained under the same speed and 

loading conditions. In the case of the lateral gearboxes of the 

RACER, dynamic operation (speed and torque) is defined by 

the rotational speed and the blade pitch angle (aircraft speed 

and other dynamic effects are not considered here for 

simplicity). 

The problem of vibration-based condition monitoring under 

variable operating conditions has been approached for other 

applications in the past using different techniques such as 

band pass filtered time-domain synchronous averaging 

(TSA) and Hilbert transform (McFadden, 1986), time-

frequency mapping (Baydar & Ball, 2001), bispectral 

analysis (Parker Jr. et al., 2000) or motion residuals (Zhan, 

Makis, & Jardine, 2006). More recently, experimental case 

studies applied to mining machinery (Zimroz, Bartelmus, 

Barszcz, & Urbanek, 2014) or wind turbines (Bartelmus & 
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Zimroz, 2009) have demonstrated that the correlation 

between load and selected signal features can be used to 

monitor the condition of the machine.  

New rotorcraft designs provide additional challenges for 

HUMS. In particular, the new Airbus RACER rotorcraft 

design combines a traditional horizontally mounted rotor 

with additional vertically mounted rotors on its wings for 

improved propulsion while maintaining vertical take-off and 

landing capabilities. These lateral rotors are powered from 

the main gearbox using an additional shaft at each side of the 

aircraft (see Figure 1). An additional lateral gearbox at the 

end of each shaft is required to accommodate the angle 

between the transmission and the propeller shafts. The Clean 

Sky 2 funded project “iGear” (involving GE Avio Aero, 

Active Space Technologies and Cranfield University) aims to 

develop a multi sensor health monitoring system for the 

lateral gearboxes of the RACER. 

 
Figure 1: Racer transmission layout 

  

The objective of this investigation in particular is to test a 

conceptual approach to analyse the vibration signals of 

rotating machinery under varying operating conditions for its 

future application in rotorcrafts. This approach makes use of 

operating condition measurements to generate a map of each 

individual condition indicator (CI) extracted from vibration 

signals within a defined range of operating regimes. This map 

is used to define the limit values at any operating condition 

for each CI individually, allowing a fair comparison between 

CIs from newly acquired measurements and the expected CI 

value for that particular operating regime. This method 

provides a simple and computationally efficient method to 

cope with varying operating conditions, while facilitating the 

traceability in case of fault detection. This approach was 

tested using experimental data to generate baseline maps for 

a number of selected CIs. Subsequently, the acquired 

vibration signals were contaminated to simulate the effect of 

mechanical faults. The comparison of CIs from contaminated 

signals and the baseline values mapped under normal 

operation was used to assess the monitoring capabilities of 

the algorithm. 

2. METHODOLOGY 

2.1. CI mapping approach 

The CI baseline maps are based on statistical analysis of the 

CI values for a range of operating conditions. In order to 

reduce the effect of outliers and study data points with similar 

characteristics, the operating points considered need to be 

pre-processed before the CI values can be mapped. The 

whole mapping procedure consists of four steps: steadiness 

check, operating regimes clustering, statistical analysis at 

each cluster and finally curve fitting to generate the map. 

These steps are summarised below. 

1) Steadiness check: Although the condition 

monitoring system should work for different 

operating regimes (speed and torque), rapid changes 

occurring during the transition from one operating 

point to another may have non-linear effects on the 

system dynamics. A short-term vibration response 

with significantly different characteristics may be 

produced by these transients, making the 

identification of fault signatures more difficult and 

hence leading to missed detections or false alarms.  

Due to the short duration of these transients, the 

proposed approach detects them in the first place by 

evaluating the evolution of the operating condition 

measurements and dismissing those measurements 

which are deemed not steady. Hence the first task in 

the data analysis is to use a moving window which 

includes a given number of previous measurements 

at each point considered, and check that the 

measurement deviations are contained within a 

certain margin. 

2) Operating regimes clustering: In this second step the 

operating condition measurements are grouped in 

clusters with similar characteristics. This procedure 

allows the analysis of signal features in a dataset 

acquired under similar conditions while accounting 

for small variations in the measurements. The 

evolving clustering method (ECM) is an 

unsupervised clustering technique based on a 

maximum distance criterion. Basically it generates 

a set of clusters (defined by a centre position and a 

radius) so that any sample considered is located 

within a maximum Euclidean distance from a cluster 

centre. The mathematical procedure was described 

in detail in (Kasabov & Song, 2002). 

3) Statistical analysis of clustered data:  The 

organization of the operating condition 

measurements in clusters allows the study of the 

statistical distribution of the CIs extracted from 

vibration signals located in the same cluster. The 

features in each cluster would have been acquired 

under very similar operating conditions and hence 
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should have similar properties in the absence of 

faults. In the proposed approach the probability 

density function (PDF) of each CI is estimated in 

each cluster considering all of the samples assigned 

to it. Although the variations in these CIs are 

random in principle and hence should follow a 

normal distribution, kernel density estimators were 

used to obtain a smooth and accurate representation 

of the actual PDF. This detailed characterization of 

the statistical distribution was used to stablish an 

upper limit at each cluster centre for each one of the 

CIs considered for a given confidence bound. 

4) Condition indicator mapping: The upper control 

limits at each cluster centre together with the cluster 

centres location were used to generate a map of the 

maximum allowable value for each CI at any 

possible operating condition. This mathematical 

model is generated by fitting a surface through these 

points. The corresponding upper limit of a CI 

acquired at a given operating condition can be 

obtained interpolating the value from this map, even 

if such point was acquired under operating 

conditions not tested before.  

2.2. Condition monitoring using normalised CIs 

Once the baseline maps are defined for each CI within the 

considered operating range, any CI from newly acquired 

vibration measurement at a given operating point can be 

compared with its corresponding value in the baseline map. 

This comparison allows a normalization of the new CIs with 

respect to the baseline value, giving a value equal or lower 

than one if the value of the CI is lower than the upper limit 

for that particular operating point, and higher than one 

otherwise.  

This approach allows an automatic adaptation of the upper 

limit according to the operation, minimising the effect of the 

operating conditions on the CI value. In addition, it 

normalises all of the CIs considered to the same scale, 

facilitating the comparison between different CIs and its 

combination in future stages of the project. 

2.3. Injection of faulty signals in healthy vibration data 

In order to assess the monitoring performance of the proposed 

methodology it is necessary to use operation and vibration 

measurements from a system working under changing 

operational conditions in the presence of faults. For safety 

reasons it was not possible to introduce mechanical faults in 

the test rig (described in 3) whilst ensuring the mechanical 

integrity of all its components. For that reason the vibration 

signature of different mechanical faults was simulated and 

then seeded in the healthy vibration signals acquired, 

following the same procedure as in (Ruiz-Cárcel, Jaramillo, 

Mba, Ottewill, & Cao, 2016) . 

The effect of the forces generated by a mechanical fault can 

be represented as a residual load ΔF(t) which acts on the 

undamaged system adding this new force to the forces 

already existing. Consequently, the motion observed in the 

damaged system u(t) is the result of the addition of the motion 

caused by the excitation forces in the undamaged system u0(t) 

and the motion caused by the virtual damage forces Δu(t). 

The problem can be represented in a simplified manner as a 

one degree of freedom system where a mass m is connected 

to the foundation by an elastic element with stiffness K and a 

viscous damper with damping D which, during normal 

operation is subjected to a force F0(t). The motion u(t) of the 

damaged system can be obtained by solving the equation: 

𝑚�̈�(𝑡) + 𝑐�̈�(𝑡) + 𝑘𝑢(𝑡) = 𝐹0(𝑡) + ∆𝐹(𝑡) (1) 

As u0(t) is the measured signal, the virtual damage motion 

Δu(t) can be estimated for a given damage force ΔF(t) as: 

∆𝑢(𝑡) = 𝑐𝑜𝑛𝑣(∆𝐹(𝑡), ℎ(𝑡)) (2) 

where h(t) is the impulse response function of the system. By 

adding this virtual motion (or the corresponding derivatives) 

to the measured undamaged signal it is possible to 

contaminate the original signal with the fault signature 

defined by ΔF(t). These artificially seeded faulty signals were 

used to test the capabilities of the algorithm under different 

faulty scenarios. 

3. EXPERIMENTAL SET UP 

The monitoring capabilities of the proposed approach were 

tested on a laboratory scale compressor rig (Figure 2). This 

rig is designed to be able to function over a wide range of 

operating conditions through the control of the motor 

rotational speed and the position of the valve situated in the 

compressor outlet line. This configuration is comparable to 

the lateral gearbox dynamic operation defined by rotational 

speed and blade pitch angle. 

 
Figure 2: Schematic of the compressor rig 

 

Inlet 

valve Inlet 

tank 

Outlet 

tank 

Outlet 

valve Centrifugal 

compressor 

Electric motor 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

4 

The set point of the motor speed and the outlet valve position 

were varied during the tests to different pre-set values to 

capture vibration data at different operating regimes. Speed 

and valve position measurements were acquired at 0.5 Hz, 

while vibration was acquired continuously using a SKF 

CMSS2110 (frequency range 0.8Hz-10kHz) accelerometer 

installed horizontally on the outer case of the motor drive-

side bearing (see figure 3). This signal was digitised at 5120 

Hz using a NI 9234 data acquisition card. 

 

Figure 3: Sensor location detail 

4. RESULTS AND DISCUSSION 

4.1. Data sets analysed 

A data set of 9662 s of duration was used to define the 

baseline maps. Four different set point values of motor speed 

(1000, 2000, 3000 and 4000 rpm) were combined with four 

outlet valve positions (40, 60, 80 and 100%) throughout the 

test duration to acquire data at 16 different operating points. 

The vibration data streamed during the test duration was 

divided in sections of 2 s, so that each speed and valve 

position measurement has a corresponding vibration 

measurement attached. The vibration CIs extracted from each 

vibration signal section to validate the mapping concept 

were:  

- RMS, Crest factor (CF) and Kurtosis (K)  extracted 

from the time domain signal 

- Amplitude of the peaks at the rotational speed (1X) 

and its second harmonic (2X) obtained from the 

signal in the frequency domain. 

Once the approach was implemented and the maps were 

defined, a second dataset (with a duration of 2790 s) was used 

to assess the performance of the method. In this validation 

data set the speed and valve position set points were also 

varied during the test, but the valve positions were different 

to those used in the training data set. Due to the lack of data 

acquired in presence of faults, the signals acquired were 

contaminated with faulty signals as described in 2.3 

simulating the effect of mechanical faults.  

The first simulated fault injected to the validation data set was 

rotor unbalance, caused by the displacement of the rotor 

centre of mass away from its rotation centre. The centrifugal 

force generated ΔF(t) has an amplitude proportional to the 

rotor mass mr, the eccentricity e and the square of the 

rotational speed ω (1X), and has a phase angle δ:  

ΔF(t)= ω2mre∙sin(ωt+ δ). (3) 

In order to test the capabilities of the method for detecting 

gear faults, a faulty gear signal simulating gear tooth wear in 

a virtual pinion with 15 teeth was injected to the existing 

signal. The faulty tooth gear meshing was simplified as a 

series of impacts happening at the rotation frequency (1X). In 

both cases, the faults were introduced in different stages of 

severity (eccentricity and meshing force amplitude) to test the 

sensitivity of the method. Once the residual loads related to 

these faults are defined, the faulty vibration response was 

obtained solving Eq. (2), and then added to the original 

signal. The physical parameters in Eq. (2) were set to m=55 

kg, K=5E9 N/m and C= 1000 N/sm, giving a natural 

frequency of 1517 Hz. The mass of the rotor in the 

eccentricity case was set to 25 kg. Figure 4 shows an example 

of the vibration response of this system to a series of impacts. 

 
Figure 4: Signal response example 

4.2. Condition indicator mapping and normalization 

The first step in the approach described in 2.1 is a steadiness 

check to eliminate those data points considered not steady 

during the transition between operating points. The operating 

conditions in the data set used to generate the CI maps in 

absence of faults were analysed using a moving window of 4 

data points. All measurements incurring in variations higher 

than 2 rpm in speed or 2 % in valve position were dismissed 

for further steps of the analysis. Figure 5 shows the results 

obtained from this analysis, where 186 samples were labelled 

as non-steady and not considered for the clustering process. 

The same procedure was applied to the operating conditions 

of the second data set used for validation. 

The second step to produce the CI maps is the clustering of 

all the steady operating points observed. In first place the 

speed and valve position measurements in the training data 

set were normalised to a range of 0 to 1 and steady data 

samples were clustered using the ECM with a maximum 
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cluster diameter of 0.02. Figure 6 shows the clusters obtained 

(16 in this case), each one containing between 198 and 468 

samples. The cluster detail on the right side of the figure 

shows how all of the steady samples around a cluster centre 

are contained within the cluster edge.  
 

The statistical properties for each CI were studied 

individually, obtaining the corresponding PDF at each 

cluster. The cumulative probability was used to determine the 

upper limit at each cluster for a probability of 90%. Figure 7 

shows an example of the cumulative PDFs of the 1X peak 

amplitude feature obtained for the 16 corresponding clusters. 

These PDFs provided the information necessary to set the 

upper limit value at each cluster location with a confidence 

bound of 90 %. The CI values obtained and the location of 

the clusters were used to generate a 3D map (cubic 

interpolation) where the upper limit of the CI can be 

interpolated for any operating condition (see Figure 8). Using 

the same procedure, the maps of the other CIs were also 

obtained. With these maps the values of the CIs extracted 

from the signals can be normalised to the upper limit value, 

minimising the influence of the operating conditions on the 

value of the CI. 

 
Figure 7: 1X amplitude cumulative probability at each 

cluster 

 

Figure 5: Steadiness analysis 

  
Figure 6: Clustered data (left) and cluster detail (right) 
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Figure 8: 1X peak amplitude map 

 

The results of this normalization procedure applied to the 

validation data set can be seen in Figure 9. This data set 

contains 12 different operating points not tested in the 

training dataset, as the valve positions tested in this case were 

50, 70 and 100%. As it may be observed from Figure 9, the 

raw CIs extracted have two main problems. The first problem 

is the difference in magnitude (note the logarithmic scale in 

the y axis) inherent to the nature of each indicator, which 

makes the comparison and correlation of different CIs more 

difficult. The second and main problem is the dependency of 

the value of each indicator and the operating conditions, 

which is also obvious from the shape of the 3D map in Figure 

8. By normalising the CIs at each observation to its 

corresponding baseline value this dependency is minimised. 

The percentages of observations found over the baseline 

value (normalised value higher than 1) in the validation data 

set were 10.1 13.9 15.7 12.9 and 12.7% for the RMS, CF, K, 

1X and 2X amplitudes respectively. 

 

 
Figure 9: CI values before (top) and after (bottom) 

normalization 

4.3. Rotor unbalance 

Using the methodology described in 2.3, the vibration 

response to rotor unbalance was simulated for eccentricities 

of 0.2, 0.35 and 0.5mm. Figure 10 shows a comparison of the 

fast Fourier transform (FFT) of an unmodified vibration 

sample acquired at 2000 rpm and the FFT of the 

corresponding simulated rotor imbalance.  

 

Figure 10: FFT of a vibration sample at 2000 rpm (top) and 

rotor unbalance with 0.5 mm of eccentricity (bottom). 

 

The original signal is dominated in the low frequencies by the 

rotation speed (33.3 Hz) and its second and third harmonic, 

showing also relatively high levels of activity at higher 

frequencies in the range of 1500 to 2500 Hz. The simulated 

response to unbalance basically contains a sinusoidal 

component with the same frequency as the driving force. In 

the case of unbalance, the frequency and phase of the driving 

force were chosen to be equal to the frequency and phase of 

the 1X peak in each vibration sample. The amplitude of the 

driving force was calculated from Eq. (3) and the vibration 

response was obtained solving Eq. (2). Both signals, real and 

simulated, were then added to generate the faulty signal from 

which the CIs were extracted. Table 1 shows the detection 

rate for each indicator and each eccentricity studied. 

Detection rate is calculated as the percentage of normalised 

CI samples providing a value higher than 1. 

 

The results summarised in Table 1 indicate that the only CI 

providing a clear indication of the presence of the fault was 

the amplitude of the peak at 1X in the frequency domain. The 

detection rate was significantly high (88.9 %) even for the 

first case studied (0.2 mm), achieving a 100% detection rate 

in the most severe case (0.5 mm). Despite the normalization 

process, the behaviour of the indicator showed some 

e RMS CF K 1X 2X 

0.2 11.2 15.6 16.8 88.9 12.1 

0.35 19.4 18.1 15.4 92.8 12.9 

0.5 35.3 21.4 17.2 100 12.7 

Table 1: % Fault detection % (unbalance) 
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dependency on the rotational speed that hindered detection at 

low speeds with low fault severity. This is attributed to the 

fact that the fault injected depends on the square of the speed 

(see Eq. (3)) and hence its influence at low speeds is much 

smaller than at high speeds. General indicators from the time 

domain (RMS, CF and K) showed a poor detection 

performance. RMS increased slightly as the fault progressed, 

indicating a small increment in the energy of the signal 

(especially at high speeds). CF and K showed almost no 

variation, which is understandable as they are designed to 

detect impulse-like events. The amplitude of the peak at 2X 

did not show any significant changes as this frequency 

component of the signal was not affected by the fault injected. 

4.4. Gear fault 

The vibration response of a virtual gear with a damaged tooth 

was simulated using the method described in 2.3. Assuming 

a gearbox with perfect meshing (not producing vibration at 

the gear mesh frequency) the additional forces generated by 

one tooth with a damaged meshing surface were simulated as 

a series of impacts happening once per revolution. For 

simplicity the impact duration was set to 20% of the time 

between two consecutive teeth meshing, and the force 

amplitude was constant for all the regimes tested in each case. 

Three different severity cases were studied, using impact 

amplitudes of 100, 500 and 1000 N. Figure 11 shows the FFT 

of a simulated tooth surface fault signal at 2000 rpm.  

 

Figure 11: FFT of tooth surface fault at 2000 rpm (1000 N) 

 

In this case the simulated response to a sequence of impacts 

is dominated by the rotating speed frequency (around 33.3 

Hz) and its harmonics, as well as some activity around the 

natural frequency (1517 Hz). Table 3 shows the detection rate 

for each indicator and each load studied.  

 

The results summarised in Table 3 indicate that the most 

sensitive CI for this fault was again the amplitude of the 

frequency peak at the rotating frequency (1X). The second 

harmonic of the rotating speed (2X) also shows a very good 

sensitivity in this case, due to the harmonics produced by the 

response to the impacts. Kurtosis was also successful in the 

later stages of degradation, reaching 65.7 % detection rate for 

the 1000 N case. RMS showed a noticeable increment in the 

500 N and 1000N cases, but the detection rate just reached 

51.3% in the best case. Crest factor showed just a slight 

increment, probably due to the fact that the maximum signal 

amplitude is normalised by the signal RMS which also 

increased, hindering the performance of this indicator.  

5. CONCLUSION 

This study presented a novel vibration-based technique for 

rotorcraft gearbox monitoring under varying operating 

conditions. This technique is based on the extraction of key 

indicators and the generation of indicator maps for any 

operating condition tested based on the statistical analysis of 

clustered observations. The objective of these maps is to 

define a baseline for the value of the indicators for a range of 

operating conditions in the absence of faults. Normalization 

of the CIs using these baseline maps minimizes their 

dependency on the operating conditions and allows direct 

comparison of all the CIs with a common threshold for fault 

detection. 

The performance of the proposed method was tested using 

vibration data acquired from a compressor rig operating at 

different regimes. Initially the CI normalization procedure 

was validated using a data set which included conditions not 

seen in the training data set used to construct the maps. The 

results showed that normalization based on interpolation of 

these maps minimises the dependency of the indicators on 

operating conditions. Two mechanical faults with different 

characteristics were seeded into the data simulating the 

vibration response of these faults. The results showed that 

condition indicators specifically chosen for the detection of 

these particular faults, such as specific peaks in the FFT, are 

highly sensitive to the changes produced in the signal. These 

indicators provided very high detection rates for the whole 

range of operating conditions used during the test. Other 

condition indicators that characterise the signal globally were 

not so successful, and only provided high detection rates 

when the simulated degradation was high.  

These results prove the importance of   the selection of 

appropriate condition indicators for the faults expected in the 

system. The inclusion of specific indicators that are sensitive 

to faults and provide information about their origin is key 

even under stationary operation. The application of the 

proposed mapping and normalization approach allows the 

operator to assess the condition of the system in a wide 

variety of conditions, making it suitable for its application in 

rotorcraft gearboxes or any other mechanical system working 

at different operating regimes. 

 

 

Case RMS CF K 1X 2X 

100 N 11.6 15.4 31.2 65.2 57.4 

500 N 24.1 22.6 52.8 82.1 71.6 

1000 N 51.3 31.2 65.7 92.7 84.9 

Table 2: % Fault detection % (gear fault). 
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