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ABSTRACT

Predictive maintenance is essential for complex industrial
systems to foresee anomalies before major system faults or
ultimate breakdown. However, the existing efforts on Indus-
try 4.0 predictive monitoring are directed at semi-supervised
anomaly detection with limited robustness for large systems,
which are often accompanied by uncleaned and unlabeled
data. We address the challenge of predicting anomalies
through data-driven end-to-end deep learning models using
early warning symptoms on multivariate time series sensor
data. We introduce AnoP, a long multi-timestep anomaly pre-
diction system based on unsupervised attention-based causal
residual networks, to raise alerts for anomaly prevention.
The experimental evaluation on large data sets from detec-
tor health monitoring of the Hadron Calorimeter of the CMS
Experiment at LHC CERN demonstrates the promising effi-
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cacy of the proposed approach. AnoP predicted around 60%
of the anomalies up to seven days ahead, and the majority
of the missed anomalies are abnormalities with unpredictable
noisy-like behavior. Moreover, it has discovered previously
unknown anomalies in the calorimeter’s sensors.

1. INTRODUCTION

Modern industrial systems utilize sensors to monitor physi-
cal quantities such as voltages, currents, flows, temperature,
pressure etc. These measurements monitor system state by
detecting deviations from normal operating conditions. As
one of the pillars of Industry 4.0, Predictive Maintenance
(PdM), which primarily depends on early anomaly detection,
aims at predicting critical anomalies of a system to improve
asset availability by actuating early maintenance before ma-
jor system faults (Langone, Cuzzocrea, & Skantzos, 2020).
Anomaly prediction is an extension of anomaly detection
(AD) and focuses on predicting anomalies from early symp-
toms. It has cost saving potential for large complex systems
through prevention of unforeseen system faults, unplanned
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downtimes, and maintenance (Wagner & Hellingrath, 2021;
Tang, Chen, Bao, & Li, 2019; Huang, Wu, & Wang, 2016;
X. Li, Zhang, Ding, & Sun, 2020; Langone et al., 2020).
However, most of the data-driven PdM models in the litera-
ture employ supervised approaches that require prior labeled
anomalies and are limited to short-range predictions (Tang et
al., 2019; Huang et al., 2016; X. Li et al., 2020; Langone et
al., 2020; Wang, Liu, Zhu, Guo, & Hu, 2018; Hadj-Kacem,
Jemaa, Allio, & Slimen, 2020).

In this study, we strive to predict anomalies through data-
driven machine learning models from early warning patterns
on unlabeled multivariate time series data sets. We propose
AnoP, an end-to-end Anomaly Prediction system using unsu-
pervised long sequence time series forecasting and anomaly
detection mechanisms. The proposed system consists of a
pipeline of multivariate time series autoencoder models, i.e.,
a long horizon sequence-to-sequence (S2S) time series fore-
casting (TSF) model and an AD model. The underlying con-
cept employs a TSF model, trained on the interaction of mul-
tivariate sensor signals, to predict future temporal segments,
and then uses an AD model to evaluate the predicted signals
for potential anomalies. Furthermore, since additive outliers
(transient and interpreted on short time scales) are generally
unpredictable, our study aims at forecasting anomalous tem-
porary changes that persevere for a certain period (multiple
time steps) (T. Wen & Keyes, 2019).

As a use case study for anomaly prediction, we have dis-
cussed the Hadron Calorimeter (HCAL) of the CMS exper-
iment at CERN. We have developed the AnoP system to
predict anomalies from the multivariate diagnostics sensor
data and leverage the health monitoring prognostics of the
HCAL’s Endcap. Capturing anomalies that persist for sub-
stantial periods, often manifested in decaying or growing
trends, strange dips, or peaks, are the prime focus of the pro-
posed system. We assessed the performance of the AnoP sys-
tem in predicting temporal discords using various long se-
quence horizons on thirty-four Readout Boxes. Because of
the lack of labeled anomaly data, we scrutinized the perfor-
mance in forecasting anomalies with classification metrics as
compared with the anomaly flags generated by the AD model
when the true signals (non-forecasted) are supplied to it di-
rectly without the TSF model. Besides, we have incorporated
an evaluation of the forecasting accuracy of the TSF model.
Furthermore, we have demonstrated that the proposed system
has revealed anomalies that have never been captured before
in the HCAL.

The key contributions of our work are highlighted below:

*  We present a data-driven unsupervised anomaly predic-
tion mechanism, from heterogeneous multivariate time
series sensor dataset.

*  We introduce a time block-based S2S TSF model that
captures temporal causal interactions for long sequence

multivariate time series prediction.

*  We present a first study on early prognostics through
data-driven methods for the HCAL Endcap Readout Box
(RBX) monitoring from diagnostic sensor data.

We discuss background on anomaly prediction and the HCAL
system in Section 2, and highlight the data sets used in the
study in Section 3. We present the methodology of the pro-
posed AnoP system and modeling approach in Section 4.
Section 5 provides performance evaluation in long sequence
forecasting and anomaly prediction on the HCAL sensor data
sets. Finally, Section 6 offers our conclusion.

2. BACKGROUND

This section discusses background on anomaly prediction,
multi-timestep forecasting, and the HCAL system.

2.1. Time Series Anomaly Prediction

Inadequate maintenance techniques can reduce the over-
all productive capacity of equipment by up to 20%, and
unplanned downtimes and reactive maintenance in indus-
trial systems incur substantial costs each year (Kamat &
Sugandhi, 2020). PdM applications often refer to perform-
ing anomaly detection, diagnostics, and prognostics taking
into account the Prognostics and Health Management (PHM)
algorithms (Wagner & Hellingrath, 2021).

Conventionally, industries carry out PdM using statis-
tical tests, rule-based alerts, and preset threshold lim-
its (Rezvanizaniani, Dempsey, & Lee, 2014). Owing to the
current advancement in sensor and data processing technolo-
gies, recent PAM approaches emphasize on machine learn-
ing approaches to capture intricate hidden patterns (Wang et
al., 2018; X. Li et al., 2020; Wagner & Hellingrath, 2021).
However, the existing data-driven approaches for PdM re-
volve around the development of supervised models which
aim at specific labeled data or/and rely on feature extraction
signal processing tools such as variants of Fourier transform,
Wavelet transform, statistical based and principal component
analysis (PCA) (Tang et al., 2019; Huang et al., 2016; X. Li
et al., 2020; Langone et al., 2020; Wang et al., 2018; Hadj-
Kacem et al., 2020; Hamaide & Glineur, 2021). In (Hadj-
Kacem et al., 2020), a machine learning-based anomaly pre-
diction model was proposed using forecasting future time
steps mechanism for mobile networks. However, the ap-
proach covers short sequences (forecast up to a 16-step hori-
zon) and relies on linear regression, PCA, and supervised lo-
gistic regression. Moreover, the efforts on automated feature
extraction, via end-to-end deep learning, for prognosis mainly
focus on remaining useful time (RUL) estimation (Gugulothu
et al., 2017). Generally, the adoption of the above methods
for multivariate complex systems is constrained due to high-
cost data labeling on heterogeneous sensors. Besides, early
signs of anomalies are often not easily seen by experts and
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are challenging to annotate in large data sets from numer-
ous monitoring sensors. Furthermore, operational quality-
altering anomalies, which do not lead to an ultimate break-
down, are often overlooked. Therefore, unsupervised end-
to-end deep learning methods are essential for anomaly pre-
diction system development. Our AnoP approach employs
unsupervised models and provides much longer horizon fore-
casting by capturing non-linear temporal interactions among
multidimensional sensors via deep learning models. It deter-
mines when a system anomaly will happen, the nature of the
anomaly pattern, and the affected sensors.

2.2. Long Sequence Time Series Forecasting

Many real-world applications require long sequence time se-
ries predictions, such as price forecasting in the stock market
(Y. Liu, Gong, Yang, & Chen, 2020), e-commerce sell predic-
tion (R. Wen, Torkkola, Narayanaswamy, & Madeka, 2017),
traffic forecasting (Y. Li, Yu, Shahabi, & Liu, 2017), electric-
ity consumption projecting (Y. Liu et al., 2020; R. Wen et al.,
2017; Cinar et al., 2017), weather forecasting (Y. Liu et al.,
2020; Cinar et al., 2017) etc. To forecast long sequence time
series signals, a model with a high prediction capability (the
ability to capture long-range dependencies between predictor
and target data effectively) is required (Zhou et al., 2021).

Generally, long sequence forecasting approaches employ S2S
autoencoder paradigm using recurrent neural network (RNN)
variants (Y. Li et al., 2017; Y. Liu et al., 2020; Qin et al.,
2017; Cinar et al., 2017; R. Wen et al., 2017) and Trans-
former (Zhou et al., 2021). However, RNN-based mod-
els may have potential limitations in inference speed and
accuracy when sequence length increase due to the recur-
sive step-by-step inferencing (Zhou et al., 2021), and in per-
formance because of deterioration when the length of the
input sequence increases (Cho et al., 2014). To address
these challenges, decoder models with parallel generation are
proposed using attention mechanisms (Y. Liu et al., 2020;
Qin et al., 2017; Cinar et al., 2017), multilayer-perceptron
(MLP) (R. Wen et al., 2017) and Transformer (Zhou et al.,
2021). Nevertheless, these approaches operate only with pre-
defined short horizons (fewer than approximately 40 data
points) that limits their scalability (Z. Liu, Loo, & Pasupa,
2021; Y. Li et al., 2017; Y. Liu et al., 2020; Qin et al., 2017;
R. Wen et al., 2017) except in (Zhou et al., 2021). Zhou et
al. (Zhou et al., 2021) demonstrated the efficacy of an In-
former model, a Transformer autoencoder architecture, with
various horizons in univariate and multivariate time series
data sets. However, the Informer model still lacks S2S gen-
eration for longer horizons and requires training of separate
models for each target horizon. Besides, sensor data in the
real world scenarios are accompanied by missing or invalid
values that often results in reading segments with variable
length. Hence, incorporating RNN variant models remains
relevant for dealing such variability in a time series data.

2.3. Readout Boxes of the HCAL Detector

The CMS Experiment is one of the two general purpose de-
tectors operating at CERN’s Large Hadron Collider (LHC)
(Collaboration et al., 2008). The Hadron Calorimeter
(HCAL) of CMS is responsible for measuring the energy of
hadronic showers originating from the LHC collisions. The
HCAL is divided into four subdetectors: the HCAL Barrel
(HB), HCAL Endcap (HE), HCAL Outer (HO), and HCAL
Forward (HF). This paper discusses only the monitoring data
of the HE subdetector, a brass and scintillating plastic sam-
pling calorimeter.

The HE is arranged into two hemispheres, HE Plus (HEP),
and HE Minus (HEM). Each half is further divided into eigh-
teen identical wedges. Signal from each wedge is read out
by one “Readout Box” (RBX). Figure 1 showcases the RBX
numbering and HE geometry. The RBX represents the small-
est unit of front-end control and power, with each RBX con-
sisting of a water-cooled aluminum shell housing the front-
end data acquisition, control, and communication electronics.
The electronics consist of low voltage distribution, high volt-
age distribution, four Readout Modules (RMs), a Calibration
Unit (CU) and one next-generation Clock, Control, and Mon-
itoring Module (ngCCM). The ngCCM provides backend-to-
frontend communication, control, and clock distribution.

* 2HCAL Endcaps (+z)
* 18 wedges per Endcap
+ 1 Readout Box (RBX)
per wedge
« 20 deg. (@) per wedge

Figure 1. The HE subdetector of the CMS Experiment. Left:
arrangement of eighteen RBXes. Right: installation position
of the HE on the CMS detector.

To maintain physics data acquisition quality, predicting faults
of the detector electronics is essential. Currently, the CMS
HCAL only uses automated monitoring for general detec-
tor safety through established Detector Control and Detec-
tor Safety Systems (DCS and DSS, respectively). These sys-
tems use a small subset of the available monitored variables
available to generate threshold-based alerts on quantities like
temperature or bias voltage. Therefore, machine learning
models have been explored for system monitoring automa-
tion of the CMS detectors through time series anomaly de-
tection (Asres et al., 2021; Paltenghi, 2020; Azzolin et al.,
2019; Wielgosz, Skoczen, & Wiatr, 2018; Wielgosz, Mer-
tik, Skoczen, & De Matteis, 2018). Anomalous behavior in
additional variables can also indicate future detector perfor-
mance issues, and escape the DCS and DSS monitoring. For
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example, the gradual decrease in the monitored Received Sig-
nal Strength Indicator (RSSI) current, which is proportional
to the received light at the front end from the back end op-
tical communication links, preceded control communication
loss during operation in 2018 and 2019 (Cummings & the
CMS Collaboration, 2021). RSSI was not actively monitored,
and trends such as depicted in Figure 2 could have been pre-
dicted. The proposed approach in this paper attempts to de-
tect such anomalies from early signs before they affect data
quality or result in loss of data.
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Figure 2. Gradual drifting anomalies on RSSI before ngCCM
lost communication in 2019. A strong decay over three days
is illustrated for the HEPO6 RBX.

3. DATA SET DESCRIPTION

In this study, we have utilized front-end electronics diagnos-
tic sensor data from the HCAL. These data sets are recorded
for detector health monitoring and diagnostic purposes, not
for physics data analysis. We have used ngCCM monitoring
data from the HE subdetector collected in 2018 using the HE
monitoring service. The HE monitoring service communi-
cates to the front-end electronics through the ngCCM server,
a software that handles access to the ngCCM. The data set
contains 86M readings of around 2600 monitored quantities,
measured once per minute, from 34 active RBXes (HEPO1-
18 and HEMOI1-18, excluding HEM15 and HEM16) from
September to December 2018. The signals are composed
of current, voltage, and optical power measurements of vari-
ous components of the ngCCM. Finally, we downsampled the
data into hourly intervals by averaging to capture the relevant
temporal information.

4. METHODOLOGY

This section provides the methodology of the proposed
anomaly prediction approach and models.

The proposed AnoP system is composed of two multivariate
time series autoencoder models combined in a pipeline, i.e.,
1) a multi-timestep TSF model, and ii) an AD model (see Fig-
ure 3). We have discussed below the mathematical formula-
tion and model architectures for the TSF and AD of the AnoP
in Section 4.1 and Section 4.2, respectively. Section 4.3 elab-

orates the data preprocessing, preparation of training data sets
and model training.

= Forecasted : Anomaly Explainer
=l y— Sensor Signals Alerts Feature Attribution
‘7 = - ./_ TSP Mode! ABModel based Output
Hﬁ‘fy ) Explanation

Sensor Signals

Figure 3. System design of the proposed AnoP system. The
TSF model predicts a long sequence of signals, and the AD
model produces anomaly status of the predicted signals based
on reconstruction scores. The explainer yields explanation
for the detected anomalies using post-hoc feature attribution
estimation.

4.1. Multivariate Multi-timestep Forecasting Model

For long sequence forecasting, we propose a robust attention-
based S2S dynamic conditional decoding mechanism. In
essence, a TSF model needs to cope with two challenges in
anomaly prediction. First, it should predict the deviating sig-
nals belonging to anomalies from their early fluctuation pat-
terns. Second, it should also quickly adjust its prediction af-
ter intervention or maintenance, when normal system behav-
ior is resumed. To achieve these capabilities, we integrate a
conditional decoder for the TSF model where the latest time
window of the sensors is used as conditional input. The con-
ditional decoding enables the TSF model to respond faster
when the sensor signals begin to evolve. Additionally, we
employ dynamic decoding, a recursive conditional decoder,
to allow dynamic long-horizon forecasting. Dynamic condi-
tional decoding is a mechanism in which earlier slices or to-
kens from the model output are supplied into the decoder as
conditional input to generate the subsequent output sequence.
This approach has been successfully applied with S2S mod-
els in natural language processing domains such as language
translation (Sutskever, Vinyals, & Le, 2014; Devlin, Chang,
Lee, & Toutanova, 2018). Conditional decoding without the
recursive dynamic decoding has also been extended into time
series data sets in recent studies (Zhou et al., 2021).

4.1.1. Mathematical Formulation

Let the input time series data is 27 € RY=*T where N, is
the number of input sensors with a history sequence of ¢, €
[t — T,t'], with length of T. The TSF model F' predicts
the sequence y7 € R™v*H with a horizon time window of
ty € [t' + 1,¢' + H] for N, target sensors. Since, the TSF
model employs S2S autoencoder, the encoder F, maps the
input 27" into context z, and state vectors h, Eq. (1):

Zeyhe = Fo(zT) (1)

The decoder F); utilizes dynamic conditional decoding that
uses the context vectors z. and conditional input sequences
from the target sensors y4 from the last time steps t4 € [t —
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T,,t] with a size of Ty to predict the multi-timestep signals
yf and generate decoding state hq Eq. (2):

yHah/d = Fd(ydazevhd) (2)

When inferencing long sequence horizon H; > H with size
of [, the decoder uses dynamic decoding that behaves in an
autoregressive manner employing a time block-based S2S ap-
proach (see Algorithm 1). The decoder initializes its states hg
from the encoder states, hgy = h,, and then recursively pre-
dicts multi-timestep signal segments of the size H (from line
7 to 11 in Algorithm 1). The latest predicted horizon y* is
combined with the y4 to form a new conditional input to the
decoder for the subsequent forecasts (line 9).

Algorithm 1 Multistep Forecasting Inference

1: procedure TIMEBLOCKS2SMULTISTEPFORECASTING(F, x, yq, H;)
> I : forecasting S2S encoder-decoder model
> : multivariate input times series signals with size of N x T'
> yq : initial decoder input from past time-window of the target signals
> Hj : time length of the target horizon

2: H <+ getModelHorizonSize(F)
3: N; < H;/H © number of forecasting iterations with basic block

of H
4: Ze,he < Fe(x) > get the learned context vectors and states from
the encoder
5: hg < he 1> initial state of decoder
6: y <« [
7: foriwn [1,..,N;] : do
8: szhd (_Fd(ydaze’hd)

9: y + join(y, yH) > concatenate on the time dimension
10: ya < getCondInput(y™,yq) > update conditional input
11: return y
12: procedure GETCONDINPUT(yH | y4) > returns decoder
conditional input segment

13: H + length(y™)

14: Ty < length(yq)

15: if H < T, then

16: ya « join(yg{t € [H,Ty4]},y™) > update the latest
steps of 14 from yH

17: else

18: ya < yHE{t € [H — Ty, H]} > get the latest Ty steps
from the y*

19: return yg

Furthermore, to improve attentiveness of the conditional in-
puts and leverage the multi-timestep forecasting accuracy,
the decoder employs a multi-attention mechanism (see Fig-
ure 4). The model is composed of three parallel attention
layers; one for the encoded latent or context vectors z., and
two blocks for the conditional multivariate sensor signals y4
on the feature (sensor quantity) and time dimensions, respec-
tively Eq. (3):

VY, = softmaz(z.)

wy; = softmax(y}) (3)

ilzyg = softmax(yf;)

where 1),_ is attention on the learned encoder context vector
Ze, and %:, and wy s are attention scores of the decoder con-
ditional input y,4 on its temporal and feature dimensions, re-
spectively. Finally, attention scores are concatenated to form
predictor features for the multi-timestep forecasting Eq. (4):

4.1.2. Model Architecture

The proposed TSF S2S autoencoder model is composed of
residual dilated convolutional and GRU networks with atten-
tion (see Figure 4).

To achieve temporal causation learning, multiple convolu-
tional layers are stacked in the network with increasing di-
lation size. The increasing dilation along subsequent lay-
ers expands the receptive field of the convolution operation
in the time data (Bai, Kolter, & Koltun, 2018; He & Zhao,
2019). Furthermore, to mitigate the performance degradation
for long input sequences, we have ameliorated the model with
time dimension reduction through multilayer pooling. More-
over, residual skip connections are added in the convolutional
network to enhance training with deep layers.

Unlike the encoder, the decoder utilizes an attention-based
network that takes decoding inputs from the encoded latent
features and conditional signals. Nevertheless, the remain-
ing sections of the decoder consists of similar blocks as the
encoder but in reverse order and in deconvolution configu-
ration. It also employs a final deconvolution layer with unit
kernel size for output stabilization. Generally, the number
of convolutional blocks on the encoder and decoder may dif-
fer since the encoder attempts to learn relevant context from
the history time window, whereas the decoder’s purpose is to
predict the signals in the horizon time window. Furthermore,
the conditional input signals to the decoder pass through a
convolutional embedding block, to extract relevant temporal
features, before the attention network. Unlike previous stud-
ies (Qin et al., 2017; Zhou et al., 2021), the attention network
in our model is not followed with a fully-connected layer to
reduce model complexity. It is directly connected to the GRU
network, and the input weights of the first GRU layer can pro-
vide a similar functionality as fully-connected layer.

4.2. Multivariate Time Series Anomaly Detection Model

The AD model employs variational autoencoder G that at-
tempts to reconstruct ' from a multivariate input data 27 €
RNXT from N sensors on a time sequence ¢ € [t' — T,t'].
The encoder of the model provides normally distributed low-
dimensional representation latent signals z Eq. (5). The de-
coder generates the reconstructed signals Z' from encoded
latent signals Eq. (6):
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Figure 4. Architecture of the multi-timestep forecasting S2S autoencoder of the TSF model. The residual block: consists of
a 1D dilated convolutional network while the recurrent neural network contains two GRU (encoder hidden_size: 16 — 16,
decoder: 16 — 256) layers. The convolutional block: 1D dilated convolutional (256 kernels, except C B¢ and C’B? with

16 and N, kernels, respectively) for fast localized feature extraction, BatchNorm for network weight regularization and faster
convergence, LeakyReLU for non-linear activation, and MaxPooling for prominent features retrieval that are insensitivity to time
translation. Softmax: builds the attention in the decoder. Finally, Dropout=0.20 for further training regularization. Temporal
causal learning via the convolutional layers with varying size of dilation and the GRU layers.

distance, and o, 4 contains the adjustable parameters to tune
2= Go(zT) (5)  detection sensitively.

Finally, the unsupervised autoencoder is built on 1D con-

N volutional and GRU networks, accompanied by a post-hoc
Ga(2) (6) . n .

anomaly explainer based on feature attribution algorithms

Finally, the model estimates anomaly scores from the signal ~ Such as Integrated Gradient and SHAP (see Figure 5). The

reconstruction errors. For each univariate sensor, reconstruc- ~ model is adopted from our previous work on multivariate AD

tion anomaly scores at time ¢’ are calculated based on Mean for the HCAL sensor diagnostics, and further description and
Absolute Error (MAE) Eq. (7): performance evaluation on the model can be found in (Asres

etal., 2021).

) =2 3 feit) = 7 (0) %)

T
t=t'—T ‘;r_m

Encoder Decoder

where z; and Z; are the input and reconstructed signals of L Reconstuded Signals
the ' sensor. The multidimensional reconstruction score Conv M Inpociing

is finally converted into system anomaly score using Ma- ;xﬂg:l.mg Cﬂz‘khﬁ“m

halanobis distance (D,,4) estimation, multidimensional dis-

tance between a point (vector) and a distribution (De Maess- Figure 5. Architecture of the multivariate reconstruction au-
chalck, Jouan-Rimbaud, & Massart, 2000) Eq. (8). toencoder of the CGVAE AD model. The convolutional net-

work is consists of three blocks; each consists of 1D con-
volutional layer (64 kernels, kernel_size=1 x 3). The re-
_ current network consists of two GRU (encoder hidden _size:
Dima = \/(Ai )T O (A p) ® g5 4, decoder: 4 — 16) layers. (;LZ and o, are ful%y-
connected linear layers implementing the variation layer and
where D, 4 is the Mahalanobis distance. The vector A;isthe  z = p,+0,.®¢, where € ~ N (0, I) and ® signify an element-
multivariate anomaly score of the it observation, the vector wise product.
1 contains the mean values of the univariate scores (across all
observations), and C ! is the inverse covariance matrix of A. 4.3. Dataset Preparation and Model Training

Finally, a threshold Kyng = qindptma is applied on the Dina gince the TSF and AD models of the proposed AnoP sys-
to generate anomaly flags. The fiynq = E[Dpmal is the mean o require different training data sets, the models were
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trained separately. The AD needs a training dataset with
healthy instances or low anomaly contamination, while the
TSF requires substantial predictable anomalies in its training
dataset. However, obtaining clean data of healthy instances
in the training data is one of the main challenges of semi-
supervised learning of AD models (Munir, Siddiqui, Dengel,
& Ahmed, 2018). We cleaned the potential outliers from each
univariate sensor data in the training set using state-of-the-
art time series outlier detection algorithm, Saliency Residual
(SR) (Asres et al., 2021; Zhao et al., 2020). On the other
hand, the TSF autoencoder was trained on the dataset con-
taminated with anomalous patterns to leverage its capability
to forecast anomaly signals from early signs. The modeling
approach is fully unsupervised and does not require any label-
ing. However, since anomalies are rare instances, the model
may struggle to learn the anomaly signals due to the class im-
balance. We attempted to mitigate the challenge with support
of the AD model. We selected the data sources, the RBXes,
that have a significant number of outliers (potential anoma-
lies) spanning substantial periods on the sensor data.

Finally, we trained the autoencoder models with Adam
optimizer using a super-convergence cyclic learning rate
scheduling mechanism (Smith & Topin, 2019). To mitigate
Kullback-Leibler (KL) divergence vanishing or latent squash-
ing for the variational autoencoder of the AD model, we have
applied a cyclic annealing method (Fu et al., 2019) when KL
divergence loss regularizes the training cost function.

5. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the performance of the proposed
long sequence time series forecasting model and the AnoP
system, and finally, share ideas for future research directions.

As discussed in Section 4, we trained the TSF and AD mod-
els of the AnoP on different data sets with twenty-six sen-
sors per RBX. In our experiment, we have used the same
sensors for the input and target, N, = N,. The TSF au-
toencoder was trained on two-month data, 10-11/2018, from
six RBXes (HEMO1, HEM04, HEM 17, HEP14, HEP15, and
HEP18), while one-month data, 10/2018, from four stable
RBXes (HEMO1, HEMO07, HEM17, and HEP11) were used
to train the AD autoencoder. The models were developed
with PyTorch and trained up to 5000 iterations. Finally, we
have evaluated performance of the proposed models on the
date range of 25/09-03/12/2018 for thirty-four RBXes.

The TSF uses a T' = 120 hours (5 days) sliding history time-
window with prediction horizon sizes of H = [24, 168] hours
(1 to 7 days). The conditional decoder of the model uses
the last T; = 24 hours from the history time window for
the target sensors. The AD model predicts anomalies on the
24 hours sliding window. We have set a,,q = 10, deter-
mined heuristically, to estimate the anomaly detection de-
cision thresholds for the reconstruction anomaly detection.

Finally, we compared the anomaly prediction performance
of the AnoP with the benchmark CGVAE AD model. The
benchmark model is the same as the AD model of the AnoP
except it detects the anomaly from the raw sensor signals in
contrast to the AnoP, where the AD model detects anomalies
from the forecasted signals.

5.1. Multi-timestep Forecasting Model Evaluation

In this section, we present the results on performance evalua-
tion of the TSF model in forecasting long horizon sequences.

The model employs N¢, = 2 and N%, = 4 casual residual
convolution blocks for the encoder and decoder networks, re-
spectively, and basic forecasting horizon H = 24 hours. We
assessed the efficacy on multiple long horizon sizes, i.e., 24
to 168 samples (see Table 1). The results demonstrate that
the model forecasted long horizons with slight performance
degradation through time block S2S mechanism.

Table 1. Multivariate time series forecasting performance,
averaged from all RBXes, on different horizons.

Horizon (H) | 24h | 48h | 72h [ 96h [ 120h | 144h | 168h

MAE [ 0418 [ 0.430 | 0.444 | 0.464 | 0.473 | 0.503 | 0.529

MSE | 1.392 [ 1.416 | 1.465 [ 1.515 | 1.558 | 1.635 | 1.705
MAE - Mean Absolute Error, MSE - Mean Square Error

Figure 6 illustrates the forecasting capability of the proposed
attention mechanism with the conditional decoding as com-
pared with conditional decoder without attention. The mean
absolute error (MAE) and mean square error (MSE) perfor-
mance improve substantially by 10-15% and 22-28%, re-
spectively. Furthermore, Figure 7 portrays an ablation study
on the TSF model demonstrating the promising contribution
of the major building blocks of the model, i.e. the attention,
conditional decoding, and convolution layers.
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Figure 6. Multivariate time series forecasting performance
comparison between different model configurations. Model
1: the proposed attention-based conditional decoder, and
Model 2: conditional decoder without attention.

5.2. Anomaly Prediction Performance

In the absence of annotated data, we define an anomaly as
an outlier that deviates from the expected nominal charac-
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Figure 7. Ablation performance evaluation of the TSF model
at H = 24 hours. The MAE score difference in percentage
is give relative to the proposed model. *attn — w/o attention,
**cond — w/o conditional decoding, and ***conv — w/o con-
volution layers.

teristics. Thus, not all anomalies indicate failure in the de-
tector. The efficacy of the AD model was assessed as com-
pared with benchmark error-counter variables of the HCAL
in (Asres et al., 2021). However, the counters are less con-
venient to be used for anomaly prediction evaluation as they
are ineffective in capturing most of the gradual system dete-
rioration anomalies (Asres et al., 2021). Hence, we generated
reference anomaly labels from the AD model, i.e., AD on
the raw data (not forecasted) to assess the performance of the
proposed anomaly prediction system.

Generally, on average, the AD model flagged around 160
anomalous reading points per RBX on the raw data, moni-
tored from twenty-six sensors over a period of 10 weeks (see
Figure 8). Exceptionally, higher number of flags were gener-
ated from a few RBXes due to higher variability on the read-
ings from 1V2_CURRENT sensor on the slave control card
of ngCCM (see discussion below at the end of this section).
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Figure 8. Number of anomaly data points, detected by the
CGVAE AD model, that are used as reference flags for the
evaluation of the anomaly prediction system. High num-
ber of anomalies in some RBXes such as HEMO05, HEPO3,
HEPO5, HEP13, and HEP14 due to noisy behavior of the
1V2_CURRENT sensor of the ngCCM slave control card.

Figure 9 and 10 portray the classification performance on
prediction accuracy of the proposed AnoP system. The
AnoP has predicted long horizon anomalies with high preci-
sion, demonstrating the robustness of the proposed system in
avoiding false flags (see Figure 9). Despite this good perfor-
mance, the recall is just below 0.60. This limitation is due to
missed anomalies arising from unpredictable transient behav-
ior. Additive noise is a prime cause of transient anomalies.

Our models revealed a noisy behavior of the 1V2_.CURRENT
sensor of the ngCCM slave control card of some RBXes. Fig-
ure 11 illustrates an example of the sensor’s behavior and our
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Figure 9. Anomaly prediction performance of AnoP as com-
pared to the CGVAE AD model across different horizons.
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Figure 10. Distribution of anomaly prediction performance of
AnoP on multiple horizons across RBXes. The lower perfor-
mance in some RBXes is generally due to additive transient
anomalies and noisy slave control card sensors. HEMOS8 has
missing sensor which impacts the prediction (data was im-
puted with nominal value).

AnoP model’s response. The AD model generated substantial
anomaly flags for those particular RBXes (see Figure 8), but
the AnoP struggled to achieve good anomaly forecast (low re-
call) due to lack of learnable causal patterns (see Figure 10).
While this was the first observation of this phenomenon in
the HCAL, the behavior is not entirely unexpected. The slave
control card can be noisier than the master due to the mounted
FPGA’s attempt to lock onto a non-existent incoming data-
stream, since the slave card does not maintain the backend
communication link. This behavior does not impact opera-
tion, but monitoring its status would provide relevant infor-
mation when the decision of switching the master ngCCM
control card is made.

Sensor Reading (Blue), Forecasted Signal (Grey), and Anomaly Flag (Red)
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Figure 11. Anomaly prediction on 1 V2_CURRENT sensor of
the ngCCM slave control card of RBX HEPOS. The sensor is
found to be noisier in some RBXes. For instance, five times
stronger noise-like fluctuation (around 0.01A) was observed
as compared to its corresponding master card (0.002A) and
slave card of the other RBXes. The sensor contributed a large
number of anomaly flags for the RBXes. The value of the
y-axis is normalized reading after subtracting the mean value
across the period.
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Persistent anomalies are often indicators of severe problems
in the monitored system, and Figure 12 portrays a captivating
anomaly captured from the successful forecast of persistent
outliers, i.e., in the current and voltage sensors of the RBXes
from October 28 to November 03, 2018. We found that dur-
ing that time there had been Machine Development (MD) and
Technical Stop (TS) tasks on the LHC. The MD weeks are
planned in the LHC operation schedule to optimize and study
the performance of the machine and to allow the operators
to improve the long-term performance of the LHC. Follow-
ing our finding, investigations revealed that the MD and TS
task had unexpectedly affected the low-voltage supply of the
RBX. The changes were within tolerance, and did not neg-
atively impact HCAL’s performance, but this knowledge al-
lows the HCAL team to better prepare for LHC interventions
in the future.

Ground Truth Sensor Reading (Blue) and Forecasted Signal (Grey)
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Figure 12. Forecasting capability on persistent and transient
anomalies on the 1V2_CURRENT sensor of the master con-
trol card of the HEPO3. (Top) forecasted signal from the
TSF autoencoder using 24 hours horizon as compared to the
ground truth signal. (Middle) signal reconstruction via the
AD autoencoder from the forecasted signal. (Bottom) the
estimation of the reconstruction-based anomaly score on the
forecasted signal. Red boxes highlight the persistent outliers
(successfully forecasted), whereas the yellow boxes enclose
the transient or spike outliers (challenging to forecast).

5.3. Directions for Future Research

The robustness of AnoP relies on the accuracy of the em-
ployed TSF and AD models. In general applicability to sen-
sor data with limited anomaly samples, two suggestions can
be rendered generally to mitigate the class-imbalance dur-
ing training of the TSF model, i.e., (i) weighted training loss
functions, and (ii) data augmentation through synthetic data
generation. Having an AD model beforehand, the data sets
can be annotated with ease and higher weights can be as-
signed to the sections with anomalous patterns during train-
ing loss estimation. The other alternative is to generate and
incorporate synthetic data into the training dataset (Ducoffe,
Haloui, & Gupta, 2019). The recent progress on deep gen-
erative adversarial network (GAN) models has demonstrated

good capability on multivariate time series signals (Ducoffe
et al., 2019; Yoon, Jarrett, & Van der Schaar, 2019).

6. CONCLUSION

Predictive Maintenance, owing to its versatile leverages in
significantly cutting maintenance costs and downtimes, has
become a pillar application of Industry 4.0. In this study,
we have demonstrated the efficacy of the anomaly predic-
tion approach (AnoP) through unsupervised end-to-end long
time series forecasting and anomaly detection mechanisms
on multivariate time series data. The experimental evaluation
on the CMS HCAL diagnostic monitoring sensor data sets
has unveiled that anomalies that persevere for a certain pe-
riod can be forecasted from early indications. The developed
anomaly prediction system is expected to enable prognostics
and predictive maintenance in the HCAL during LHC RUN
III. Currently, the AnoP is under pre-production testing phase
for the HCAL monitoring. Finally, the proposed approaches
of the AnoP are generic enough to be applied with less ef-
fort for predictive maintenance applications in other domains
with time series data.
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