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ABSTRACT

This paper proposes hybrid methods using physics-informed
(PD lightweight Temporal Convolution Neural Network (PI-
TCN) for bearings’ remaining useful life (RUL) prediction
under stiffness degradation. It includes three PI hybrid mod-
els: a) PI Feature model (PIFM) — constructing physics-
informed health indicator (PIHI) to augment the feature space,
b) PI Layer model (PILM) — encoding the physics governing
equations in a hidden layer, and c) PI Layer Based Loss model
(PILLM) — designing PI conflict loss, taking into account the
difference before and after integration of the physics input-
output relations involved module to the loss function. We
simulated 200 different bearing stiffness degradations, using
their discrete monitored vibration signals to verify the effec-
tiveness of the proposed method. We also investigate their in-
ference process through feature heat map analysis to interpret
how the models melt physics knowledge to assist in captur-
ing the degradation trend. The physics knowledge considered
in this paper is the dynamic relationship between vibration
amplitude and stiffness in a damped forced vibration model.
The results show that all three PITCN models effectively cap-
ture degradation-related trend information and perform better
than the vanilla lightweight TCN. Furthermore, the visualiza-
tion of the feature channels highlights the important role of
physics information in model training. Channels containing
physics information demonstrate higher correlation with re-
sults as they significantly dominate the heat map compared to
other channels.

Keywords—Physics-informed machine learning; Non-trending
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Weikun Deng et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

1. INTRODUCTION

Bearings are critical components that are susceptible to fa-
tigue damage and need to be monitored. Under certain de-
graded working conditions, its crack propagation process is
not obviously characterized in the early stage monitoring. (Li,
Hu, Meng, Zhan, & Shen, 2018). As a result, the monitor-
ing signal and the corresponding periodical statistics tend to
show “slight trend” before severe degradation, and the dra-
matic feature variation only appears in signal collected from
the end of services life (Porotsky & Bluvband, 2012).

Due to the incomplete knowledge of the bearing degradation
mechanism, high cost in dynamics failure modeling (Massi et
al., 2014) and the sparsity of the degradation information, the
classic solutions, neither the traditional physics-based meth-
ods nor the data-driven machine learning (ML) methods (Shi
& Chehade, 2021) are applicable to capture the information
about the nonlinear degradation from past data and working
conditions (H. Liu, Song, Zhang, & Kudreyko, 2021).

As a result, researchers have turned to the quest to develop
hybrid approaches. On the one hand, guiding machine learn-
ing to explore the embedding properties of the data by impos-
ing additional constraints during training has been shown to
learn better representations of degradation trends (Liao, Jin,
& Pavel, 2016). On the other hand, the physics-informed
Machine Learning (PIML) method using incomplete physics
model design constraints can maintain the physics consis-
tency of ML training results and improve vanilla ML model
performance (Karniadakis et al., 2021). For this purpose, the
incorporation of physics knowledge in the main parts of the
ML pipeline, including the augmented input space (Q. Wang,
Taal, & Fink, 2021; Chao, Kulkarni, Goebel, & Fink, 2022),
the algorithm architecture (Yucesan & Viana, 2020; Viana,
Nascimento, Dourado, & Yucesan, 2021) and the objective
function (J. Wang, Li, Zhao, & Gao, 2020), has received

Page 118



Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN — 978-1-936263-36-3

much attention in recent years in PHM.

These researches prove that we can integrate physics knowl-
edge directly in ML, especially the Deep neural networks
(Nascimento, Corbetta, Kulkarni, & Viana, 2021) and in turn,
ML can compensate for incomplete physics models (Yucesan
& Viana, 2022), thus establishing a mapping between struc-
tural parameters (causal factors) and degradation states (phe-
nomena).

However, in the face of such limited data, the performance
of the PIML model is yet unknown. Moreover, many PIML
improvements are primarily based on over-parametric Neu-
ral Networks (Caixian, 2021) that often have more parame-
ters than the data points available for a single training batch
(Deepmind, 2019). The large number of parameters can as-
sist in expressing the complexity of the association between
the casual factor and data to some extent, but may lead to
over-fitting issue and becomes infeasible for real-time ap-
plications. Meanwhile, we still lack an intuitive sense of
the mechanism of physics information in ML. An interest-
ing question will be investigated and explored in this paper
is whether the vanilla non-over-parametric lightweight model
has the flexibility to embed the same knowledge in different
ways to achieve better performance gains.

This paper is organized as follows.Section 2 aims to present
problem statement while in Section 3, we describe the sim-
ulation procedure for the stiffness deterioration of a bear-
ing. In Section 4, three different methods for integration of
physics knowledge in lightweight TCN are detailed. The per-
formance of three proposed PI-TCN models as well as the
physics knowledge’s role in training process of these models
are investigated in Section 5. Finally, conclusions and per-
spectives of this work are discussed in Section 6.

2. PROBLEM STATEMENT

Bearing damages start from inside. Until the initial crack ex-
tends to its surface, there are no obvious signs of failure that
can be observed because the geometry of the rollers is not al-
tered. After that, the crack accelerates and the bearing fails
rapidly (Khan, Kumar, Singh, & Singh, 2021). It is the root of
the slight trend data. Hence, one can cite the following chal-
lenges for prediction of the bearing’s RUL based on vibration
signals, illustrated by Fig.1:

1. Throughout continuous stiffness degradation of bearings,

the vibration signal varies insignificantly in the early phases

but changes dramatically only near the failure time. As a
result, it is not trivial to capture trend information from
vibration signals which reflect the ongoing degradation
evolution.

2. As the stiffness degradation is hidden, when investigat-
ing historical run-to-failure data we only know the lin-
ear function of RUL in working time and do not know
the duration of bearing health state and degradation state.
Then, it is not trivial to match the linear RUL values with

hidden non-linear stiffness degradation process.

To address the above challenge, we propose a lightweight
TCN as a benchmark purely data-driven model, using time-
domain statistics as the input features to predict the bear-
ing RUL in stiffness degradation. The input space includes
mean, variance, max, min-max, root mean square, skew, kur-
tosis, peak factor, waveform factor, impulse factor and mar-
gin values. The output of the TCN is a deterministic value of
the RUL (days). Then, we improve the performance of this
benchmark model by integrating incomplete physics knowl-
edge about the analytical relationship between stiffness degra-
dation and vibration signal in terms of the augmented in-
put space, modified hidden layer, and conflict loss function.
These integration form three PITCN models: PI Features model
(PIFM), PI Layers model (PILM), and PI Layer Based Loss
models (PILLM).

Phenomenon: Vibration anomaly

_—

L. X Challenge | N
Intrinsic  : Stiffncss degradation

. ¢ Challenge]l -------------------

Result : Reduced RUL

Operation time (days) _

Figure 1. Challenges of bearing’s RUL prediction under stiff-
ness degradation.

The relationship between stiffness and vibration amplitude is
shown in Eq.1 (Blake, 1961), where V'ib, is the peak value
of the vibration signal and stiff represents the corresponding
equivalent contact stiffness level. € denotes the relevant im-
balance in the system load. It is the extrinsic excitation of the
bearing vibration. m represents the equivalent system mass.
() is the rotation speed. In real conditions, the exact values of
¢ and m are unknown. Only the parameters €2 and V'ib, are
available in vibration based RUL prediction.
. eQ?
Vlbp = m (1)
m

The main objective of the proposed PI-TCN models is to ap-
proximate the mapping function g between the features ex-
tracted from vibration signals and the bearing’s RUL values.

Q2
RUL =g (Vib 7e,m) (2
P

3. CASE STUDY DESCRIPTION

This case study aims to predict the RUL of a roller bearing,
subject to stiffness degradation caused by the effect of crack
expansion of its rollers. We assume that this bearing operates
at a constant speed. And the bearing’s state is monitored via
vibration signals. In subsection 3.1, we describe how to sim-
ulate continuously degraded stiffness curves while subsection
3.2 presents how to generate vibration signals.
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3.1. Continuous stiffness degradation simulation

As shown in Fig.2, we generate a total of 200 bearing stiff-
ness run to failure degradation trajectories. The mean value
of the failure times of those 200 trajectories is 8.04 x 105 and
its standard deviation is 1.47 x 10*. Among these trajectories,
50 sets are randomly selected as the test sets, and the remain-
ing 150 sets are randomly divided into training and valida-
tion sets in 4:1 ratio. Each stiffness degradation trajectory is
composed of health state, nonlinear degradation period and
uncertain factors associated to operating environment effects.
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Figure 2. Simulation process of contact stiffness degradation.

We use the Eq.3 from (J. Liu & Shao, 2015) to calculate stiff-
ness in different damage states:

1

stiff = ‘2 ((cos"/)5/2)>2/3

+ Ustify 3)

nskp

We set contact angle +y to 20° and k,, stands for the Hertz elas-
tic contact stiffness between the ball and the smooth surface.
We compute k, according to Eq.5. The term Uz 5 repre-
sents the stiffness model uncertainty. It is due to the complex
environmental effects of the actual process, the simplifying
assumptions of the model, and other factors that make the real
value not strictly adhering to the physics model. We assume
Ustipp satisfy a Skewed distribution in which the mean and
the variance are equal to 10% and 5% of stif f respectively.
If the bearing is healthy, we calculate the stiffness via Eq.4:

1

tiffy =
stif fo 2((00520)5/2))2/3

“

180k,

where ng is the number of contact surfaces. Duration of
health condition days generated by random seeding rand (2,
20). Bearing degradation tends to be severe when ng de-
creases. In this simulation, the initial value of ngg is set to
180 while the duration, in which the bearing state is healthy,
is generated by a random seed as shown in Eq.4. The coeffi-

cient kj, is computed with

ARY/?

e ©
E

We set bearing roller radius R to 0.003 m, Poisson’s ratio v
to 0.3, Young’s modulus E to 2.1x10'! in the different sim-
ulations. We assume that the expansion of the bearing defect
will result in a continuous reduction in the number of con-
tact surfaces between the roller and raceway, with more ar-
eas changing from a face-to-face contact to a defective edge
line-to-face contact, as shown in Fig.3. This process can be
simulated by reducing ng in Eq.6.

Health contact surface Defective contact surface

Figure 3. Defective contact and the roller failure schematic.

We generate an in-homogeneous degradation by the Eq.6. We
set steps to 0.0001. We use Eq.1 to get vibration amplitude,
where € is 20 g.cm, m is 5 kg. €2 takes the value 4200 rpm
to indicate the wear at constant speed and external load. With
Ulgey denoting the uncertainty to reflect the non-uniform ex-
pansion of defects. Ugey conforms a Skewed distribution in
which the mean and the variance values equal to 10% and 5%
of the n,; respectively.

Ng; = Ngo X Steps X i x (180 — steps X 1) +Ugeq,t € N (6)

3.2. Generation of discrete vibration monitoring signals

The stiffness values are assumed to be monitored by vibration
sensors whose measurements are recorded every six hours.
In this case study, the vibration amplitudes are generated by
Eq.1 and then substituted into Eq.7 (if the bearing is in healthy
state) or into Eq.8 (if the bearing is in degradation state) to
obtain the vibration sequences. Shocks caused by defects
are commonly accompanied by both frequency and ampli-
tude noise. We add frequency noise (n4,) according to the
Skewed distribution of (3, 1).With 3 as the mean and 1 as the
variance, this indicates an uncertainty shock due to a roller
defect introducing a high multiple of the rotational frequency
during the bearing rotation. We also add amplitude noise (ny)
according to the signal-to-noise ratio of 1/100 in the healthy
state and 1/10 in (ng,).

21
z(t) = vib, x sin(g—ot) +np (7)
27() 210
x(t) = m'bpxsin(%t)—i—vibpxsin(%t(l-q-ndl))_FndZ
(3

Each vibration sample is generated according to 4096 Hz
sampling frequency of 3 s time length. More than 700 vi-

Page 120



Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN — 978-1-936263-36-3

bration samples were collected for each trajectory, as shown
in Fig.4. It can be seen that the generative data satisfy the
non-trending characteristics.

0.005

wibration(m)

-0.005

0.2M 0.4M 0.6M 0.8M M 1.2M 1.4M 1.6M
Data points

Figure 4. Illustration of the generated vibration signal.

4. DESCRIPTION OF THE PROPOSED METHODS

Informed learning is the seamless incorporation of constraints
in an ML pipeline. PIML means transforming physics knowl-

edge as potential or direct constraints of ML. In PHM, knowl-

edge is parametrically representable perceptions of system

behavior and failure mechanisms. In this section, we will

present the purely data driven-model, i.e., a lightweight TCN

model to predict bearing RUL, and then propose three PITCN

models based on the same knowledge to improve the pre-

diction performance. The first one is the PI Feature model

(PIFM), which guides the extraction of data features through

parameter relationships in the physics formulation. The sec-

ond one is the PI Layer model (PILM), which embeds the

physics input-output model in the computational function of

the layer. And finally, the PI Layer Based Loss model (PILLM)
adds regularization terms associated with the output of the

physics model to the loss function of the vanilla TCN.

4.1. Purely data-driven model

CNN allows parallel computation of outputs and thus can
achieve better performance than RNNs in sequence modeling
(Lea, Flynn, Vidal, Reiter, & Hager, 2017). TCN, consisting
of dilated, 1D convolution layers with the same input and out-
put lengths, avoid common pitfalls of recursive models, such
as gradient explosion or disappearance problems or lack of
retention. We build lightweight TCN as “Benchmark”™ based
with causal separable Conv1D, in Fig.5. The total number of
parameters in the model is 3,411. Note that the subsequent
implementation of PI-TCN will compute the physics features
related to stiffness in the hidden layer, the values of which
have a high probability of putting the neurons in the satura-
tion zone. Therefore, the activation function is chosen for
the nonlinear function h-swish with no upper bound, lower
bound, smooth, and non-monotonic characteristics.

4.2. Physics-informed feature augmented input space

Eq.1 inspires us that the factor Q22/V'ib, can be used as a
physics feature to predict the RUL of the bearing due to the
RUL’s dependence on the stiffness degradation level. Among
the original 11 time-domain statistical features, we removed
the Max feature while physics-informed health indicator (PHI)
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Figure 5. Lightweight TCN architecture diagram.

is added to construct new input samples having the same di-
mension (60 x 11) as the benchmark model. The benchmark
model shown in Fig.5 is then re-trained as shown in Fig.6.

Raw data J

{Time domain statistics calculation]

[Physics equatlon]

e0?
ST o2
T

Vib, =

mean,var, minmax, RMSE. skew, kurtosis,
peak factor, waveform factor, impulse
factor and margin factor

]
}
= I
Vib, ;
I
I

Augmented Input space

{ Benchmark Model ]

Figure 6. Create PIFM based on physics analytic relation-
ships.

Although 92 /V'ib, is not an exact stiffness estimation, it has
a clear physical meaning for being self-compiled quantities as
stiffness. It contains trend information. PIFL is essentially an
extension of the series combination structure to create a hy-
brid model. The output based on the physics model is part of
the TCN input. The PI layer adds potentially physically con-
sistent weak constraints to the input space through physics
model parameter relationships based feature extraction.

4.3. Physics embedded layer

Fault dynamics models can be converted into an input-output
module in ML, and in turn ML compensates for model in-
completeness, as shown in Fig.7.

Machine Learning | >

{1~ Physics module_ | Induction bias

————— o=

A
e Input-outputmodel e Operator/Algorithm l
Physics knowledge sources

Figure 7. Embedding physics equations in NN layer.
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Based on this paradigm, we have developed the PILM. Partic-
ularly, Eq.1 is transformed into a neural network linear model
in Fig.8. The unknown function ¢(-) in Eq.2 can be approx-
imated using a custom layer function h(-) of the neural net-
work in the structure presented by Fig.9.

This model allows extracting the PHI 22/V'ib, by embed-
ding the transformation layer of Eq.1. Then, the PHI is used
as the input of the hidden custom layer whose structure is de-
fined as an approximate function of stiffness degradation in
Fig.8. In the training process, the unknown parameters €, m
and Uy sy reflected by the weights (w) and biases (b) of the
hidden layer are updated to optimize the prediction results.

e T T o - AR -
YR | [ 2!
stiff _ﬁ‘((i x 1mj) i Mazx(Vibration)) : hmX ?J)
w e b
|
0

— /1 (wxth) ——

WnXn

Figure 8. Embedding physics equations in NN layer.

Compared to the PIFM, PILM provides induction bias for
TCN, as shown in Fig.7. It is able to ensure that the com-
putational process based on physics knowledge is forced dur-
ing the data processing of TCN, thus completely embeds the
physics knowledge into the computational paradigm and over-
all derivation process of the TCN model.
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Figure 9. PI Layer outputs join the Resblocks’ training.

4.4. Physics-informed layer based conflict loss

We also introduce the physics inconsistency by designing the
loss function according to conflict between physics model’s
output and ML output. The whole PILLM consists of two
parts: branch network and main network. An output layer is
added after the physics informed layer to provide the PHI in
the branch network. These features participate in the training
process of the main network at one hand, and influence the

hyper-parameter optimization of the main network through
the loss function on the other hand, as shown in Fig.10. The
outputs of each are measured with two losses and assigned
corresponding weights of 1.0 and 0.2. In the prediction pro-
cess, only the prediction results of the main network are uti-

lized.
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Figure 10. Build PI-loss based on different branches conflict.

In contrast to the first two methods, PILLM aims to inter-
vene in the adaptive search process of the TCN in the solution
space. Firstly, due to the single finite feature, it can be conjec-
tured that the prediction accuracy of the PI Branch network is
limited. resulting the high level loss, so the feature of mini-
mizing the loss function in the training process of the TCN is
used to improve the prediction accuracy of the Main network
part. Secondly, by allowing the PHI of the PI branch network
to participate in the training process of TCN, the two parts
are permitted to share optimization process, thus allowing the
TCN to satisfy a certain degree of physics consistency.

5. RESULT DISCUSSION

We fix the training epochs to 1000, design an early stop mech-
anism with patience equal to 80 epochs. We initialize the net-
work parameters with uniformly drawn weights. The batch
size of 128. The input-shape of each batch is (30,11). All
models are trained in the same conditions. Moreover, we use
Adam Optimizer in training (Kingma & Ba, 2014).

5.1. Investigation of the PITCN models’ performance

Fig.11 presents different model’s prediction results through
10 randomly selected trajectories of the test set while Fig.12
shows the box plots of the differences between the predicted
and the truth RUL on the overall test set. The results highlight
the performance of the PIML models compare to the one of
the purely data-driven model: the same physics knowledge
has different incorporation possibilities and potential for im-
proving the benchmark. Particularly, we find that the PILLM
model has the best performance. Its error range is only [17.97,
15.65] while the ones of the BENCHMARK, PIFM and PILLM
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are respectively [-95.51, 79.83], [-26.85, 36.66], and [-33.38,
26.11].

Table 1 presents the performance of the proposed models com-
pared with the benchmark on the overall test sets. We get the
following conclusions from Fig.11, and Fig.12:

1. PI-TCN models show more accurate prediction with the
smaller prediction error limits compared to Benchmark.

2. The predicted results of PI-TCN converge with the trend
in the real value, showing the possibility to effectively
solve the “Challenge II”” in Fig.1.

3. Among the three different PI-TCN models, PILLM has
the best prediction stability with the most compact upper
and lower error limits and the minimum error mean, as
shown in Fig.12.
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Figure 11. Prediction results of different models.
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Figure 12. Model evaluation results.

Table 1. Performance evaluation on the test dataset.

Benchmark | PIFM | PILM | PILLM

RMSE | 16.191 8.059 | 5.818 [ 3.157
MAE 10.878 5939 [ 3942 | 1.965
R2 0.862 0.959 [ 0.982 | 0.994

5.2. Investigation of physics knowledge’s role in ML

To investigate the role of physics knowledge in the training
process of the proposed models, we build the channel infor-
mation model to generate the channel heat-map. After train-
ing, we extract the layers in which physics knowledge is inte-
grated to investigate the correlation between physics informa-
tion and results. More concretely, for the PIFM, we choose
the input layer as the channel information model while for
the PILM and PILLM, we choose the input layer as input and
the “Add” layer as output. The brightness of the colors in
the heat map reflects the correlation. The obtained results are
presented in Fig.13, 15, and 16.

PIfeature  Kurtosis
-08

-0.7

28262422201816141210 8 6 4 2 0

PI Feature Model
Figure 13. Weight heat-map of the input layer in PIFM.

In the PI Feature model’s channel information heat-map, we
find that the model focuses more on the channels where the
Q?/Vib,, and Kurtosis are located. Kurtosis as a higher order
statistic with the ability to capture dramatic trends from flat
data. However, the Q?/Vib,, feature are assigned a higher
weight than Kurtosis. This result highlight the intuition that
the physics-informed feature generated based on analytic re-
lational formulations provide additional crucial information
to improve the model performance.

141312111098 76 54 3210

A
0

o " L " -~
123456789101112131415

Figure 14. Heat-map of Benchmark model.

The results of Benchmark Conv1d layer are selected to build
the channel information model, and the heat map is generated
as shown in Fig.14, which is used as the cross-sectional com-
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parison object of PILM and PILLM.
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Figure 15. Heat-map of the PILM “Add” Layer.

For the heat-map of PILM, it can be seen in Fig.16, the fea-
tures flowing from the PI Layer receive higher attention rela-
tive to the other channels.

PI Branch information

151413121110 98 76 543 21 0

g ey ey s s s s e e syl
0123456789101112131415

Figure 16. Heat-map of the PILLM “Add” Layer.

For the PILLM’s heat-map, as shown in Fig.16 the part incor-
porated into the feature from the PI Loss is dominant com-
pared to the other channels. In contrast to the feature map
of the benchmark on the same layer, the feature map of the
model is dimensionless, with a size of 16 x 15, because the
features of PI Loss are not incorporated. The overall value of
this feature map is smaller than the corresponding value of PI
Loss. So this result highlights that physical knowledge plays
a significant role in improvement of the prediction results.

6. CONCLUSIONS

In this paper, the physics knowledge about the relationship
between vibration signals and stiffness degradation is exploited
to create the physics-informed TCN models in three ways:
augmented input space, physics equation embeded layer, and
physics-informed conflict loss. The simulation result demon-
strates the flexibility of methods incorporating physics knowl-
edge and also highlight the significant improvements they can
bring to vanilla TCN when working with “slight trend” data.
In comparison with the benchmark model, PIFM, PILM, and
PILLM reduce the mean prediction error by 69.39% (from
2.81 days to 0.8685 days), 90.35% (from 2.81 days to 0.2710
days) and 96.29% (from 2.81 days to 0.1045 days), respec-

tively. By investigating channel weights in the related layer,
we found that those improvements mainly stem from the fo-
cus of three PIML models placed on data streams contain-
ing physical information. Indeed, the underlying logic of
the PIML models is to guide ML to capture features related
to degradation by encoding physics knowledge and then to
establish the underlying relationships between features and
RULSs thanks of ML’s non-linear mapping capabilities. In our
case, the stronger the physics constraints imposed by the en-
coding in TCN, the better the PITCN model performs. In
future works, we will use sparse noise monitoring data and
conduct in-depth research on the translatability of incomplete
physics knowledge containing uncertainty to ML pipeline.
Furthermore, PIML methods will be developed in real scenar-
ios with complex systems and complex operating conditions.
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