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ABSTRACT

The short-time Fourier transform (STFT) is a staple analysis
tool for vibration signal processing due to it being a robust,
non-parametric, and computationally efficient technique to
analyze non-stationary signals. However, despite these ben-
eficial properties, the STFT suffers from high variance, high
sidelobes, and a low resolution. This paper investigates an al-
ternative non-parametric method, namely the sliding-window
iterative adaptive approach, to use for time-frequency repre-
sentations of non-stationary vibrations. This method reduces
the sidelobe levels and allows for high resolution estimates.
The performance of the method is evaluated on both simu-
lated and experimental vibration data of slow rotating ma-
chinery such as a multi-megawatt wind turbine gearbox. The
results indicate significant benefits as compared to the STFT
with regard to accuracy, readability, and versatility.

1. INTRODUCTION

Spectral analysis of vibration signals plays a crucial role in
the majority of existing condition monitoring schemes. A
commonly employed spectral analysis tool to investigate vi-
brations from machinery operating in non-stationary condi-
tions is the visualisation of time-frequency representations
(TFRs). These TFRs of vibration signals can be valuable
for various reasons and have therefore been used for multi-
ple different purposes. Example usages in vibration analy-
sis include tracking the amplitudes of specific signal com-
ponents over time (Sapena-Bano, Burriel-Valencia, Pineda-
Sanchez, Puche-Panadero, & Riera-Guasp, 2016), assessing
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the degree of non-stationarity (Martin & Mailhes, 2009), ex-
tracting rotating speed information (Peeters et al., 2019), sep-
arating asynchronous harmonics (Chen & Feng, 2021), and
whitening the signal (Leclere, André, & Antoni, 2016). Re-
search into improving existing TFR techniques has been on-
going and plentiful for the last few decades with many new
techniques for TF decompositions having been developed,
e.g. (Shensa et al., 1992; Barkat & Boashash, 1999; Grei-
tans, 2005; Gardner & Magnasco, 2006; Wang, 2007; Wang
& Orchard, 2009; Du, Li, Stoica, Ling, & Ram, 2009; Zhang
& Castagna, 2011; Daubechies, Lu, & Wu, 2011; Oberlin,
Meignen, & Perrier, 2014). While TFRs can be a precursor
to other post-processing methods such as rotating speed es-
timation techniques, they can also serve as direct tools for
fault detection. An example of such a use-case is the tracking
of non-stationary transient signatures in a TFR over differ-
ent frequency bands for bearing fault detection (Wang et al.,
2019).

The analysis of multicomponent signals through TFRs is a
much researched topic in the signal processing literature. One
reason why there is so much literature about time-frequency
(TF) analysis is the wide range of application domains, e.g.
acoustics (Neal, Briggs, Raich, & Fern, 2011; Baydar & Ball,
2001), structural and machine health monitoring (Baydar &
Ball, 2001; Feng, Liang, & Chu, 2013; He, 2013; Peng,
Li, Hao, & Xin, 2020), physiological signals (Bozkurt, Ger-
manakis, & Stylianou, 2018), astronomy (Liu, Zhang, &
Shan, 2018), hydrology (Labat, 2005), seismology (Spanos,
Giaralis, & Politis, 2007), climatology (Torrence & Compo,
1998; Salisbury & Wimbush, 2002; Kravchinsky, Langereis,
Walker, Dlusskiy, & White, 2013), ecology (Cazelles et
al., 2008), and geology (Reager, Thomas, & Famiglietti,
2014). Some common non-parametric TF techniques include
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the STFT (Flanagan & Golden, 1966), Wigner-Ville Distri-
bution (WVD) (Wigner, 1932), Choi-Williams Distribution
(CWD) (Choi & Williams, 1989), S-transform (Stockwell,
Mansinha, & Lowe, 1996), and the chirplet transform (Mann
& Haykin, 1991). These methods have all been used in the
past for vibration analysis and monitoring as they form an
appealing choice thanks to being hyperparameter-free. How-
ever, making no signal model assumptions can also be dis-
advantageous and most of these techniques are considered to
have drawbacks depending on the intended application. This
can be illustrated with the STFT, which uses a constant win-
dow size for both low and high frequencies, introducing a
trade-off between time and frequency resolution. The effi-
cacy of the STFT is thus hindered by the window choice as
the Heisenberg uncertainty principle (Gabor, 1946) limits the
achievable adaptability of the STFT. Similarly, the original
definition of the WVD has an obvious downside thanks to the
presence of large cross-terms between every pair of signal
components and between positive and negative frequencies.
The CWD suppresses the cross-terms of the WVD, but still
suffers from aliasing for transients where a frequency compo-
nent can be replicated at a distance π (Zheng & McFadden,
1999). While the S-transform is similar to the wavelet trans-
form in that it offers a higher time resolution with lower fre-
quency resolution at high frequencies and a higher frequency
resolution with lower time resolution at low frequencies, it
therefore also suffers from the same drawback that this reso-
lution trade-off might not be desirable.

Despite the existence of this variety of TFR methods, prob-
ably the short-time Fourier transform (STFT) remains the
most used conventional technique due to it being an easy-
to-interpret non-parametric TFR method with low computa-
tional complexity and no model assumptions. The STFT is
also reliable for the analysis of complex vibrations that con-
tain an unknown number of non-stationary signal components
with varying or low signal-to-noise ratios (SNR), a property
which is not always shared by some other, typically paramet-
ric, developments that need a prior estimate of the number
of signal components. For integration into an automated vi-
bration processing methodology, the benefit of having a stan-
dalone method that does not require any data-dependent hy-
perparameter setting is quite a significant one. When large
amounts of highly variable vibration data need to be pro-
cessed, it is simply not feasible to optimize these hyperpa-
rameters for each dataset.

This paper investigates the potential of an adaptive spectral
estimation alternative to the STFT method for vibration anal-
ysis that offers a reduction in leakage effects in exchange for
a higher computational complexity. The sliding-window or
short-time iterative adaptive approach (ST-IAA) is a high-
resolution data-dependent filterbank-based approach that has
been briefly investigated in the past for passive sensing and
radar applications (Du et al., 2009) and also for human gait

analysis (Du et al., 2009). However, these applications in-
volve vastly different signal complexities when compared to
vibrations measured on complex machinery. This work there-
fore analyses the performance of the ST-IAA on such com-
plex vibration signals with a focus on slow rotating machinery
and it tries to lay the groundwork for more advanced applica-
tions in vibration analysis of the ST-IAA and similar tech-
niques in the future. Section 2 introduces the theory behind
the short-time iterative adaptive approach, whilst sections 3
and 4 illustrate the technique on realistic simulated vibration
signals and experimental data, respectively. The results and
next steps are discussed in section 5.

2. METHODOLOGY

The Iterative Adaptive Approach (IAA) is a spectral estima-
tion technique that gained a lot of interest in the early years
of the previous decade for the purpose of source localization,
pulse compression, and missing data estimation (Yardibi, Li,
Stoica, Xue, & Baggeroer, 2010; Karlsson, Rowe, Xu, Glen-
tis, & Li, 2014). It is an iterative weighted least-squares
method that is non-parametric and thus easy to use. It has
been shown in the past that the IAA can reduce sidelobe levels
and yield a higher resolution than the standard periodogram.
Additionally, it also returns a dense (i.e., not sparse) estimate
of the signal power spectrum which can be beneficial when
dealing with complex vibrations, since enforcing sparsity typ-
ically involves parameter tuning. IAA assumes that the vibra-
tion data adheres to the following signal model:

yN = FN,KαK + eN (1)

with yN ∈ IRN being the vibration signal of length N ,
FN,K ≜ [fN (ω0),fN (ω1), ...,fN (ωK−1)] the Fourier ma-
trix of size (NxK), αK ≜ [α(ω0), α(ω1), ..., α(ωK−1)]

T

the complex-valued spectral amplitudes at the frequencies ωk,
and eN an additive noise. IAA tries to estimate αK from
Eq. 1 by minimizing the following weighted least-squares
cost function:

||yN − fN (ωk)αk||2Q−1
N (ωk)

, k = 0, 1, ...,K − 1 (2)

where ||z||2
Q−1

N (ωk)
≜ zHQ−1

N (ωk)z and:

QN (ωk) = RN − pkfN (ωk)f
H
N (ωk) (3)

is the noise and IAA interference (signals at frequency grid
points bar ωk) covariance matrix for the kth grid point. The
signal power is denoted by pk = |αk|2 and the IAA covari-
ance matrix is given by:

RN = FN,KPKFH
N,K (4)

with PK a diagonal matrix with pk on its main diagonal.
Minimisation of Eq. 2 for αk (with pk kept constant) k =

2
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Figure 1. (Left) TFR using the STFT with a rectangular window, (Center) TFR using the STFT with a Hanning window,
(Right) TFR using the ST-IAA. The black dashed lines represent the true input frequency of the simulated harmonics.

0, 1, ...,K − 1 results in (see Appendix A for the derivation):

αIAA
k =

fH
N (ωk)Q

−1
N (ωk)yN

fH
N (ωk)Q

−1
N (ωk)fN (ωk)

, k = 0, 1, ...,K − 1.

(5)
This can be simplified using Eq. 3 and the matrix inversion
lemma (Horn & Johnson, 1985; Yardibi et al., 2010) to:

αIAA
k =

fH
N (ωk)R

−1
N yN

fH
N (ωk)R

−1
N fN (ωk)

, k = 0, 1, ...,K − 1. (6)

Equation 6 reduces the computational cost drastically since
it does not necessitate the computation of Q−1

N (ωk) for each
frequency bin k.

Since the signal power PK is required in Eq. 6, the IAA esti-
mate needs to be computed iteratively. In this paper, the pe-
riodogram is used to initialize the IAA estimate. To speed up
computations, the fast implementation of the IAA using the
Gohberg-Semencul representations and trigonometric poly-
nomials is employed, for more details see (Glentis & Jakobs-
son, 2011).

To get the short-time IAA (ST-IAA) time-frequency repre-
sentation of the vibration signal, a sliding window approach is
used similar to the STFT. In case minimal computation time is
crucial, further optimizations can be made by approximating
the ST-IAA, e.g. by assuming the covariance matrix does not
change drastically from one window to the next (i.e. for win-
dow iRi

N ≈ Ri−1
N ), or by incorporating a single step steepest

descent scheme instead of using the Levinson-Durbin algo-
rithm in the efficient formulation of the IAA (for more details,
see (Glentis & Jakobsson, 2010) ). In this paper, the standard
ST-IAA is used without the two mentioned optimizations.

3. SIMULATION RESULTS

To analyse the performance of the ST-IAA and compare it
with the STFT, a non-stationary vibration signal is simulated
that is representative of a slow rotating machine. The vibra-
tion x(n) with a sample period of T consists of multiple har-
monics with additive white Gaussian noise ν and is described
by following signal model:

x(n) =

M∑

m=1

Amsin(2πT

N−1∑

n=0

fm(n)) + ν(n) (7)

where m = 1, 2, ...,M is the harmonic number, Am is the
amplitude of harmonic m, n = 0, 1, ..., N − 1 is the sample
number, and fm(n) is the varying frequency vector of har-
monic m.

The simulated signal is 100 seconds long and consists of 6
harmonics of a fundamental frequency at 0.15 Hz that varies
randomly but smoothly around this base frequency. The am-
plitudes decrease inversely with the harmonic number. The
same input parameters are used for the STFT as for the ST-
IAA, viz. a window length of 200 samples, an overlap of
95%, and a grid size of 8000 samples. Figure 1 shows the
TFRs for the STFT using both a rectangular and hanning win-
dow next to the TFR using the ST-IAA.

As can be seen from Fig. 1, the ST-IAA produces a far clearer
TFR to interpret due to the much narrower peaks and reduced
sidelobe levels. The normalized Renyi entropy, which has of-
ten been employed in the past when measuring TFR complex-
ity (Flandrin, Baraniuk, & Michel, 1994; Baraniuk, Flandrin,
Janssen, & Michel, 2001; Sucic, Saulig, & Boashash, 2011;
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Figure 2. Renyi entropies for the three investigated TFRs
shown in Fig. 1 with α = 3.

Colominas, Jomaa, Jrad, Humeau-Heurtier, & Van Bogaert,
2017), is used to compare the complexity of each TFR. The
normalized Renyi entropy of order α for a discrete-time TFR
Px(n, k) is defined as follows:

Rα =
1

1− αlog2
(∑N

n=0

∑K
k=0 P

α
x (n, k)∑N

n=0

∑K
k=0 Px(n, k)

)
(8)

where n is the discrete time variable and k the frequency bin.
The third-order (α = 3) Renyi entropy is chosen for the com-
parison as it was found to be most suitable for the intended
purpose of TFR complexity quantification (Williams, Brown,
& Hero III, 1991; Flandrin et al., 1994; Williams, 1996; Bara-
niuk et al., 2001). The Renyi entropies for the three TFRs of
Fig. 1 are shown in Fig. 2. The ST-IAA exhibits a consider-
ably lower Renyi entropy when compared to the STFT. While
Renyi entropy is not a perfect measure to quantify the accu-
racy and robustness of a TFR, it does corroborate the visual
interpretation of Fig. 1.

To further illustrate the improved resolution of the ST-IAA as
compared to the STFT, a simple maximum tracking is done
over time for the different harmonics. This is a straight-
forward approach to estimate rotation speeds of a machine
without needing much processing power or signal process-
ing know-how and is thus often utilized in industry. Figure 3
shows the estimated curves for each of the harmonics using
the same input parameters for all three TFRs of Fig. 1. As
can be seen visually, the tracking error is considerably lower
for the ST-IAA as compared to the STFT. This observation is
quantified by the mean square error as displayed in Fig. 4.

4. EXPERIMENTAL RESULTS

To evaluate the utility of the short-time IAA in real-world
scenarios, it is compared to the STFT with a rectangular win-
dow on a vibration data set measured on the drivetrain of an
offshore multi-megawatt wind turbine. Accelerometers were
installed spread out over the drivetrain together with a single-
pulse-per-revolution angle encoder on the high-speed shaft of
the gearbox. All measurements were acquired at a sample
rate of 20kHz for a duration of 10 seconds. The speed es-
timation from the angle encoder provides a means to assess
the accuracy of the ST-IAA for tracking the speed-dependent
harmonics generated by the mechanical components on top of
the visual improvement in the time-frequency representations
that enhance its interpretability.

Figure 5 displays the TFRs of the STFT and ST-IAA for a vi-
bration signal measured on the first planetary gearbox stage.
The used input parameters are identical for both TFRs. A
window of 4 seconds is used with an overlap of 99%. Each
windowed signal is also zero-padded till 40 seconds, i.e., a
zero-padding factor of 10. The TFRs are zoomed in on the
low frequency range from 0 to 1 Hz. Typically, the 3P fre-
quency (i.e., three times the rotor speed) forms a distinct sig-
nature in this sub-1Hz-region for a three-bladed rotor. This
is exactly what is visible in Fig. 5 around 0.68 Hz. There is
another lower frequency harmonic present but this is an in-
terfering non-speed related harmonic from a adjacent compo-
nent, that also coincides partly with the first side-side natural
frequency of the tower. Unfortunately the measurement dura-
tion of 10 seconds is too short to clearly distinguish between
these two components.

To quantify this perceived accuracy of the ST-IAA in Fig 5
for post-processing techniques such as maximum tracking,
the mean and median absolute errors are shown for both the
STFT and ST-IAA in Fig. 6. As can be observed from Fig. 6,
the errors are lower for ST-IAA as compared to the STFT,
indicating that the ST-IAA is also at least as reliable as the
STFT with regard to accuracy even for experimental vibra-
tion signals.

To further illustrate the potential of the ST-IAA for the anal-
ysis of noisy vibration signals, Figure 7 shows the STFT and
ST-IAA TFRs for the high-speed stage sensor zoomed around
the rotational speed of the high-speed shaft. The encoder
speed is shown by a black full line and coincides with the
high-speed shaft harmonic. However, while the high-speed
shaft harmonic around 24 Hz can be observed, its SNR is
considerably lower than the gear meshing frequency of the
first planetary stage around 23 Hz. It is also easier to dis-
tinguish in the ST-IAA than the STFT. The same exercise in
maximum tracking is done for the high-speed shaft harmonic.
The estimated curve is shown in Fig. 7 by the dashed black
line. The mean and median absolute errors are displayed in
Fig. 8, which corroborates again the efficacy of the ST-IAA
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Figure 3. Estimated harmonic frequencies based on maximum tracking in a band around each harmonic for the three investi-
gated TFRs shown in Fig. 1.
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Figure 4. Mean square error of the estimated harmonic fre-
quencies based on maximum tracking in the TFRs of Fig. 1.

in improving the STFT at the cost of additional computation
time.

5. CONCLUSION

This paper investigates the potential of the short-time iter-
ative adaptive approach (ST-IAA) as a robust and accurate
non-parametric spectral estimator for time-frequency repre-
sentations (TFRs). It evaluates and compares the ST-IAA to
the short-time Fourier transform (STFT) on both simulated
and experimental wind turbine vibration data. The ST-IAA
shows that it suffers significantly less from high sidelobe lev-
els which the STFT does suffer from and reduces both the
interpretability of the time-frequency representation and its
potential for post-processing techniques. For example, tech-
niques that employ the TFR for tracking harmonic frequen-

cies can be hindered by such high sidelobe levels as is shown
in both the simulation and experimental investigation. The
main downside of the ST-IAA is its computation time which
is considerably higher than that of the STFT. However, fast
implementations of the ST-IAA do exist that alleviate some
of this computational burden.
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APPENDIX A

Minimizing the weighted least-squares cost function in Eq. 2
boils down to finding αk for which the derivative of the cost
function with respect to αk or its conjugate is zero. To sim-
plify the notation, the dependency of fN and Q−1

N on ωk is
dropped. The derivative can then be expressed and simplified
as follows:

δ

δαH
k

[
(yN − fNαk)

HQ−1
N (yN − fNαk)

]
= 0 (9)

δ

δαH
k

[
yH
NQ−1

N yN − αH
k fH

N Q−1
N yN

−αky
H
NQ−1

N fN + αH
k αkf

H
N Q−1

N fN

]
= 0 (10)

−fH
N Q−1

N yN + αkf
H
N Q−1

N fN = 0 (11)

αIAA
k =

fH
N Q−1

N yN

fH
N Q−1

N fN

(12)
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Figure 5. (Left) TFR of the vibration measured by the accelerometer installed on the first planetary gearbox stage using the
STFT with a rectangular window, (Right) TFR of the same vibration but using the ST-IAA. The black full line represents the
speed measured by the angle encoder while the dashed lines represent the estimated harmonic frequency based on maximum
tracking.
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Figure 6. Mean and median absolute error between the esti-
mated 3P harmonic frequency using maximum tracking and
the encoder-based speed for the STFT (left) and the ST-IAA
(right).

It can be seen that Eq. 12 is thus the same as the one in Eq. 2
for a single grid point k.
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