
Toward Runtime Assurance of Complex Systems with AI
Components

Yuning He1, Johann Schumann2, Huafeng Yu3

1 NASA, NASA Ames Research Center, Moffett Field, CA, 94035, USA
Yuning.He@nasa.gov

2 KBR/Wyle, NASA Ames Research Center, Moffett Field, CA, 94035, USA
Johann.M.Schumann@nasa.gov

3 Boeing Research & Technology, Huntsville, AL 35808, USA
huafeng.yu@boeing.com

ABSTRACT

AI components (e.g., Deep Neural Networks) are increas-
ingly used in safety-relevant aerospace applications. Rigor-
ous Verification and Validation (V&V) is mandatory for such
components, yet V&V techniques for DNNs are still in their
infancy and can often only provide relatively weak guaran-
tees. In this paper, we will present a runtime-monitoring
architecture, which combines the advanced statistical analy-
sis framework SYSAI (System Analysis using Statistical AI)
with temporal and probabilistic runtime monitoring carried
out by R2U2 (Realizable, Responsive, and Unobtrusive Unit).
We will present initial results of our tool set and architecture
on a case study, a DNN-based autonomous centerline track-
ing system (ACT).

1. INTRODUCTION

Artificial Intelligence (AI) components such as Deep Neural
Networks (DNNs) have found their way into many complex
systems in the aerospace and automotive domain. Such use of
AI exhibits tremendous benefits, but most of the applications
are safety-critical, and failures might lead to loss of vehicle
and mission or even to loss of life. Certification standards for
safety-critical systems (e.g., DO-178C or ISO 26262)require
processes with rigorous Verification and Validation (V&V)
goals. However, techniques for V&V for AI components are
still in their infancy. Certification standards for safety-critical
components, which are based upon AI and machine learning
are still under development (e.g., (EASA, 2021; He, Yu, Brat,
& Davies, 2022)).
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The intended target applications for AI and machine learn-
ing systems also require that such systems need to operate
properly under a wide variety of different operational and en-
vironmental conditions, as well as under failures. This is, in
particular, true for the area of autonomous vehicles, where AI
components are taking over tasks of perception and decision
making.

These tasks also require that failures, abnormal environmen-
tal conditions, and other hazards can be detected in real time,
are properly diagnosed, and potential mitigation actions are
proposed to the decision-making layers.

In order to facilitate a safe operation of the complex system
and potentially support certification, advanced runtime mon-
itoring is essential. Inspired by the ASTM-F3269 (ASTM,
Nov 2021) standard, which defines a runtime assurance ar-
chitecture, we propose a runtime architecture, which

• uses efficient and advanced runtime monitoring techniques
(temporal logic, Bayesian probabilistic reasoning) pro-
vided by the R2U2 system, and synergistically combine
it with the

• SYSAI analysis framework for complex systems with AI
components.

In the architecture, which will be presented in this paper, the
R2U2 system dynamically monitors numerous system signals
and information originating from the AI component. Tempo-
ral logic observers for past and mission time temporal logic
make it possible to check a multitude of complex properties,
which need to be fulfilled when the complex system is work-
ing properly. If the AI system is not working as expected
or failures occur, the R2U2 monitors and reasoners provide
diagnostic information, which can be used to operate a ”run-
time assurance switch”, which causes to activate safe (and
potentially verified) fall-back components.
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A complex (AI) system requires complex properties and pa-
rameters to be checked; simple thresholding is, in most cases,
not sufficient. But how can those complex properties and pa-
rameters be obtained?

For this task, we use SYSAI (System Analysis using Statisti-
cal AI), our flexible statistical learning framework for V&V
and analysis of complex and high-dimensional cyber-physical
systems with AI components. SYSAI provides algorithms to
efficiently create statistical models, perform safety-envelope
analysis, characterize safety boundaries, and carry out time
series analysis. SYSAI is used during design and V&V time
of the system development process. Learned statistical mod-
els of the complex system and its AI components, which are
produced by SYSAI during V&V provide the detailed infor-
mation that is necessary to enable the R2U2 runtime mon-
itor to efficiently perform advanced safety and performance
checks for nominal and off-nominal conditions. These checks
are expressed as temporal properties and also include Bayesian
statistical reasoning.

In this paper, we propose a draft of a process that uses SY-
SAI for system analysis and feedback to the designer during
development time and that transfers essential information to
be used by the R2U2 observers in our runtime monitoring ar-
chitecture.

We will demonstrate our approach with a case study on a
DNN-based autonomous centerline tracking system (ACT).
This ACT system uses a vision-based deep neural network to
guide an aircraft down the runway during taxi. We will illus-
trate the capabilities of this architecture using safety-boundary
monitoring and handling of a class of camera-related failures.

The rest of the paper is structured as follows: Sections 2 and
3 present background about our SYSAI statistical framework
and the R2U2 tool, respectively. In Section 4, we will in
detail describe our monitoring architecture, which is based
upon R2U2 and define a process, on how SYSAI can provide
system model data and parameters, which are needed for the
monitor. Section 5 focuses on our case study on autonomous
centerline tracking (ACT). We first describe experiments on
monitoring the system under nominal operating conditions
and then illustrate the capabilities of our architecture on a se-
lected failure case: partial obstruction of the camera by dirt or
an insect on the camera lens. Section 6 presents related work
and Section 7 concludes and discusses future work.

2. BACKGROUND: THE STATISTICAL ANALYSIS FRAME-
WORK SYSAI

SYSAI (System Analysis using Statistical AI) is a flexible
statistical learning framework for V&V and analysis of com-
plex and high-dimensional cyber-physical systems with AI
components. Figure 1 shows the high-level architecture of
SYSAI. analysis framework. On the left-hand side, we have

the “system under test” (SuT), which in our case is the ATC
system and the XPlane simulator, as described in the previous
section. The SuT is executed given a set of parameters and
initial conditions provided by the statistical learning model
of SYSAI. The result of the test run, which could be a binary
safe/not-safe information, a single value (e.g., ctemax), or an
entire time series is provided back to SYSAI. These data are
then used to incrementally construct our statistical model.
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Figure 1. SYSAI architecture

The interface between SYSAI and the SuT is designed to be
very small and generic, so that systems implemented in R,
Matlab, Java, or Python can be connected easily. For the rep-
resentation and construction of the statistical SYSAI model,
we are using Dynamic Regression Trees (DynaTrees (Taddy,
Gramacy, & Polson, 2011; Gramacy & Polson, 2011)), a dy-
namic Gaussian process model based upon Particle Filters.
DynaTrees are regression and classification learning models
with complicated response surfaces in on-line application set-
tings. DynaTrees create a sequential tree model whose state
changes over time with the accumulation of new data, and
provide particle learning algorithms that allow for the effi-
cient on-line posterior filtering of tree-states. A major ad-
vantage of DynaTrees is that they allow for the use of very
simple models within each partition. The models also facili-
tate a natural division in sequential particle-based inference:
tree dynamics are defined through a few potential changes
that are local to each newly arrived observation, while global
uncertainty is captured by the ensemble of particles.

This surrogate model is initialized with available training data
and incrementally refined using candidate data points that
are produced by our active learning module. It evaluates the
current surrogate model using a customized active-learning
heuristics and suggests candidate data points that provide most
information for model refinement. For these candidate points,
the ground truth is obtained by executing the SuT.

SYSAI features customizable heuristics that allow the active
learning to focus on particular characteristics of the model.
Classical algorithms like ALM (MacKay, 1992) or ALC (Cohn,
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1996) focus on under-explored regions in general of the do-
main space. Inspired by (Jones, Schonlau, & Welch, 1998)
and work on contour finding algorithms, we loosely follow
(Ranjan, Bingham, & Michailidis, 2008) and define our boun-
dary-aware metric boundary-EI (He, 2015, 2012) that puts the
focus of the search into “interesting” and potentially “trou-
blesome” areas near safety boundaries. Here, our surrogate
model therefore exhibits substantially more details than in
other areas that are not of interest. This exploration is guided
by the selected active learning heuristics and is able to cover
the entire input space with a low number of data points.

The SYSAI framework and the underlying models and algo-
rithms are described in detail in (He & Schumann, 2020). SY-
SAI has been used for the analysis of several complex and
safety-critical aerospace systems (He, 2015; He et al., 2022;
He, Yu, Brat, & Davies, 2021).

3. BACKGROUND: R2U2

The R2U2 (Realizable, Responsive, and Unobtrusive Unit)
(Rozier & Schumann, 2017; Reinbacher, Rozier, & Schu-
mann, 2014; Geist, Rozier, & Schumann, 2014) is an on-
board monitoring system to continuously monitor system and
safety properties of a cyber-physical system or its compo-
nents. Health models within this framework (Schumann, Rozier,
et al., 2015) are defined using Metric Temporal Logic (MTL)
and Mission-time Linear Temporal Logic (LTL) (Reinbacher
et al., 2014) for expressing temporal properties as well as
Bayesian Networks (BN) for probabilistic and diagnostic rea-
soning. A signal processing unit reads in continuous sensor
signals or information from the prognostics unit and performs
filtering and discretization operations. Figure 2 shows the
high-level architecture of R2U2.

A large number of safety and performance properties for ACT
can be formulated using temporal logic. Some properties
directly monitor the DNN component, e.g., a simple range
check for the DNN outputs, e.g. �(|cteNN | < 30). With
these instantaneous properties, which have no temporal com-
ponent, the current behavior of the DNN as well as the aircraft
(e.g., the commanded steering angle for the front-wheel shall
be limited). Proper temporal formulas are used to suppress
short dropouts and deviations of the DNN output, as they will
be counter-acted by the ACT controller. Of more interest are
temporal properties, which limit the number of bad outputs
per minute, or classification of longer-duration problems. For
example,

�((|he| > 10◦)U[0 s,9 s](|he| ≤ 8◦)) (1)

raises an alarm, if a large heading error persists for more than
10 seconds, indicating a possibly unbounded movement to
the edge of the runway. In our application for the dynamic
comparison of DNN performance, which will be described
below, we use temporal properties to analyze a short temporal

trace of the DNN and to analyze closed-loop behavior of the
ATC.

On the system level, R2U2 can be used, for example, to con-
tinuously check for oscillations occurring in ATC, as they
might cause poor performance or can lead to unsafe situa-
tions. For the definition of all temporal operators and more
examples see (Rozier & Schumann, 2017; Schumann, Roy-
choudhury, & Kulkarni, 2015).

R2U2 can also perform efficient Bayesian reasoning and has a
built-in model-based prognostics engine, which will be help-
ful for monitoring an AI-based system, but these capabilities
have not yet been used for this paper.
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Figure 2. R2U2 architecture with major components for
signal processing including prognostics, and temporal and
Bayesian reasoning

4. MONITORING AND ASSURANCE ARCHITECTURE

In this section, we present our architecture for monitoring of
the complex AI component, using the R2U2 runtime monitor.
Important information for the R2U2 properties are produced
by SYSAI during statistical analysis of the system at design
and V&V time. For a synergistic combination of both tools,
we propose a draft of a process.

The main goal of this architecture is to provide a framework
for the monitoring of a complex AI system, e.g., a Deep Neu-
ral Network, during runtime. Future work (see Section 7)
will refine that architecture into a runtime assertion frame-
work suitable for certification purposes.

4.1. Monitoring Architecture

The R2U2 system dynamically monitors numerous signals
and information provided by the system or its components.
It can provide Boolean results on any violation, but can also
perform Bayesian reasoning, returning probabilities and con-
fidence values.

For the continuous monitoring of an AI component in a po-
tentially safety-critical system, we have designed, inspired by
the ASTM F-3269 RTA (ASTM, Nov 2021), an architecture
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Figure 3. R2U2 runtime monitoring architecture (inspired by (Nagarajan et al., 2021), Fig. 1)

as shown in Figure 3.

The complex AI component, e.g., a Deep Neural Network,
is shown as a gray box in the center of the figure. It re-
ceives inputs from the system, e.g., camera inputs or sensor
signals and processes them. The results (e.g., estimated po-
sition of the AC on the runway) are then passed through the
RTA switch back to the system, e.g., the aircraft controller. In
nominal operations, the RTA switch is set to route the signals
from the AI component to the system.

In parallel, R2U2 receives the system signals, as well as sig-
nals from the AI component. The latter signals can be, for
example, output of the neural network, confidence values for
the output, or internal values. The latter, for example, would
be important in applications, where the Neural Network is
trained or adapted during operation.

In addition to these signals, R2U2 can receive external data of
high integrity (e.g., pilot input, redundant sensors, etc). The
properties for R2U2 and their parameters have been designed
and augmented with results from the SYSAI analysis as dis-
cussed below. R2U2 is operating on inputs and specifications
and produces an updated result every time step. Typically,
R2U2 is operated with a rate of 1Hz or 10Hz. The R2U2
output is used to control the RTA switch: in case, R2U2 de-
tects a violation of important safety/performance properties,
the RTA switch can be turned to use a fallback component
instead of the AI component to retain system safety and (at
least limited) performance. Multiple fallback methods might
be provided, ranging from algorithmic components (e.g., sim-

ple dead reckoning) to entering a fail-safe mode, stopping the
AC, and contact a remote operator.

4.2. Development Process

Figure 4 illustrates the overall development and monitoring
process. Based upon detailed system requirements, the sys-
tem with AI components is developed and the DNN(s) are
trained using training data. At this V&V stage, SYSAI can be
used for analysis of training data, characterization of safety
regions in a high-dimensional state space, as well as analy-
sis of the system’s behavior under failures (He et al., 2022,
2021). Analysis results also provide feedback to the designer.

After system development and testing, the system is being
deployed. At this stage, the R2U2 runtime monitoring is
active while the system is in operation. Without affecting
the overall system behavior (unobtrusiveness), a multitude
of temporal and probabilistic properties can be checked and
warning signals or alarms be generated. The statistical mod-
els and results, produced by SYSAI, are used to define and
customize properties to be checked by R2U2 (vertical red ar-
row). The information passed can range from simple thresh-
old parameters, whose values have been be determined by
SYSAI’s safety-boundary characterization. In that case, SY-
SAI’s advanced capabilities for the geometric characteriza-
tion of safety boundaries can be used for setting up efficient
R2U2 property checking.
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Figure 4. Tool chain and process for the combination of SY-
SAI and R2U2

5. CASE STUDY

5.1. Autonomous Centerline Tracking

As a case study for our approach, we use the ACT (Autonomous
Center Line Tracking) system, which enables autonomous
taxiing, one of the most important ground operations for Un-
manned Aerial Systems. The core component of ACT is a
Deep Neural Network (DNN) that takes images as inputs from
cameras mounted on the aircraft’s wings (Figure 5). The
DNN component continuously estimates the position and ori-
entation of the aircraft with respect to the runway center line.
These values are the cross-track error cte in meters, and the
heading error he in degrees, respectively.

Controller

he

CTE

throttle

rudder

image

X−Plane simulator

NetworkNeural

Deep

Application

Figure 5. Architectural Overview of ATC

A simple fixed-gain proportional controller uses this infor-
mation to produce control signals to steer the aircraft left and
right. A separate controller keeps the aircraft is rolling with a

constant, low speed.

For our experiments, the X-Plane Flight Simulator1 is used as
simulation environment. A simulated camera takes informa-
tion from the simulator display; the control signals for throttle
and rudder are sent to the X-Plane simulator using the pro-
grammatic interface NASA XPlane Connect.2

The DNN is a multi-layer feed-forward network with ReLU
nodes. The DNNs are implemented using the TensorFlow
framework3 and have been trained on data that have been ob-
tained with the simulated aircraft within the X-Plane simu-
lator. Note that in this application, DNN is not learning any
time-series data. Rather the DNN is learning a mapping be-
tween the input image (showing a part of the runway) and the
corresponding cte and he values.

5.2. Nominal Safety Regions

For the setup of the R2U2 specifications for nominal oper-
ation, it is, among others, important to establish reasonable
safety thresholds for the neural network outputs using SY-
SAI. As described above, the ATC DNN produces two out-
puts, the cross-track error CTE and the heading error he.
SYSAI can perform a simultaneous analysis for both param-
eter, but for this paper we focus on CTE to simplify the pre-
sentation of results. During a ATC-guided run, the value of
CTE must not surpass the safety threshold θCTE , i.e., our
safety condition is CTE < θCTE . Obviously, if θCTE is
very small, only few runs will be successful and most runs
will violate our threshold safety property.

On the other hand, a large threshold would allow almost all
runs to succeed, but the aircraft might veer off the runway
proper, which is an unsafe situation. We also have to assume
that the AC does not always start exactly at the beginning of
the runway precisely on the center line and is perfectly as-
signed to the center line. Rather, the initial conditions imply
non-zero initial cross track error CTE0 and he0. With out
SYSAI analysis, we want to find out (a) what are the suc-
cess rates for a given threshold, and within which geometric
boundaries of the AC initial position and heading, a good suc-
cess rate can be accomplished. In this experiment, we there-
fore allow SYSAI to vary the initial parameters CTE0 and
he0.

Figure 6 shows how, for a given threshold, the starting posi-
tion and heading of the AC influences the success of a run.
Each dot in each panel indicates the starting position of the
AC, the protruding line shows the initial AC heading. In each
panel, the initial part of the runway is shown, going from the
lower left to the upper right. If the threshold is very low, al-
most no runs are successful (Figure 6A). A somewhat larger

1www.xplane.com
2https://github.com/nasa/XPlaneConnect
3https://www.tensorflow.org
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A B C D

Figure 6. Threshold analysis: success (green) or failure (red) for different initial positions and headings of the AC at the
beginning of the runway for different thresholds (A: 30ft, B: 40ft, and C: 50ft). The dots mark the initial position, the lines
indicate the heading of the AC. D: success rate (in %) over threshold.

threshold (Figure 6B) shows that around half of the runs are
successful. Here it can be seen that the starting position ac-
tually makes a difference: starting positions to the left of the
center line tend to be much more successful than when start-
ing on the right of the center line. This result can be a basis
for further analysis of the coverage of training data, camera
placement, or the controller design. Finally, when the thresh-
old is very large, all runs succeed. Figure 6D shows the suc-
cess rate (in %) for different thresholds.
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Figure 7. Safety-envelope: surface shows estimated maximal
CTE value during a run over initial position CTE and head-
ing of the aircraft he. The safety envelope at a given threshold
of 40ft is shown as a red line.

Figure 7 shows how the safety envelope for ATC under dif-
ferent initial conditions CTE0 and he0 develop. For a small
threshold, only runs with initial values close to CTE0 = 0
and he0 = 0 are successful, i.e., that our safety conditions
is never violated during a run. This safety envelope becomes
larger as the value for θ increases. The red line in Figure 7
shows its boundary for θ = 40ft. SYSAI has been used to
effectively create a model of this surface; a geometric charac-
terization of the boundary can be obtained from SYSAI.

So far, all experiments were carried out in clear conditions

and 0900 local time. We then extended the experiment to
include the time-of-the-day as an additional parameter. Ob-
viously, ATC will not perform well in darkness, but it is im-
portant to know if ATC is performing differently at different
times during the day.

Figure 8A shows the overall success rate in percent for a
safety threshold of 40ft. The success rate varies tremendously
during different times of the day and is only satisfactory be-
tween around 9AM and 1PM local time. Outside this time
window, the performance of ATC is dropping sharply. A
closer look at the images captured by the camera reveals the
reason: Figure 8 shows typical images for a run at 9AM,
11AM, and 3PM, respectively. Compared to the 11AM run
(middle panel), the early morning image is much darker. Since
our version of ATC only has been trained with brighter im-
ages only, it is obvious that ATC performs not well in the
earlier morning hours. The image on the right, taken during a
3PM run shows that the shadow of the aircraft is clearly visi-
ble and thus dramatically changing the overall image. Unless
ATC had been trained on images like that, its performance is
likely to be strongly diminished. Similarly, additional envi-
ronmental parameters, like a wet runway, snow, or a cloudy
sky can be modeled and analyzed with SYSAI.

The information obtained during the SYSAI analysis is then
used to set up the R2U2 properties and monitors. We can dis-
tinguish between three different categories of R2U2 proper-
ties: (a) universal properties, (b) temporal properties, and (c)
probabilistic properties. Universal properties are supposed
to be valid throughout the entire operation and are neces-
sary to define many safety properties. For example, vw <
5m/s ∧ 0 ≤ vw makes sure that the speed of the aircraft
is always limited and that the aircraft never rolls backward.
Within the R2U2 monitor, such properties are usually linked
to conditions or system modes. In our example, this condition
is only to be checked if the ATC system is on and the AC in
taxi mode MAC . This will yield:

�((ATCon ∧MAC = TAXI)→ (vw < 5
m

s
∧ 0 ≤ vw)) (2)

Temporal R2U2 properties can be used to specify
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A

B

C

D

Figure 8. A: Success rate (in %) for different times of the day.
Threshold for CTE is 40ft. Camera images taken from runs
at 8AM (A), 11AM (B), and 3PM (C).

• overall performance properties, e.g., the end of the run-
way should be reached within 4-5 minutes:

MAC = TAXI)→ ♦[4,5min](drwy > 0.9 ∗ Lrwy) (3)

• filtering of transients. For example, the outputs of the
DNN should always lie in a certain range, e.g., he ∈
[−10, 10]. However, transients, yielding values outside
that range should be tolerated if they are short enough,
for example, less than 2 seconds:

(−10◦ ≤ he ≤ 10◦) ∨ ¬H[2s](he < −10◦ ∨ he > 10◦)
(4)

• limiting the number of occurrences of events. For ex-
ample, it can be specified that no more than 3 transients
occur within a period of 20 seconds. Such a property can
also be seen as a discrete form of specifying error rates.

Such properties can be defined using the original signals (e.g.,
cte, he), or results of signal processing. In our case study, we
use:

• signal rates, as approximation of signal derivatives are
used to help monitor the system dynamics,

• sum or integration is used to check for biases over time,
• fast Fourier Transformation of signals are helpful in de-

tection of oscillations. Such effects, similar to pilot-induced

oscillations can lead to dangerous situations that need to
be avoided.

• Kalman filtering can be used for sensor fusion or to check
the behavior of a signal against a given dynamical model.
In this case study, Kalman filters have not been used.

• prognostics algorithms can be used to estimate the state
of important components, e.g., the battery in electrical
AC. R2U2 can, for example, check that there is always
enough battery to taxi down the full runway. (not used in
this case study)

For our case study, we used the signals from ACT and the air-
craft as shown in Table 1. A more realistic case study would
include numerous additional signals and sensor outputs (e.g.,
GPS, runway maps, etc).

Table 1. Signals used for R2U2 in the ACT case study. The
column S indicates if signal processing is used. Signals in the
lower part are used for failure monitoring (see below)

Name S Description
cte • DNN output cross-track error
he • DNN output heading error
vw • AC front wheel speed
drwy • distance on runway (est)
α • steering angle
ATCon Boolean: ATC system on
ACmode AC mode (e.g., taxi, takeoff)
TUTC current on-board time
Ibright • image brightness
Icontr • image contrast
Iblock • image blockage

5.3. Monitoring of Failure Conditions

As demonstrated above, it is important to monitor the be-
havior of the AI component in nominal operating conditions.
Equally important, if not more important, however, is the
monitoring of the complex AI function in case of failures.
Failures can be the result of an unexpected environmental
condition, e.g., fog or snow, or problems and faults with the
sensors and actuators.

For traditional systems, fault detection and diagnosis systems
are used to detect, isolate, and react upon the fault. In many
cases, such systems are model-based and rely on the detailed
knowledge about the system behavior in the failure case.

AI systems, on the other hand, are often considered black-
box, i.e., they cannot explain or describe their behavior while
in operation. This, well-known problem of explainability of
AI and the fact that AI systems often have to operate in a
huge, high-dimensional state space makes it impossible to
perform coverage testing during V&V time.

In our architecture, we use information from SYSAI on fail-
ure analyses, to derive powerful runtime monitors that can be
checked with R2U2.
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5.3.1. Camera Failures

As a motivating example, let us consider a failure in the cam-
era system: a piece of dirt or an insect on the lens is obstruct-
ing a part of the image. Image data in the obstructed region
are consistently dark. Obviously, the ACT DNN has some
robustness against such situations.

However, for improved system safety, we need to dynami-
cally monitor, if the obstruction may lead to situations, where
ACT fails. An analysis of this failure type revealed that the
impact of an obstructing piece of dirt on the behavior of ACT
is far from trivial: there are many regions of the image, where
such an obstruction does not pose any restriction, which means
that the DNN robustness is taking care of that situation.

However, SYSAI detected certain regions, where an obstruc-
tion can have notable and even severe consequences. Figure 9
shows a typical ACT camera image. The ”dirt” is modeled in
this case as a black square. Super-imposed on this image are
the boundaries of the sensitivity regions as detected by SY-
SAI. Inside the green boundary, a considerable risk of ACT
failure exists; inside the region defined by the red boundaries,
a high risk is imminent.

Figure 9. ACT camera image with ”dirt” spot (black rectan-
gle) and superimposed boundary lines for high risk regions

These regions obviously have to do with the way, the DNN
has been trained to perceive the visual situation. As expected,
areas near the horizon are of concern. The second, high risk
area is close to the front wheel and it is suspected that the
DNN uses this region to detect the runway center line or other
optical markings. However, these regions are not obviously
explainable and strongly depend on how the DNN has been
trained.

With our R2U2 architecture, we are now able to use this infor-
mation to produce an effective and powerful runtime monitor
to detect such situations. By using SYSAI analysis data, we
can avoid over-conservative monitors that would shut down
the AI component as soon as a spot of a certain size is de-
tected, causing numerous false alarms. Still the detailed SY-
SAI analysis provides the necessary confidence in the AI be-

havior that allows the R2U2 monitor to behave safely.

More specifically, our R2U2 monitor consists of the follow-
ing R2U2 components and specifications

• a simple, traditional detection algorithm for camera ob-
structions. This algorithm returns a Boolean array, indi-
cating the locations of obstructions.

• an R2U2 matcher that matches obstruction regions with
a heat-map produced by SYSAI (with boundaries similar
to Figure 9). This code is also traditional.

• an obstruction-risk value is calculated, using a weighted
sum of the obstructions with the boundaries, and fed, af-
ter thresholding into the R2U2 temporal reasoner

• temporal formulas now check this signal, trying to weed
out transient signals, checking persistence of the obstruc-
tion, and correlating with potential other failures or sit-
uations. E.g., taxiing after dark should not trigger the
camera-obstruction monitor.

• the resulting signal is merged with results from the other
R2U2 monitors to produce a final verdict to be sent to
the RTA switch. In this case study, we are using Boolean
conditions for that; a more elaborate monitoring variant
would feed these monitoring results into a Bayesian net-
work for probabilistic reasoning and calculation of con-
fidence levels.

6. RELATED WORK

Runtime monitoring and runtime verification is mainly focus-
ing on checking safety or security properties while the system
is in operation (see e.g., (Havelund, Reger, & Rosu, 2019) for
an overview). Violations usually cause alarms and can lead to
drastic mitigation actions. Furthermore, most runtime moni-
toring systems are only concerned with model-based or (tem-
poral) logic-based property checking. R2U2 also features ef-
ficient Bayesian reasoning, which seems to be a major help in
the analysis of the, by nature, probabilistic DNNs.

In contrast to most related work, which aims at supporting
property checking for V&V and safety purposes, we use R2U2
to switch between the AI component and different fall-back
components in order to dynamically select a safe and suitable
one. Our architecture is somewhat inspired by the ASTM3269
Runtime Assurance (RTA) architecture (ASTM, Nov 2021;
Nagarajan et al., 2021), where a safety-monitor can switch
from a complex, unassured component (e.g., a DNN) to some
assured fall-back function, but aims to fulfill a different pur-
pose.

7. CONCLUSIONS

In this paper, we have presented an advanced architecture to
monitor the safety and performance of a complex AI com-
ponent (e.g., a DNN) within an aerospace system. Inspired
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by the ASTM RTA, we are using the R2U2 runtime monitor-
ing system to dynamically check numerous properties, using
temporal logic observers, Bayesian reasoners, and signal pro-
cessing.

Our SYSAI statistical analysis framework can provide mod-
els, parameters, and other information to R2U2 to enable the
definition of complex, yet justified properties that go ways
beyond traditional range and rate checking monitors.

Future work will include the use of dynamic statistical rea-
soners and prognostic engines to extend this architecture into
a fully statistical monitoring system, which can reason and
decide with probabilities and confidence levels—a prerequi-
site for monitoring systems like Deep Neural Networks. We
are also planning to work toward the use of this architecture
and process in certification and risk management.
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