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ABSTRACT

Annotations in condition monitoring systems contain infor-
mation regarding asset history and fault characteristics in the
form of unstructured text that could, if unlocked, be used
for intelligent fault diagnosis. However, processing these an-
notations with pre-trained natural language models such as
BERT is problematic due to out-of-vocabulary (OOV) techni-
cal terms, resulting in inaccurate language embeddings. Here
we investigate the effect of OOV technical terms on BERT
and SentenceBERT embeddings by substituting technical ter-
ms with natural language descriptions. The embeddings were
computed for each annotation in a pre-processed corpus, with
and without substitution. The K-Means clustering score was
calculated on sentence embeddings, and a Long Short-Term
Memory (LSTM) network was trained on word embeddings
with the objective to recreate the output from a keyword-
based annotation classifier. The K-Means score for Sentence-
BERT annotation embeddings improved by 40% at seven clus-
ters by technical language substitution, and the labelling ca-
pacity of the BERT-LSTM model was improved from 88.3 to
94.2%. These results indicate that the substitution of OOV
technical terms can improve the representation accuracy of
the embeddings of the pre-trained BERT and SentenceBERT
models, and that pre-trained language models can be used to
process technical language.

1. INTRODUCTION

Condition monitoring is vital in the process industry to ensure
safe production with minimal wastage and early stops. Moni-
toring is done by human analysts, assisted by a computerized
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maintenance management system to estimate the state of in-
dustry components and make maintenance decisions. Upon
fault detection, maintenance decision or maintenance activity
(e.g. component replaced), the outcome is sometimes stored
as unstructured text in maintenance work orders (MWOs) and
fault diagnosis annotations. These MWOs and annotations
contain valuable condition monitoring process information
that could be used for data analysis purposes, if the knowl-
edge embedded in the text could be unlocked and integrated
into a computerised system. Processing this text would thus
improve feedback between analysts and systems, and facil-
itate learning-based implementations using process-specific
technical knowledge.

Tranformer-based (Vaswani et al., 2017) language models such
as BERT (Devlin et al., 2019) and GPT (Radford et al., 2019)
have been successfully used in many natural language pro-
cessing (NLP) domains, but are not yet as widely implemented
in the technical language domain. Word representations in
BERT-based models are typically computed as functions of
entire input sequences (Peters et al., 2017, 2018). The con-
textual input sequence approach adopted from ELMo (Peters
et al., 2018) has many advantages, such as dealing with poly-
semy — identical words having different meanings in different
contexts — which can thus be handled, as the embedding for a
specific word is different depending on its context.

Technical Language Processing (TLP) was introduced as a
domain-driven approach to NLP in a technical engineering
framework (Brundage et al., 2021) to help unlock the knowl-
edge represented in technical text. The potential for imple-
mentations of embedding algorithms on technical language
was investigated by Nandyala et al. (2021), where the chal-
lenges of technical language word representations are further
discussed, and five suggestions of word representation sys-
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tems are provided: TF-IDF, pre-trained Word2 Vec (Bahdanau
et al., 2015), pre-trained GloVe (Pennington et al., 2014),
custom-trained Word2Vec, and pre-trained BERT (Devlin et
al., 2019). The authors presented filtered word clusters and
word and sentence similarities using these models with a TLP
pipeline on 5,485 work orders for 5 excavators (Hodkiewicz
etal., 2017).! Cadavid et al. (2020) applied CamemBERT, a
French version of BERT, to estimate the criticality and dura-
tion of maintenance problems from operator descriptions in a
French manufacturing company dataset.

Due to the success of the BERT architecture there are many
derivative models. A popular model is RoBERTa (Liu et al.,
2019), which is a retrained BERT model with different hy-
perparameters and a slightly different pre-training objective.
Neither BERT nor RoBERTa are explicitly trained for sen-
tence embeddings however, as both produce embeddings at
a word-level. Typically, either the embedding of the last to-
ken (CLS) in the sequence, the mean of all embeddings in
the sequence, or the max embedding, are used. Sentence-
BERT (Reimers & Gurevych, 2019) is a BERT-based model
fine-tuned for sentence similarity with siamese and triplet net-
works (Schroff et al., 2015), with output vectors being pooled
to a fixed-size sentence embedding using either the output of
the CLS token, the mean of each output embedding vector,
or a max-over-time computation of the output vectors. Us-
ing SentenceBERT, it is possible to represent the semantics
of sentences and complete annotations more accurately than
with BERT, which performs better on word-level representa-
tions.

Another solution for language representation is a keyword-
based labelling system taxonomy. Ottermo et al. (2021) work-
ed with domain experts to build a taxonomy from 80 annota-
tions for classification of failure events in oil and gas valves in
Norway, creating named entities from technical text to sym-
bolise fault cases. A keyword-based system can perform well
on a limited data set without requiring labels, but requires
human engineering and scales poorly due to the limits of
pre-defined conditional statements and inherent complexity
in language.

Embeddings from pre-trained language models scale better,
but do not generalise well to completely new domains and
require large data sets to train. Evaluating the performance
of technical word embeddings is also challenging, as most
NLP evaluations rely on human-labelled downstream tasks
such as GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019), but no such datasets exist for technical lan-
guage. However, a well-developed technical keyword-based
labelling system could serve as one basis for evaluation, and
out of vocabulary (OOV) technical terms can be substituted
by adding technical taxonomies based on natural language,
effectively combining the benefits of both systems. Thus,

! Also known as the Prognostics Data Library.
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Figure 1. Overview of technical language processing steps,
including technical language substitution and evaluation.

methods for the integration of OOV technical terms need to
be developed and evaluated to further the integration of NLP
models into the TLP framework.

Here we investigate the effect of substituting technical terms
with natural language descriptions or synonyms on the word
and sentence representations generated by a pre-trained lan-
guage model. In particular, we examine the technical lan-
guage representations of BERT and SentenceBERT with and
without technical language substitution through K-Means clus-
tering, t-SNE (Hinton & Roweis, 2002) analysis and auto-
matic labelling with a keyword-based system. The dataset
used consists of real MWOs and annotations from vibration
sensor condition monitoring of two large paper manufactur-
ing plants in northern Sweden.

2. METHOD

Figure 1 gives an overview of the methodology, from anno-
tations to clusters and evaluation. Filtered annotations are
used as inputs to the technical language substitution block,
presented in Section 2.1, where important technical words
are identified and replaced with in-vocabulary language syn-
onyms or descriptions. A pre-processed technical language
annotation consisting of N words is fed directly into the keyw-
ord-based labelling system, outlined in Section 2.2, which
produces labels that can serve as valuable evaluation insights
for the unsupervised systems. The effect of the substitution
on language model representations is evaluated through a su-
pervised classification task and an unsupervised clustering
task, further described in Section 2.3. Finally, the corpus from
which annotations were filtered is described in Section 2.4.

2.1. Technical Language Substitution

The purpose of technical language substitution is to use hu-
man knowledge and language understanding to facilitate a
training-free transfer to new domains where training-data is
limited. Technical terms that are substituted are critically im-
portant for the condition monitoring-related semantics of the
annotations, such as fault class, which directly guides further
fault diagnosis. Prior to substitution, these terms are input as
tokens that likely do not capture the semantics of the term,
but post substitution, these terms are ideally transformed to
accurate representations of the term meaning.
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Analysing the vocabulary of a language model can be done by
investigating its tokenizer, how it represents word strings with
sparse vectors prior to embedding them. Older word vector
representations tended to have a fixed vocabulary, being ca-
pable only of representing words seen during training, while
all out-of-vocabulary (OOV) words are represented with the
same “unknown” token. Modern language models typically
use techniques to maximise the coverage of all words in a cor-
pus with a set amount of n-grams, through for instance sub-
word tokenisation such as byte pair encoding (BPE) (Gage,
1994; Sennrich et al., 2015) or WordPiece (Schuster & Naka-
jima, 2012; Wu et al., 2016). The base BERT model and some
of its derivatives use WordPiece, while the GPT series and
for instance RoOBERTa use BPE. Both subword tokenisation
algorithms work by representing common words with a sin-
gle token, while uncommon words are represented as a com-
bination of tokens down to the base character level. For in-
stance, using the WordPiece based bert-base-uncased BertTo-
keniser from the HuggingFace library, the word academic is
tokenised directly to [academic], while academical becomes
[academic, ##al]. Thus, instead of having unique representa-
tions for every word ending, the endings can become unique
tokens attached to the root words. However, the WordPiece
splitting does not always produce intelligible tokens, such as
for remanufacture, which is tokenised as [re, ##man, ##uf,
##act, ##re], despite [manufacture] also existing as a token
in the tokenizer vocabulary. Nonetheless, while some words
might be split into unintelligible word pieces, no words are
technically outside of the model’s vocabulary.

Table 1 shows which technical terms were substituted and
their substitution, translated from Swedish to English for rea-
der convenience. Substitution can be done through paraphras-
ing — rewriting a technical concept with in-vocabulary words
while maintaining semantics; synonym substitution — replac-
ing an OOV-term with a semantically similar in-vocabulary
term; or abbreviation expansion — substituting an OOV abbre-
viation with the in-vocabulary words that constitute it. Tests
with fewer and with more substitutions were done, and the
effect follows a pattern of more frequent and impactful key-
words such as BPFO and WO having larger effect on the clus-

Table 1. Technical terms and the natural language substitu-
tions used.

technical terms || natural language substitution
bpfo fault in the outer ring
bpfi damage on the inner ring
sensor (givare) sensor
wo work order
looseness distance that causes instability
dc drying cylinder
env/envelope measurement signal
er gear
mms velocity measurement
fs free side
ds drive side

ters and k-Means-score, and less frequent or impactful words
such as mms and ds having smaller effect. The final key-
words were chosen to be sufficiently numerous to clearly il-
lustrate the different types impact of substitution, but limiting
the number as to not obfuscate the impact through unneces-
sarily extensive input alterations. A more systematic study of
the impact of various keyword combinations is a natural next
step to further the understanding of the interaction between
technical terms and natural language models.

The natural language substitution was designed to be seman-
tically similar to the technical terms, and pass through the to-
keniser in a predictable manner, so that no substitution words
were chopped up in a way which indicates that BERT has no
prior experience of the term. Therefore, the Swedish word
givare, which means sensor, was for instance just replaced
with sensor, as SWeBERT tokenises sensor as one token. The
terms BPFO and BPFI are common fault types in ball-point
bearings with distinct condition indicators in signals, but whe-
re fault severity is challenging to assess estimate even for ex-
pert analysts. Many technical terms are in effect abbrevia-
tions, such as WO for work order, or dc for drying cylinder.
These can, in some cases such as WO, be directly substituted
for their unabbreviated terms. Other terms, such as GC for
guide roller, can be more difficult to simply expand. The
Swedish word for roller, vals, is not encoded as one token,
but rather as [val, ##s], which means whale’s or election’s.
Even if vals was encoded as one token, it would likely re-
fer to the more common meaning waltz, the dance, in pre-
training rather than a roller. The issue of polysemy, multi-
ple meanings of the same word, is circumvented in contex-
tual language models by using the context as part of the word
embedding input, but when neither the context nor the word
meaning has been encountered during pre-training, the out-
put embedding is unlikely to be a good representation of the
underlying semantics.

Technical language substitution presents an opportunity to
merge human knowledge of technical terms with the repre-
sentational possibilities of natural language models. Unlike
language model implementations on general-domain natural
language, which can function without significant human in-
terference on input language, this imposes an additional work
load on NLP deployment. However, until a technical lan-
guage model is developed on a massive technical corpus, or
natural language models can be accurately fine-tuned on tech-
nical data, it can serve as a great addition to the TLP toolbox
and for integration into NLP pipelines. Furthermore, defin-
ing technical terms in natural language can serve as a spring
board for technical language fine tuning, through for instance
contrastive learning (Giorgi et al., 2021).
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2.2. Keyword-Based Labelling Model

In order to provide additional evaluation methods, a keyword-
based labelling system was designed to output fault class and
maintenance action labels for each annotation. Keywords
were identified by analysing language distributions in col-
laboration with domain experts. Figure 2 shows the condi-
tional co-occurence of the eight most common non-stopword
words in the dataset, calculated from the probability of a tar-
get word (rows) appearing in the dataset given the context
word (columns). The co-occurence illustrates certain proper-
ties of the dataset, such as the sparseness between some tech-
nical terms, and the co-dependence of others. For instance,
the word written has a probability of 1 to appear with WO,
and is thus always used in the same annotation as the word
WO, which is due to a common phrase in the dataset being
WO written. However, the word WO is also used without writ-
ten as the context in about half of the annotations, as can be
seen from the lower probability in the WO row. Hence, in-
cluding written in the keyword-based labelling system would
accurately capture all instances of annotations explicitly in-
forming WO written, but would exclude annotations that im-
plicitly state the same semantics, such as WO [number] on
BPFO. Therefore, it is more consistent to base the labelling
system on WO than on written.

The low overlap between key terms indicating fault class,
which is seen from for instance the lack of co-occurence be-
tween play, sensor and BPF O, indicates that fault annotations
often mention at most one fault class. Therefore, a labelling
system for fault class detection can be defined by searching
for identified fault class keywords. If multiple keywords are
found, they can either be concatenated to a new class, or the
annotation can be dropped into a corpus with uncertain anno-
tations, where we opted to choose the second option.

The keyword-based labelling system also outputs maintenance
actions when applicable, and thus outputs different labels for
sensor replaced, WO [work order] written sensor replace-
ment and sensor occasionally malfunctioning. In the first ex-
ample, it is an annotation indicating that the fault class sensor
is remedied, so the corresponding signals should be treated
as signals without sensor fault indicators. When WO written
is a part of an annotation, it indicates a fault which has suffi-
cient severity to warrant replacement. Comparatively, a fault
class annotation that does not contain either an indication that
it has been replaced or that it should be replaced is simply an
annotation that the fault is present.

Table 2. Fault classes and maintenance actions in the
keyword-based labelling system.

Fault BPFI, BPFO, Cable, Play,
Classes | Imbalance, Disturbance, Sensor
Actions [WO, replace, change],

replaced

Co-occurence of common words

WOBPFOenv play lev cha FS DS sen rep

eRpXliE1.000.140.040.140.020.040.100.140.020.16 1o
BPFO, 224 0.151.000.000.180.040.170.170.010.04
env, 139 0.061.000.09.0.010.110.140.040.01 08
play, 138 .0.010.091.000.050.020.080.070.020.09
level, 133 0.03 0.051.000.050.070.080.080.05 00
=Nl AR 0.080.060.010.020.071.000.110.100:220.10
FS, 130 Rk 0.120.080.070.121.000.220.090.08 04

DS, 123 ..0.160.070.070.10 100.
0.2

sensor, 118 0.050.020.030.030.060.230.110.101.00
replace, 108 0.090.010.100.050.120.130.18@ .00

0.0

common_names

Figure 2. Conditional co-occurence of common words in the
annotations, with stop words removed. The co-occurence is
computed as the probability of the word in the row given the
word in the column.

The keywords used in the labelling system are shown in Ta-
ble 2. If exactly one fault class keyword was detected, the
annotation was considered unambiguous and labelled as be-
longing to that fault class; if zero or multiple class keywords
were detected, the annotation was considered ambiguous and
put in another dataset. Maintenance actions were defined sim-
ilarly, but "WQO”, replace” and “change” were all projected
to the "WO” keyword. Annotations with at most one action
keyword type present were considered unambiguous, and an-
notations with no action keywords were treated as belonging
to a "None” class. Only unambiguous annotations were then
used in the evaluation step to ensure reliability of the labelling
system.

2.3. Evaluation

Three methods for language model performance evaluation
were devised. SentenceBERT was used to represent unsu-
pervised language model understanding of complete anno-
tations, while BERT was used together with a Long Short-
Term Memory (LSTM) network (Hochreiter & Schmidhuber,
1997) to learn the combined representation through supervi-
sion by the keywords-based labelling system.

First, we investigate the embedding properties of Sentence-
BERT annotation embeddings visually through PCA and t-
SNE dimension reduction techniques in an interactive plot
where the annotation can be inspected by hovering over the
embedded dot. The embedding dimension of 768 is reduced
to 50 through PCA, then to two through t-SNE, as it is com-
mon practice to avoid applying t-SNE directly on data of
dimensions higher than 50. Similar clusters were observed
when t-SNE was applied directly on the data, although this
required more computation power.
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A visual inspection is difficult to quantify in proper evalua-
tion numbers, and prone to subjective bias or focusing on the
desired results, but can also serve as a guide to inspect the
semantic distributions of annotation embeddings, and offer
some insight into what words affect embedding placement in
the 2D projection. However, the resulting 2D space can also
be investigated quantitatively by clustering the projected em-
beddings through for instance K-Means, and evaluating the
inherent clusterability of the space as well as the words and
annotations used in each cluster. If the K-Means score, de-
fined as the average distance between cluster data points and
corresponding epicenters, increases (closer to zero) due to a
change, then it stands to reason that the vector space is more
separable if the score is normalised with regards to the scale
of the K-Means space. If the clusters also form based on im-
portant technical words indicating fault class or maintenance
action, then this improvement in separability is also an im-
provement in technical language representations. While the
classes formed from K-Means might have no inherent overlap
with those from the keyword-based labelling system, there is
still merit in comparing these to see where the systems agree
and disagree.

We also use BERT word embeddings as input to an LSTM
network optimised to reproduce the keyword-based labels.
The keyword-based labels labels are certainly not perfect rep-
resentations of the desired encodings of technical annotations.
However, it stands to reason that if the reproducibility of these
labels is improved after technical language substitution, in
spite of the fact that many technical terms substituted are also
directly used as keywords for the labelling system, then the
substituted BERT word embeddings are a better representa-
tion of the semantic space than the unsubstituted ones.

2.4. Dataset

Table 3 shows corpus properties of the original annotation
dataset, a filtered version, a version with only unique anno-
tations and finally annotations marked as clearly defined by
the keyword-based system. The original annotations were di-
rectly extracted from the condition monitoring dataset, and
the filtered annotations were computed by removing digits
and special characters from the dataset, which reduces the av-
erage annotation length slightly. Duplicate annotations were

Table 3. Properties of differently filtered annotations.

Annota- F#annota- | p(annota- | o(annota- | #words
tions set tions tions tions

length) length)
Original 1975 6.19 6.50 3008
Filtered 1975 5.71 6.22 1929
Unique 1162 7.13 6.93 1929
Clearly 618 6.85 7.43 1111
defined
Unclear 544 7.45 6.29 1334

Table 4. An example of annotations connected to a subasset in
a paper machine (with anonymised names, X). This subasset
has a higher than average number of annotations due to faults.

Fault |Date |Comment

None [09/20 | The lubrication works as it should according to X.
This roller is lubricated with oil. The bearing dam-
age is clearly visible in env with many overtones
but is at a very low level however it has increase a
bit lately. Ground frequency for outer ring in mm/s
also seen

BPFO [09/20 |BPFO seen on FS. Write WO maybe??? Talked
with X and he’ll check lubrication.

BPFO |06/20 |BPFO Indication DS. Low levels Keep watch.
None |03/20 [Roller replaced.

None |12/19 |WO written on bearing replacement drive side.
BPFO [12/19 |BPFO on drive side. Keep watch.

removed to create a corpus with unique datasets, which has
on average longer annotations due to many duplicates be-
ing “fault detected” annotations. The dataset was then fi-
nally split into clearly and unclearly defined annotations with
regards to fault class, as decided by the keyword-based la-
belling system. The unclearly defined annotations feature on
average more words, with on average longer annotations.

The initial corpus consists of 1975 annotations with a total of
3009 unique tokens. Of the 3009 unique tokens, 1286 require
wordpiece splitting for BERT to process, as explained in the
previous section. The longest annotation is 106 words long,
and the shortest is 1 word. The BERT model used as em-
bedder has a maximum input length of 512. With the longest
annotation at 106 words, and the tokenised version at most
twice as long, all annotations were processable within this
output limit. All annotation sentences were transformed from
text to embedding space using the BERT tokeniser and the
Swedish version of SentenceBERT (Rekathati, 2021).

Table 4 shows examples of annotations associated with a sub-
asset consisting of two sensors, one on the locating (free, FS)
and one on the non-locating (drive, DS) side. The first three
notes are typical examples of fault detection, maintenance ac-
tion and maintenance follow up. A BPFO is detected on the
drive side, but the severity does not yet warrant a replace-
ment. After 14 days, the analyst decides to write a work order
for roller replacement. Three months later, the component is
replaced and a follow-up annotation is written. This annota-
tion is of critical importance for the possibility of technical
language supervision (Lowenmark et al., 2021), as it indi-
cates where the associated signal data should be treated as
healthy again. However, only three months after this replace-
ment a BPFO is spotted again, initially on the non-locating
side. Upon further inspection after three months, it now ap-
pears primarily on the locating side, which shows the chal-
lenging task of analysing signals where faults propagate be-
tween sensors. This rapid recurrence of a new fault is unex-
pected, prompting another annotation describing a more de-
tailed analysis of the component. Since the signal levels are
low, the fault has not warranted a replacement even at the end
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of the dataset (mid 2021), which showcases the importance of
accurate fault severity assessment in minimising unnecessary
maintenance actions and material wastage from premature re-
placements.

3. RESULTS

Figure 3 shows all outputs from the keyword-based labelling
system on the filtered corpus, projected onto 2D-representati-
ons of SentenceBERT annotation embeddings with and with-
out technical language substitution. The labels were pro-
duced as described in Section 2.1, and the 2D visualisation of
the embedding space was produced through PCA dimension
reduction to 50 dimensions, and t-SNE projection from 50 to
2 dimensions. While the system works identically on both
annotations, the visualisation clearly shows that the clusters
formed after technical language substitution correlate more
with the labels produced by the keyword-based system.

Figure 4 shows 21 dimensional K-Means clustering applied
on the same t-SNE projected embedding space as the sec-
ond half in Figure 3. The labels are formed by searching
for the five most common words in annotations belonging to
each cluster. Due to BPFO being the most commonly men-
tioned fault class in the annotation set, it also becomes over-
represented in the label set. Comparing to the keyword-based
labels from Figure 3, the large sets of BPFO labels (turquoise)
has been split into multiple BPFO sets with small nuances in
the semantics, such as whether the fault is of low levels or
a WO should be written. However, BPFO is clearly over-

BPFI, none
BPFI, AO,
BFPI, replaced
Cable, none
° » Cable, AO,
Cable, replaced
BPFO, none
BPFO, AO,
BFPO, replaced
Sensor, none
2 > Sensor, AO,
Sensor, replaced
% g Play, none
Play, AO,
Play, replaced
Imbalance, none
Imbalance, AO,
Imbalance, replaced
Disturbance, none

BPFI, none
BPFI, AO,
BFPI, replaced
o Cable, none
Cable, AO,
Cable, replaced
BPFO, none
BPFO, AO,
BFPO, replaced
‘e v Sensor, none
e Sensor, AO,
p P Sensor, replaced
®® o Play, none
¢ Play, AO,
Play, replaced
Imbalance, none
Imbalance, AO,
Imbalance, replaced
Disturbance, none

Figure 3. Two dimensional t-SNE transformation of anno-
tation sentence embeddings, labelled by a keyword-based la-
belling system, without (top) and with (bottom) technical lan-
guage substitution.

represented in the label set, which likely is due to the high
number of BPFO cases, and the wide distribution in the clus-
ter space, as can be seen in the keyword-based labels as well.

The projected embedding space had consistently average K-
Means closer to zero for all K larger than 3, and performed
significantly better at K larger than 5, as shown in Figure 5.
The Figure shows K-Means scores for between 5 and 50 clus-
ters, computed on all unique annotations in the dataset, plot-
ted as a function of number of clusters. As expected, the K-
Means score decreases as more clusters can be formed due to
the shorter distances between points to their cluster epicen-
ters. The K-Means score is on average 36% more negative
before substitution for K larger than 5, and goes below 30%
only for K =11, 12 and 13 in this group.

The effect of technical language substitution was also eval-
uated by reproducing the output of the keyword-based la-
belling system from BERT word embedding inputs. The key-
word-based labelling system produces annotation labels as
outputs, which can be used as supervision signals. To widen
the experimental scope, the base Swedish BERT model, KB-
BERT (Malmsten et al., 2020), was used on a token level.
Thus, an annotation consisting of five tokens resulted in a
sequence of five 768 dimensional embeddings. These em-
beddings were then fed into an LSTM network, whose output
was fed into a feed-forward neural network. Compared to
SentenceBERT, this effectively allows the model to indepen-
dently learn the ideal combination of word embeddings into
dense representations of annotation semantics.

The LSTM model without technical language substitution ob-
tained an accuracy of 88.3% on a randomly sampled test set
when trained for 100 epochs, using the model with the highest
validation set accuracy for testing, while the model with tech-
nical language substitution obtained an accuracy of 94.2%
when trained with an identical set up, for a 5.9% difference.
The number of erroneous predictions thus decreased from
11.7% to 5.8% for an error reduction of 50%.

Figure 6 shows an example of confusion matrices from the
LSTM systems, where the bottom matrix is computed with
substituted input. Due to random sampling of train, valida-
tion and test annotations, the number of annotations of each
class can differ in each run, which is why multiple trials is
important for reliability of the results. While the substituted
input is clearly better suited for downstream NLP tasks, both
models have the worst accuracy for Play, which likely ap-
pears in similar context as other faults more than any other
fault class. Looking at Figure 3, some Play labels are far
away from the main cluster in the t-SNE space, so it stands
to reason that for the erroneous predictions the embeddings
were poor indicators of the Play fault class.
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BPFO, mms, BPFI, levels, DS
+ WO, cable_replacement, written, cable, replaced
BPFO, env, low, levels, keep
Sensor, the_sensor, next, stop, replaced,
® BPFO, low, levels, env, BPFI
< WO, play, written, bearing_replacement, bearing
% BPFO, wait, env, indication, levels
° The_sensor, shall, replaced, sensor, next
. WO, imbalance, BPFI, written, play
& ) BPFO, imbalance, roller, play, will
& The_sensor, sensor, shall, DS, skislope
Play_pattern, env, maybe, keep, watch
Imbalance, disturbances, DS, mmin, latest

s ="y “) s BPFO, keep, watch, BPF, low
> v BPFO, WO, DS, mms, write
A "”,3 e % WO, DS, written, play, BPFO
gl % BPFO, low, env, levels, wait
% ’ B /.,:; Play, mms, indications, eny, vibrations

X g

¢ Play, live, env, play_patterns, keep
BPFO, envy, indication, mms, FS

Figure 4. Two dimensional t-SNE transformation of annotation sentence embeddings with technical lan-
guage substitution, classified with K-Means and labelled with the five most common words per cluster.

4. DISCUSSION gpI{ 4 1 ©0 1 0 © O 5
The positive impact of technical language substitution was e H C BN ° BN ¢ 30
evaluated qualitatively in Figure 3 and quantitatively through Sensor{ 0 0 [1BY 1 0o 1 o0 pE
the K-Means score in Figure 5, as well as the LSTM output E 1 0o ol o : o 20
reconstruction shown in 6. These results are proof of con- u Play
cept that substituting out-of-vocabulary words can improve . Cabeq ® 0 0 0 & 0 0 B
the language model performance on other language domains. mbalance | © 0 0 2 0 5 0 10
Figure 4 illustrates how well a K-Means algorithm can cluster 5
annotation semantics based on SentenceBERT. Analysing the Disturbance D D D D D ? 3 o
clusters quantitatively there are few instances where multiple S LSS F & &
fault classes are among the top five words, with the excep- ¢ & < é@w\‘b Q,i‘"b
tion being BPFI which appears after BPFO and lacks its own oredicte Iabel\ o
clusters. The clusters also tend to form around words either
indicating low severity, high severity or component replace- wnl8 0 0 0 0o o0 o 4
ment, but in a few cases contain both replace and replaced, - kS
words that indicate significant differences in the condition in- BPF0 1 0 P e e 30
dicators. To deploy a language model on an annotation set, a _ Sensor{ 0 0 |18 1 0 0 0 -
human-in-the-loop approach where these differences are in- E payl 0 o ofEll o 1 o 20
structed to the TLP model might be necessary. Nonetheless, E
the results indicate that substitution significantly improves Gble 0 0 105 00 B
W Imbalance { @ 0 01 o & o 10
—50 L 122 § Disturbance { ¢ 0 0 1 0 1 1 °
~Loo g q{lﬂ\ ;O IQ& {;ﬁ Iea, I & I & ’
v 150 122 © ¢ F TP & &
§ -200 e N Q‘%@
" rlz0. Predicted label
E —250 Gg-"
= -300 r118 5 Figure 6. Confusion matrices from an LSTM with fully con-
- 350 S nected layers reconstructing the keyword-based labelling sys-
r116 & tem classification without (top) and with (bottom) substitution
400 e % on the same data split.
. . . : 114
10 Pl k1] 40 50 . :
Number of kMeans clusters the language representation, and thus further improvements

might facilitate language model deployment with less data

Figure 5. The K-Means score of K-Means clusters formed from  engineering requirements.

SentenceBERT embeddings of unsubstituted (without T2NS) . . .
and substituted (with) annotations for a varying number of clus- As no labelled ground truth evaluation dataset exists, multiple
ters, the relative improvement calculated as the old K-Means  Wweaker evaluation methods were used to improve the reliabil-
score divided by the new score.
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ity of the results. If the results indicate similar conclusions
despite the different evaluation methods, it is more likely that
they correlate with some underlying truth which would oth-
erwise be represented by ground truth labels. In principle,
the normalised K-Means score only conveys information on
the relative average distance between cluster data points and
their epicenters. Randomly distributed data can in theory re-
sult in a lower K-Means score than perfectly clustered data if
K is smaller than the number of clusters, for instance with two
distinct separate clusters and K = 1. However, coupled with
a visual inspection and comparison in Figure 3, it is clear the
the reduction is due to improved representation rather than
an under-fitted K. This is also evident from Figure 5, where
the K-Means score is higher after substitution when K = 1
and 3, and where considerable improvement is seen first af-
ter K = 6. The improved performance of the LSTM-system
with embedding inputs is also important for evaluation as it
indicates a better distribution of the embedding space with
regard to fault classes. It also reinforces the concept of assist-
ing language model evaluation through a keyword-based sys-
tem, as the substitution removes the keywords from the lan-
guage model input space. Consequently, the improvements
seen in the classification step must be from a superior dis-
tributional representation of the underlying semantics rather
than a “’short-circuit” mapping between keywords.

The lack of intrinsic or extrinsic evaluation tools or datasets
for language models in the technical domain obfuscates po-
tential improvements in technical language understanding. Ca-
david et al. (2020) evaluated technical language representa-
tions using internal properties of the dataset, with equipment
descriptions, symptoms and equipment importance as input,
and type of disturbance (dominant or recessive) and main-
tenance workload (hours) as outputs. The existence of these
two possible outputs facilitates an extrinsic evaluation, though
one not necessarily in complete correlation with annotation
semantics, as their results indicate that the TF-IDF-based meth-
ods by far outperform pre-trained CamemBERT and often
perform just shy of fine-tuned CamemBERT. Thus, the in-
creased natural language understanding of CamemBERT is
either impeded by OOV technical terms, or the evaluation
method has poor correlation with language understanding.
Without access to resources such as GLUE (Wang et al., 2018)
and SuperGLUE (Wang et al., 2019) from NLP, it is difficult
to properly evaluate whether the language model is overfitted
to the specific language distribution.

Nandyala et al. (2021) used an English dataset without obvi-
ous extrinsic evaluation tasks, and thus rely on quantitative
evaluation in word similarity, sentence similarity and word
cluster projections to compare their different distributional
word vector models. These methods offer some initial in-
sight into the workings of language models on technical lan-
guage, but without quantitative values it is difficult to com-
pare models and evaluation relies on subjective human judge-

ment. Ideally, work towards creating a technical language
version of GLUE and SuperGLUE can be initiated to further
the research into adaption, pre-training and fine-tuning of lan-
guage models on technical language.

5. CONCLUSION

This study has investigated the effect of substituting out-of-
vocabulary technical terms with natural language descriptions
on BERT and SentenceBERT word distributions To evaluate
the models, a keyword-based labelling system was designed
and used for visualisation and comparison with a K-Means
clustering algorithm. Furthermore, the system was used to
generate labels for optimization and testing of an LSTM with
two output layers. The K-Means scores of clusters formed
from t-SNE and PCA transformations of SentenceBERT rep-
resentations of condition monitoring annotations were also
computed and used as evaluation metrics. We contribute to
the methodology of evaluating machine learning models’ un-
derstanding of language, which was investigated by gener-
ating multiple evaluation methods where no ground truth is
present.

There are many opportunities to bridge the gap between NLP
successes and technical language challenges, but one major
factor impeding this progress is the lack of standardised eval-
uation resources on technical language. For further research,
we suggest the development of a technical version of the GL-
UE benchmark, and additional experimentation in transfer-
ring natural language understanding from large pre-trained
language models to small technical language datasets through
either data manipulation, fine-tuning or other transfer learn-
ing approaches. The effect of technical language substitution
could also be further investigated through a systematic study
of the effect of each substitution and different sets of substi-
tutions, ideally on a dataset with many OOV technical terms
but with some type of ground truth labels available for evalu-
ation.
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