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ABSTRACT

In Prognostics and Health Management, there are three main
approaches for implementing diagnostic and prognostic ap-
plications. These approaches are data-driven methods, phys-
ical model-based methods, and combinations of them, in the
form of hybrid methods. Each of them has specific advan-
tages but also limitations for their purposeful implementa-
tion. In the case of data-driven methods, one of the main
limitations is the availability of sufficient training data that
adequately cover the relevant state space. For model-based
methods, on the other hand, it is often the case that the degra-
dation process of the considered technical system is of signif-
icant complexity. In such a scenario physics-based modeling
requires great effort or is not possible at all. Combinations
of data-driven and model-based approaches in form of hy-
brid approaches offer the possibility to partially mitigate the
shortcomings of the other two approaches, however, require
a sufficiently detailed data-driven and physics-based model.

This paper addresses the transitional field between data-driven
and hybrid approaches. Despite the issues of formulating
a physics-based model that provides a representation of the
degradation process, basic knowledge of the considered sys-
tem and of the laws governing its degradation process is usu-
ally available. Integration of such knowledge into a machine
learning process is part of a research field that is either called
theory-guided data science, (physics) informed machine learn-
ing, physics-based learning or physics guided machine learn-
ing. First, the state of research in Prognostics and Health
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Management on methods of this field is presented and exist-
ing research gaps are outlined. Then, a concept is introduced
for incorporating fundamental knowledge, such as monotonic-
ity constraints, into data-driven diagnostic and prognostic ap-
plications using approaches from theory-guided data science.
A special aspect of this concept is its cross-application usabil-
ity through the consideration of knowledge that repeatedly
occurs in diagnostics and prognostics. This is, for example,
knowledge about physically justified boundaries whose com-
pliance makes a prediction of the data-driven model plausible
in the first place.

1. INTRODUCTION

The choice between a model-based or a data-driven approach
is a crucial element of any Prognostics and Health Manage-
ment (PHM) application. Whether, for example, in the case
of condition diagnosis or subsequent prediction of remain-
ing useful life (RUL), the suitability of the respective ap-
proach depends on the properties of the particular applica-
tion. The central prerequisite for a model-based approach is
that knowledge on causal relationships of the technical sys-
tem and its degradation process is available for the formation
of a physics-based model. The model-based approach is of-
ten characterized by a rather high predictive accuracy and a
comparably small amount of required data. However, the uti-
lization of this approach is severely limited by the fact that the
degradation processes of many technical systems are of such
high complexity that a detailed, purely physics-based mod-
eling is hardly possible (Eker et al., 2016). In addition, such
physics-based models are also highly application-specific and
therefore have restricted transferability (Byington et al., 2002).

1

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 156



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022

The counterpart to the model-based approaches are the data-
driven ones. These originate primarily from the domains of
statistics and machine learning. Their implementation re-
quires comparatively small effort; and at least the fundamen-
tal learning algorithm has a wide range of applicability (Eker
et al., 2016). The methods are based on inductive inference,
which underlies the statistical modeling of the training data
provided (Huellermeier & Waegeman, 2021). The causal re-
lationships, however, that yield the values of the training data
are not learned. Since the data are the only source of informa-
tion for these methods, they are not suitable for extrapolation
into areas with sparse and, in particular, no training data. Ac-
cordingly, their purposeful use requires sufficient coverage of
the state space by data (Coveney et al., 2016). Furthermore,
the lack of comprehension of the causal relationships means
that the predictions can take on implausible values that violate
fundamental constraints (von Rueden, Mayer, et al., 2021). A
behavior that intensifies in areas without training data.

Even though data-driven methods are currently predominant
in research on PHM, the lack of data is a major limitation to
their widespread industrial application. This affects diagnosis
as well as prognosis, which can be subdivided in accordance
with Jia et al. (2018) into four tasks:

• Fault detection: Detect a fault state/anomaly of a tech-
nical system without knowing the root cause. This results
in a binary classification problem with the states fault or
no fault.

• Diagnosis: Assign one or more causes to a detected fault
state.

• Health assessment: Assess the state of health or the cur-
rent risk of failure of a system based on its current con-
dition.

• Prognosis: Predict the future state of health or RUL.

Each of these tasks involves its own estimation process and is
individually affected by the lack of data.

Having a representative data set containing several run-to-
failure data sets for each fault mode in each system configura-
tion typically corresponds to a practically impossible amount
of effort due to the typical lifetime and variant diversity of
many systems. Even the recording of one run-to-failure cy-
cle can take several months or years (Hagmeyer et al., 2021;
Hemmer et al., 2019; Pillai et al., 2016). Therefore, Chao et
al. (2022) even state that the two aforementioned problems
of incomplete physical models and the lack of representative
data sets are among the main problems in RUL prediction.

The combination of data-driven and physics-based models is
usually referred to as hybrid in PHM. In this context, the term
hybrid has a wide range of definitions depending on the liter-
ature, as among others Javed et al. (2017), N.-H. Kim et al.
(2016), and Liao & Koettig (2014) demonstrate. In this paper,
only the combination of entire data-driven and physics-based

models is referred to as a hybrid approach. These offer the
possibility to mitigate the limitations of the two approaches
described above, but require sufficiently detailed models of
both types. In addition, in order to restrict the scope of the
following investigations, only approaches in which the data-
driven models and incorporated knowledge or physics-based
models relate to the same PHM task will be considered. The
wide range of approaches to joining models in which they
complement each other, for example, by one model doing
fault detection and the other doing cause assignment based
on it, or by one model doing health estimation and the other
describing the degradation progression, is out of the scope of
the paper.

Fundamentally, the integration of knowledge into machine
learning is a whole research area that has been experiencing
a great growth especially in the last five years. Depending on
the literature, this research field is referred to as

• theory-guided data science see (Karpatne et al., 2017),
• (physics) informed machine learning see (von Rueden,

Mayer, et al., 2021), (Yucesan & Viana, 2020b),
• physics-based learning see (Liu & Goebel, 2018) or
• physics guided machine learning see (Rai & Sahu, 2020).

In the following, the term theory-guided data science (TGDS)
is used, as Karpatne et al. (2017) were the first to introduce
such a designation of the research field. The research area
TGDS does not only address the integration of entire physics-
based models to increase predictive accuracy in machine learn-
ing, but already starts with the integration of knowledge about
single principles of the process to be modeled. Here, the term
knowledge is used in accordance with von Rueden, Mayer, et
al. (2021), in that knowledge is seen as "validated informa-
tion about relations between entities in certain contexts" (von
Rueden et al, 2021).

The topic of this paper, integrating basic knowledge that is not
sufficient for holistic modeling, lies in the transition area be-
tween data-driven and hybrid. Such basic knowledge already
begins with the fact that most technical systems are not capa-
ble of self-healing and consequently a predicted degradation
curve has to show a monotone increase. However, integra-
tion of such knowledge is an aspect that has received com-
paratively little attention in PHM so far. Although individual
approaches have been used in case studies, any overall con-
sideration of their use in PHM is missing. Studies in general,
as well as those related to PHM described in the next section,
nevertheless already demonstrate the potential of combining
data and knowledge for increasing predictive accuracy. Thus,
for example, insufficient amounts of data could be compen-
sated. The term predictive accuracy is dependent on the re-
spective PHM task and is evaluated by different metrics, some
of which are subject-specific. Typical examples of these met-
rics are for fault detection fault detection rate, for diagnosis
isolation classification rate, for health assessment root mean
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squared error, and for prognosis prognostic horizon (Saxena
et al., 2010; Feldman et al., 2010; Gao et al., 2019).

The purpose of this paper is to take a first step towards a gen-
eral examination of the use of TGDS in PHM as well as to ini-
tiate new research. Therefore, in Section 2 an overview of rel-
evant TGDS approaches that do not require complete physics-
based modeling and their employment in PHM is given. Then,
in Section 3, concepts of assigning knowledge that occurs
across diagnostic and prognostic applications to suitable TGDS
methods are introduced. In the last section a conclusion and
outlook on future work is given. The overall relevance of
the paper’s topic for PHM research stems firstly from the fact
that the scenario of insufficient training data combined with
incomplete physics-based modeling is common for industrial
applications of PHM and secondly, that studies already show
the potential of TGDS in such scenarios.

2. OVERVIEW OF APPROACHES FOR INTEGRATING
KNOWLEDGE INTO MACHINE LEARNING

Already in regular machine learning, knowledge is partially
integrated at several places of the learning pipeline. This in-
cludes, for example, feature engineering or the selection of
the hypothesis set by defining hyperparameter values. TGDS
extends the usual building of data-driven models by consid-
ering knowledge as a second source of information besides
the data (von Rueden, Mayer, et al., 2021). In this paper,
methods that do not require entire physics-based models for
fusing knowledge and machine learning are considered. This
involves knowledge about partial facets of the learning task,
such as a subdivision of a problem into subproblems based on
physics or knowledge about regularities such as valid bounds
of variables, monotonicity conditions, correlations or curve
shapes of intermediate and target variables. This form of
knowledge integration is characterized by utilizing knowl-
edge about intermediate variables or about valid properties of
the target variables. The feature that distinguishes an incor-
poration of physics-based models from this is that a complete
model provides a sufficiently precise estimate of the concrete
value of the target variable(s). Thus, the data-driven and the
physics-based models provide basically the same kind of in-
formation about the target variable, such as the health index
(HI) or the RUL information. It is only through this unifor-
mity that the method spectrum of hybrid model ensembles
becomes possible.

Literature reviews of TGDS methods already exist, but these
are independent of PHM and do not distinguish whether the
formation of an entire physics-based model is required, which
is highly relevant for PHM due to the complexity of many
degradation processes. These PHM-independent works per-
form a mutually differing distinction of TGDS methods, as
shown for example by von Rueden, Mayer, et al. (2021), Aykol
et al. (2021), Willard et al. (2020), Karpatne et al. (2017), and

Rai & Sahu (2020). In the following, six approaches are pre-
sented that allow the integration of knowledge that does not
allow complete modeling. Furthermore, references to the al-
ready existing implementations of these approaches in PHM
are given.

2.1. Physics-Based Generation of Synthetic Training Data

This method is the most intuitive form of knowledge integra-
tion. Here, the available amount of training data is extended
by synthetic data points generated on the basis of knowl-
edge. However, the labeling of such data points requires con-
crete values of the target variable and thus actually a process
model. This issue is solved by drawing random samples from
the entire range of values of the target variable that are consid-
ered valid based on knowledge. This could be data in which
the values of the target variable comply with a given set of
curves. Even more than when using a physics-based model
for labeling, the deviation of the synthetic training data from
the correct value is expected to have not only a high vari-
ance but also a high bias. Therefore, to improve the accuracy
with the data, it is used in a pretraining for a physics-guided
initialization instead of being mixed with the regular train-
ing data. In the pretraining, the model is trained on a rather
simple problem. The actual training based on this, especially
with small data sets, serves the subsequent fine-tuning of the
machine learning model (Jia et al., 2019).

Several examples for the use of physics-based models to gen-
erate synthetic training data exist in PHM, such as Yu et al.
(2018) and Sankararaman et al. (2011). However, most of
these aim not to improve accuracy but to save computation
time in the application phase by replacing the physics-based
model with the data-driven one. The enrichment of the train-
ing data by knowledge that does not provide a complete mod-
eling has hardly been investigated so far. The authors are so
far only aware of Yucesan & Viana (2020a), Yucesan & Viana
(2020b), and Dourado & Viana (2019) which apply such pre-
training. Based on known correlations of input and target
variables, these variables are brought in connection by a hy-
perplane. Since such linear equations do not correspond to the
true hypersurface and in particular since weights are unknown
in the equation, random initializations of the weights and thus
of the plane are used for the generation of synthetic training
data. These paper include just the application of physics-
based generation of synthetic training data, but without any
investigation on the effect of the pretraining.

2.2. Physics-Based Regularization

The training of a machine learning model is basically an op-
timization problem. The so-called loss function forms the
objective function of the optimization, which evaluates the
quality of a hypothesis. The goal of the training is to find a
hypothesis that minimizes the loss function. This optimiza-
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tion problem can be supplemented by physically based con-
straints in order to obtain a physically consistent hypothesis
as training outcome. The main approach to this is the addi-
tion of a special regularization term to the loss function. In
regular machine learning, the loss function L(f) mostly con-
sists of a component loss(Ŷ , Y ) that captures the agreement
of the model output Ŷ and the real measured values Y , and
a regularization component for constraining the model com-
plexity R(f)

L(f) = loss
(
Ŷ , Y

)
+ λ ·R

(
f
)
. (1)

In physics-based regularization, the loss function is extended
by the term lossphys(Ŷ ), which evaluates whether it satisfies
governing physics laws

L(f) = loss
(
Ŷ , Y

)
+ λ ·R

(
f
)
+ γ · lossphys

(
Ŷ
)
. (2)

Noncompliance with laws is penalized by an increased loss
value, which is why, depending on the weighting γ, physi-
cally consistent solutions are favored by the training. Since
the lossphys(Ŷ ) is independent of actual measured values,
the evaluation of physical conformance is not bound to areas
present in the collected data (Muralidhar et al., 2018), (Y. Zhu
et al., 2019), (von Rueden, Mayer, et al., 2021). For instance,
Muralidhar et al. (2018) introduce equations to embed valid
ranges of values by means of rectified linear functions and
monotonicity constraints by means of logic operations into
the loss function as regularization.

Although this is a relevant approach, a work on the implemen-
tation of physics-based regularization in PHM is not known
to the authors. However, there is an approach in diagnos-
tic and prognostic applications that can be argued in a wider
perspective also as an integration of knowledge and funda-
mentally shares the same concept. Instead of physics-based
knowledge about the degradation process, operational knowl-
edge is incorporated into the loss function. For this purpose,
in the case of a regression task instead of a symmetric func-
tion such as the squared error an asymmetric function is used
for loss(Ŷ , Y ). Applied to a RUL prediction, the asymmetric
function represents the different costs that arise due to ex-
cessive maintenance in the case of RUL underestimation and
due to unplanned outages in the case of RUL overestimation.
Depending on the application, such a model can be trimmed
more towards RUL underestimation or overestimation. The
use of such asymmetric loss functions is discussed in the eval-
uation of several data challenges of the PHM Society as well
as by Hoenig et al. (2019), Li et al. (2018), and Saxena et al.
(2008).

2.3. Final Hypothesis Set Evaluation

A sufficient generalization of a machine learning model can-
not be automatically guaranteed after training. In order to val-
idate training results, extensive test data is usually required,

which is specifically retained from the training. When gen-
erating several different models through training, this set of
final solution hypotheses cannot only be evaluated using test
data, but can also be compared to existing knowledge (von
Rueden, Wirtz, et al., 2021). For the evaluation and selec-
tion of trained models, both the compliance with individual
physics laws and the compliance with phyiscal models can
be considered. Even though there is no direct integration of
knowledge into the learning process in the final hypothesis
set evaluation, the method is still included in the list here be-
cause the selection process can lead to better model accuracy
in the application phase.

The final hypothesis set evaluation is an intuitive approach
that is certainly used regularly in PHM in a basic form. In ad-
dition, there are comparable approaches and objectives in ex-
plainable machine learning. Based on knowledge, the trained
models are analyzed in the so-called post-hoc explanation
and assessed with respect to their validity (Burkart & Hu-
ber, 2021). One application of the approach is presented by
Grezmak et al. (2019). They show that in a learned model for
gearbox diagnosis, the damage frequencies which are most
relevant for classification are consistent with knowledge of
sideband frequencies.

2.4. Intermediate Physical Variables

The basic idea of this approach is to adapt the hypothesis
space by dividing the problem of modeling the relationship
between input and target variables into modules based on
process knowledge. The inputs and outputs of the modules
are thus assigned a physical meaning and, as far as possi-
ble, they are related to each other on the basis of knowledge.
Thereby on the one hand the problem structure can be con-
sidered within the architecture of a single data-driven model,
e.g. by adapting the architecture of a neural network and as-
signing meanings to neurons. On the other hand, for each de-
fined modul an indiudual data-driven model can also be used
(Karpatne et al., 2017), (Willard et al., 2020). If at least a
modul can be modeled physics-based in sufficient detail, it is
also possible to substitute the respective data-driven model by
it. Besides intermediate physical variables, this approach can
also be designated for instance as physics-guided architecture
or as theory-guided design of model architecture.

This physics-based problem subdivision thus also bridges the
gap to knowledge-based feature engineering by in both cases
providing information on individual intermediate variables
related to the target variable. The goal of this approach is
the physics-based subdivision of a problem. However, the
ability to incorporate a physics-based model of a subproblem
also bridges another gap. This is to the, in the first section
excluded hybrid approaches where data-driven and physics-
based models are used for different PHM tasks. One such
example is the state estimation and the prediction of further
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degradation using respectively one of the model types.

In PHM, a physics-based problem subdivision is applied sev-
eral times, particularly noteworthy here are the same papers
as mentioned in physics-based generation of synthetic train-
ing data. The idea of incorporating knowledge about the
structure of a problem, which is not sufficient for complete
modeling, into a data-driven model is applied by Yucesan
& Viana (2020a), Yucesan & Viana (2020b), and Dourado
& Viana (2019) to the examples of bearing damage in wind
turbines and corrosion-influenced material fatigue of aircraft
components using recurrent neural networks.

2.5. Auxiliary Task in Multi-Task Learning

Another possibility for the integration of knowledge men-
tioned by Willard et al. (2020) is the use of multi-task learn-
ing. In addition to the actual prediction task, auxiliary tasks
are used to estimate related physical variables. These auxi-
lary tasks are defined based on knowledge of the process and
admissible properties of these variables. The unification of
both tasks by multi-task learning is intended to leverage their
synergy for a more precise as well as physically consistent
prediction. It should also be emphasized that the physics-
based regularization and auxiliary task in multi-task learning
approaches have considerable commonalities. Both shift the
position of the optimum, which is searched for during the
training process, towards models, which comply with given
knowledge. Nevertheless, there is also an affiliation of this
approach to intermediate physical variables. The hypothesis
set is adjusted by linking related physical variables to the tar-
get variable on the basis of knowledge.

In PHM, especially Ozdagli & Koutsoukos (2021) address
the use of knowledge about related variables in the context
of multi-task learning. The method of employing knowledge-
based auxiliary tasks is applied to damage detection in struc-
tural health monitoring using neural networks. The labels for
the auxillary tasks are provided in this case by a physics-
based model, which, nevertheless, is not fundamentally re-
quired for the approach. Compared to the baseline of a purely
data-driven neural network, a significant improvement of the
classification accuracy is shown. In addition to incorporating
knowledge, another advantage of the multi-task approach is
the possibility to use labeled data of the additional target vari-
ables for training in order to obtain enhanced learning results
also for the actual target variable (Caruana, 1997). Examples
of such work in PHM include T. S. Kim & Sohn (2020), Chen
et al. (2019), and Hinchi & Tkiouat (2018). One aspect that
is entirely absent in these studies is having knowledge about
admissible properties for the related variables and the incor-
poration of this knowledge into the learning process.

2.6. Knowledge Integration into Probabilistic Graphical
Models

The probabilistic graphical models are particularly suitable
for the integration of knowledge due to their inherent inter-
pretability. Based on knowledge, nodes and edges can be pa-
rameterized, e.g. by specifying an adjacency matrix. As with
the multi-task approach, probabilistic graphical models are
considered here as a separate case, wherein the integration of
knowledge in probabilistic graphical models has already re-
ceived extensive consideration both in general and in PHM in
particular. Depending on the further learning process, this can
be seen as an architectural constraint adjusting the hypothesis
space in the sense of intermediate variables. If the parameteri-
zation of edges represents a priori information that is adapted
during training, the learning process is rather guided in one
direction in the sense of a regularization. Such ambiguity is
also reflected in the different treatment of this approach in the
review papers on TGDS mentioned at the beginning of the
second section.

The ability to perform knowledge integration of these mod-
els is also reflected in the extensive work being done on this
at PHM. Liu & Goebel (2018) present a research and de-
velopment project of the US federal agency National Aero-
nautics and Space Administration. The goal here is to de-
velop a predictive system that not only assesses the safety
status of aircrafts, but of the entire airspace. As a central el-
ement of the information fusion, a Bayesian network is used.
Juesas et al. (2016) in turn present the integration of impre-
cise state knowledge into an autoregressive hidden Markov
model (ARHMM) using the CMAPSS dataset as a bench-
mark. The possibility to represent imprecise knowledge al-
lows chosing a compromise between belief and evidence in
model generation. Palazuelos et al. (2020) and González et
al. (2019) present a graph network where nodes represent the
state of system components. An adjacency matrix is used to
define connections between nodes of physically related com-
ponents. The matrix can be learned from data but also created
or adapted based on knowledge.

3. CONCEPTION OF A PHM RELATED USE OF TGDS
METHODS

Despite the outlined potential of TGDS to improve data-driven
diagnostic and prognostic applications, it is also apparent that
there are still significant research gaps in this regard. As a first
step towards a holistic treatment of the topic, the following
sub-sections introduce concepts of assigning knowledge that
occurs across diagnostic and prognostic applications to suit-
able TGDS methods presented in the previous section. The
selection of cross-application knowledge is based on the au-
thors’ assessment and focuses on knowledge of the degrada-
tion process. In PHM, there are also other sources of recur-
ring knowledge related to the degradation process, which are
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not considered here. Examples of this include knowledge due
to a previous risk assessment such as an FMEA or knowledge
about operating conditions.

The basic assumption is that a larger amount of integrated
information, whether in the form of knowledge or data, is
generally associated with an improvement in the predictive
accuracy of a diagnostic or prognostic application. Another
assumption is that, although limited in volume, labeled data
of the examined degradation process for supervised learning
are available in the first place.

In supervised learning, models are trained to reflect the rela-
tionship between input and target variables. The structure of
the learned model or its information processing to form the
estimate of the target variable is not bound to the cause-effect
relationships of the modeled process. Consequently, from the
authors’ point of view, an essential characteristic of knowl-
edge of the modeled process is whether it relates to the target
variable that is always present or only to an intermediate vari-
able associated with the target variable that is not inherently
included in the model. Hence the following subdivision is
provided:

• Concepts for the integration of cross-application
knowledge on target variables

• Concepts for the integration of cross-application
knowledge on intermediate variables

3.1. Concepts for the Integration of Cross-Application
Knowledge on Target Variables

The three TGDS methods that specifically require and in-
corporate knowledge of the target variable are physics-based
generation of synthetic training data (Section 2.1), physics-
based regularization (Section 2.2), and final hypothesis set
evaluation (Section 2.3).

Knowledge on the curve shape of the degradation pro-
cess: If the fault mechanism is the same, the shape of the
health progression is often identical across applications and
therefore known. For example, the fault mechanism deter-
mines whether a system is capable of self-healing and thus
whether a positive HI gradient is admissible. If this is not
the case, a monotone damage progression must be observed.
Further examples are the typical convex curves of crack prop-
agation under cyclic loading (Castillo et al., 2010) and in
the case of filter clogging the differential pressure increase
(Thomas et al., 2001). The latter additionally becoming a lin-
ear increase when depth filtration transitions to cake filtration.
Even though the level of degradation over time can only be
described very imprecisely, there is nevertheless knowledge
of shape constraints that should be fundamentally fulfilled
in a prediction. Mathematical shape constraints can be well
expressed by formulas, which is why physics-based regular-
ization is particularly suitable. Physics-based regularization
provides the ability to guide the training into such a direction

that the constraints are met, also for high-dimensional prob-
lems. By relying on formulas to express shape constraints,
one can also use them to evaluate the final hypothesis set. Al-
though compliance is not enforced in training, it does have an
advantage of general applicability especially when consider-
ing different types of machine learning methods that involve
different loss and training functions.

Knowledge of correlations: If there is no knowledge on
strict shape constraints but only on correlations between input
variables and target variables, which are not universally met,
the physics-based generation of synthetic training data ap-
proach is most suitable. The reason for this is that local areas
where the synthetic data show a significant bias compared to
the actual data can still be adjusted following the pretraining.
Other approaches instead would likely result in rather soft
constraints or a flawed model as training result with such in-
accurate knowledge. As Yucesan & Viana (2020a), Yucesan
& Viana (2020b), and Dourado & Viana (2019) demonstrate,
engineering estimates on correlations are sufficient to obtain
a reasonable initialization of an iteratively trained model by
means of a pretraining. Furthermore, for example by Lauer &
Bloch (2008) different approaches are presented for also in-
corporating synthetic training data with different quality than
the actual training data in support vector machines with their
convex training tasks.

Non-formalized expert knowledge (tacit knowledge): Of-
ten, knowledge about degradation processes is available in the
form of expert knowledge that is difficult to express in math-
ematically precise terms. Especially in such cases final hy-
pothesis set evaluation is well suited, since no formulation is
required and basic physical correctness of the learned model
can be ensured. However, the knowledge-based analysis of
trained models is closely related to the topic and problems of
interpretable machine learning. The main issue here is the
mostly abstract, high-dimensional representation of learned
results that are beyond human cognitive comprehension. So,
the application of the final hypothesis set evaluation approach
requires that the models to be evaluated are intrinsically inter-
pretable or that post-hoc explanations can be applied. Post-
hoc explanations require that a low-dimensional and to some
extent local representation of the learned behavior can be cre-
ated without too much loss of information, which can for ex-
ample be visually perceived. Thereby, significant research
gaps in PHM on interpretable machine learning especially on
models of time series analysis and prediction applications in
general exist (Vollert et al., 2021).

Boundaries of target variables: If, the boundaries of the tar-
get variable’s permissible range are known, several methods
are suitable for ensuring compliance with these boundaries
and thus, the basic validity of an estimate. In addition to
physically induced boundaries, external requirements, such
as a maximum service life of a component, can also yield
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Table 1. Summary of recommended methods for integrating knowledge that occurs across applications.

Type of knowledge Proposed approach for knowledge integration
Knowledge on the curve shape of the Physics-Based Regularization (2.2)
degradation process Final Hypothesis Set Evaluation (2.3)
Knowledge of correlations Physics-Based Generation of Synthetic Training Data (2.1)
Non-formalized expert knowledge Final Hypothesis Set Evaluation (2.3)
Boundaries of target variables Physics-Based Regularization (2.2)

Final Hypothesis Set Evaluation (2.3)
Probabilistic Graphical Model (2.6)
Intermediate Physical Variables (2.4)

Knowledge of the problem structure Intermediate Physical Variables (2.4)
Probabilistic Graphical Model (2.6)

Knowledge and extensive data of Auxiliary Task in Multi-Task Learning (2.5)
intermediate variables Intermediate Physical Variables (2.4)

Probabilistic Graphical Model (2.6)

such boundaries. Besides physics-based regularization and fi-
nal hypothesis set evaluation, the approaches of using graph-
ical models and intermediate physical variables can also be
utilized to enforce compliance with such boundaries. With
graphical models, edges can be parameterized accordingly.
In the case of the intermediate physical variables approach,
a model structure that fundamentally ensures the compliance
can be specified, in simple cases of constant boundaries al-
ready by the choice of an output function.

3.2. Concepts for the Integration of Cross-Application
Knowledge on Intermediate Variables

The three methods that can be used also in case of knowl-
edge of the problem structure and intermediate variables are
intermediate physical variables (Section 2.4), auxiliary task
in multi-task learning (Section 2.5), and probabilistic graph-
ical models (Section 2.6). In the following, a distinction is
made between only two cases.

Knowledge of the problem structure: If knowledge about
the structure of a problem and about relevant intermediate
variables is available, a physically based subdivision accord-
ing to the approach intermediate physical variables can usu-
ally be applied. The same holds for graphical models whose
nodes can be assigned a meaning and also edges can be speci-
fied accordingly between nodes. Especially if the data-driven
estimation of intermediate variables is considered as a learn-
ing task on its own, the concepts described above for the in-
tegration of knowledge about target variables can be applied
to this subproblem. That knowledge about a problem’s struc-
ture and intermediate variables is often available is shown by
the extensive work on hybrid methods where different model
types take over individual subtasks (Eker et al., 2019). A fur-
ther evidence is the physics-based feature engineering already
mentioned in Section 2, where also extensive work is done,
especially on rotating systems like rolling bearings or gears
(J. Zhu et al., 2014).

Knowledge and extensive data of intermediate variables:
Multi-task learning addresses among others the case when,
in addition to knowledge of intermediate variables, extensive
labeled data on these variables is also available. Instead of
learning to assign known intermediate variables as a submod-
ule or using probabilistic graphical models, multi-task learn-
ing can alternatively use them as additional target variables.
Although there is still a considerable need for research on the
integration of knowledge in multi-task learning, the approach
of using additional labeled data that do not include the actual
target variable already offers als great potential. In accor-
dance with T. S. Kim & Sohn (2020), the estimation of the
current HI can form an auxillary task in a prediction applica-
tion. From the authors’ point of view, this approach is of high
relevance, since it allows data to be used for learning a prog-
nosis model, which do not contain any health change and thus
are of minor use in a regular prognosis application. In many
applications with long test durations, such as ball bearings,
tests with predamaged components on fixed fault conditions
und therefore health are common practice (Chen et al., 2018).
With multi-task learning and knowledge of such related vari-
ables, this kind of test data can also be used for prognosis
development.

A summary of the concepts for assigning knowledge types
and TGDS methods is given in Table 1.

4. CONCLUSIONS AND OUTLOOK

There are three approaches to realizing diagnostic and prog-
nostic tasks. In this paper, at first, these approaches are char-
acterized. Thereby, connections between hybrid methods and
the research field of TGDS can be identified. Subsequently,
main aspects of TGDS are introduced and the potential of
TGDS in PHM is outlined. The focus here is on methods for
the integration of knowledge in machine learning, which do
not require complete physics-based models, but rather knowl-
edge of individual properties of the degradation process. For
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this purpose, a definition for the designation model is given.
The presented overview of the relevant TGDS approaches il-
lustrates them in detail and also points out studies on PHM
that already employ them. In doing so, several research gaps
can be identified. Based on the overview, cross-application
knowledge occurring in diagnostics and prognostics is stated
and concepts for integrating it into the learning process are
proposed. The description of suitable methods contained therein
is based primarily on theoretical considerations and, where
available, on transferable findings from other work.

Overall, the paper makes an initial contribution to a holistic
investigation of the incorporation of knowledge into machine
learning in diagnostics and prognostics. There is significant
potential for the use of TGDS in PHM, but also a great need
for further research. Concerning the latter, on the one hand,
there is much more knowledge for which a procedure for the
integration is of cross-application benefit. On the other hand,
the given theoretical concepts have to be investigated more
thoroughly, supplemented by PHM-specific aspects such as
uncertainty considerations, and verified by empirical studies.
In addition, overlapping research fields such as transfer learn-
ing and fuzzy machine learning have to be considered, where
the integration of knowledge is also a partial aspect.
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