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ABSTRACT

Early and accurate detection of rolling element bearing faults
in rotating machinery is important for minimizing produc-
tion downtime and reducing unnecessary preventative main-
tenance. Several fault detection methods based on signal pro-
cessing and machine learning methods have been proposed.
Particularly, supervised, data-driven approaches have proved
to be very effective for fault detection and diagnostics of rolling
element bearings. However, supervised methods rely heavily
on the availability of failure data with volume, variety and
veracity, which is mostly unavailable in industry. As an alter-
native data-driven strategy, unsupervised methods are trained
on healthy data only and do not require any failure data.

In contrast to supervised and un-supervised data-driven mod-
els, physics-based and phenomenological models are based
on domain knowledge and not on historical data. Although
these models are useful for studying the way in which damage
is expected to manifest in a measured signal, they are difficult
to calibrate and often lack the fidelity required to model re-
ality. In this paper, an unsupervised data-driven anomaly de-
tection method that exploits informative domain knowledge is
proposed. Hereby, the versatility of unsupervised data-driven
methods are combined with domain knowledge.

In this approach, supplementary training data is generated by
augmenting healthy data towards its possible future faulty
state based on the characteristic bearing fault frequencies.
Both healthy and augmented squared envelope spectrum data
is used to train an autoencoder model that includes regulari-
sation designed to constrain the latent features at the autoen-
coder bottleneck. Regularisation in the autoencoder loss en-
forces that the expected deviation of the healthy latent repre-
sentation towards the augmented latent representation at dam-
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aged conditions, is constrained to be maximally different for
different fault modes. Consequently, the likelihood of a new
test sample being healthy can be evaluated based on the pro-
jection of the sample onto an expected failure direction in the
latent representation.

A phenomenological and experimental dataset is used to demon-
strate that the addition of augmented training data and a spe-
cialized autoencoder loss function can create a separable la-
tent representation that can be used to generate interpretable
health indicators.

1. INTRODUCTION

1.1. Background on condition monitoring approaches

Condition-based maintenance procedures can help machines
operate reliably and continuously by reducing unnecessary
maintenance procedures (Lei et al., 2018), and minimizing
machine downtime (Lee et al., 2014). Rolling element bear-
ings act as a main source of faults in rotating machinery (Cer-
rada et al., 2018), and have consequently drawn significant re-
search attention in the condition-based maintenance commu-
nity. Although impressive fault detection and classification
results have been attained using data-driven methods for fault
detection in bearings (See Hoang & Kang (2019)), a large
majority of these approaches are based on sophisticated su-
pervised learning techniques that require failure data during
training.

In contrast, many physics-based, signal processing and un-
supervised methods attempt to solve the bearing fault detec-
tion problem without the requirement of any fault data. How-
ever, these methods bring other challenges. Signal processing
methods (Randall & Antoni, 2011) are robust, simple and
effective, but often require an expert to interpret the results.
Physics-based methods (Cao et al., 2018) and phenomeno-
logical (McFadden & Smith, 1984) methods are difficult to
design, calibrate and lack the flexibility required to model re-
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ality. Finally, unsupervised methods lack interpretability and
can identify non-fault-related anomalies as machine faults.

To address the respective limitations of these approaches, hy-
brid methods have been proposed for diagnostics (Leturiondo
et al., 2017) and prognostics (Liao & Kottig, 2014) in order to
combine the benefits of physics-based, data-driven, domain
knowledge and/or signal processing methods. For example,
researchers have designed physics-inspired filters for convo-
lutional neural networks (CNNs) (Sadoughi & Hu, 2019).
In this work, the parameters of the convolutional kernels are
chosen such that respective kernels are sensitive to different
bearing faults manifesting in the envelope signal. Others (Liu
et al., 2020) have used transfer learning approaches to learn
domain invariant features between measured data, and sim-
ulated data, allowing improved remaining useful life predic-
tion and a reduced reliance on real world data. Physics-based
knowledge was also included in a CNN (Shen et al., 2021)
by adding a penalisation to the network loss if predictions are
made that are not compatible with expected bearing fault be-
haviour.

In the context of bearing fault detection, it could even be ar-
gued that the use of convolutional layers in neural networks
Jiao et al. (2020), that extract translation-invariant fault pat-
terns in a signal, can be viewed as the addition of domain
knowledge into data-driven methods.

In this paper, we propose that unsupervised latent variable
models have the potential to facilitate the incorporation of
domain knowledge into a fault detection problem. To demon-
strate this idea, the loss function of an autoencoder (AE) model
is regularized such that, when applied to unseen faulty data,
the AE healthy latent representation deviates in a known la-
tent failure direction corresponding to a given fault mode.
Ultimately this designed latent space behaviour is then use-
ful for constructing sensitive and interpretable machine health
indicators.

In previous work, specialized loss functions have been used
to manipulate latent representations for improving supervised
classification tasks Li et al. (2018), latent representations
have been visualized for different fault modes Booyse et al.
(2020), and have been successfully used for constructing in-
formative machine health indicators Balshaw et al. (2022). In
other works, augmented training data has been used for data-
efficient bearing diagnostics Yu et al. (2021). However, the
opportunity of using augmented data, derived from domain
knowledge, to shape the latent feature space of an AE with
the goal of creating informative and interpretable health in-
dicators has not been widely studied. Therefore, this work
intends on making the following contributions.

1.2. Contributions

• Augmented data, as derived from healthy data through
a modification of the healthy data towards its expected
faulty behaviour, is used as supplementary data for train-
ing an AE.

• An AE model is regularized to incorporate domain knowl-
edge into health indicators based on changes in the model’s
representation with increasing fault severity.

• An interpretable latent representation with diagnostics
information is created by including domain knowledge
conveyed through augmented data.

• A framework is provided for dealing with the discrep-
ancy between real failure data and a model of the ex-
pected failure behaviour.

• The method is applied to a simulated, and experimental
dataset.

The remainder of the paper is structured as follows. Section 2
introduces the proposed method, explaining the data prepara-
tion, training and evaluation procedures respectively. Results
are then presented for a simulated dataset in Section 3 and for
the NASA IMS bearing dataset in Section 4. Finally, conclu-
sions and future work are presented in Section 5.

2. METHOD

In this section, a method for incorporating domain knowl-
edge into an unsupervised latent variable model is introduced.
Specifically, domain knowledge about bearing fault frequen-
cies is incorporated into an AE model. The intention is to
use domain knowledge informed augmented data, as derived
from healthy data, to shape the latent space of the AE. As a
result, the latent representation of the model should have de-
sirable properties for extracting informative health indicators.

The methodology can be divided into three main parts (See
Figure 1). During data preparation (Section 2.1), raw ac-
celerometer signals are processed and healthy data is aug-
mented towards its expected faulty state. Thereafter, the healthy
and the augmented data are used to train an AE (Section 2.2).
Regularisation of the AE, enabled by including augmented
data in the training procedure, enforces that the healthy latent
distribution of the AE should deviate in a specific direction as
the severity of the fault increases. Finally, during the evalu-
ation phase (Section 2.3), a health indicator is computed for
each of the anticipated fault modes to assess the likelihood of
a new sample being healthy or faulty, given a particular fault
mode.

2.1. Data preparation

In this work, the Squared Envelope Spectrum (SES) is used as
input feature to an auto-encoder since it is simple to modify
the healthy envelope spectrum towards an expected damaged
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Figure 1. Overview of methodology.

condition. The process of modifying a healthy datapoint to-
wards its expected faulty condition, for a given failure mode,
is viewed as data augmentation in this investigation.

Healthy data, xhealthy, is modified by adding a modification
signal xmodify to acquire the augmented data, x(i) for a given
fault mode (i).

x(i) = xhealthy + x
(i)
modify (1)

Particularly, the amplitude of the healthy squared envelope
spectrum at the fault frequency and its first two harmonics
corresponding to a given fault mode is increased by xmodify.
It should be noted that there are many different ways of achiev-
ing this data augmentation, including using the faulty response
of a phenomenological model or lumped parameter model or
even asking an expert to draw the expected fault behaviour
on a graph. In this investigation, simple triangular peaks are
added to the expected fault frequency and its harmonics.

A triangular peak xpeak as a function of SES frequency f , is
defined as:

xpeak (f, fc) =

{
−|−2a

w (f − fc) |+ a if − w
2 ≤ f − fc ≤ w

2

0 otherwise
,

(2)

with a the amplitude of the peak, w the base length of the tri-
angle and fc the centre frequency for which a high amplitude
is associated with a fault.

The total modification signal is obtained by adding the peaks
at the fault frequency, ffault, and its harmonics nffault. The
amplitude of the harmonics of the fault frequency decay with
frequency and is controlled using the decay parameter α.

xmodify(f) =

N∑

n=1

e−αffault(n−1)xpeak (f, nffault) (3)

For this investigation the number of peaks, N is selected as

N = 3.

Figure 2 shows an example of a healthy envelope spectrum
that was modified by adding triangular peaks at frequencies
that are expected to correspond to an outer race fault. The
healthy signal and the augmented signal are identical, apart
from the sections where peaks were added at the fault fre-
quencies.

Figure 2. Example of healthy envelope spectrum augmented
by adding peaks at expected fault frequencies for an outer
race fault.

All healthy training data samples are augmented to addition-
ally obtain an augmented sample for each anticipated fault
mode. Both the healthy data and the augmented data are min-
max normalized before training.

2.2. Training the auto encoder with specialised loss func-
tion

The training phase is applicable during the lifetime of a ma-
chine where the bearings are new, have been run in and are
assumed to be in a healthy condition. During training, an
auto-encoder is used to learn informative latent features from
input data. Additionally, the latent space of the auto-encoder
is regularised during training such that the augmented data is
distributed in the latent space in a way that is beneficial for
fault detection.

Specifically, two regularisation terms are used in the loss func-
tion in addition to the typical AE reconstruction loss. A first
regularisation term enforces that the direction of deviation for
the latent healthy data to the augmented data should be max-
imally different for different fault modes. This ensures that
even if the augmentation of the data towards a failed state is
not completely representative of reality, the movement of the
latent features away from the healthy latent distribution will
not be confused with that of another fault mode. This also
leads to benefits when computing the projection of the latent
representation of a new sample onto an expected failure di-
rection as discussed in Section 2.3. A second regularisation
term enforces that the distance from the healthy data cluster
in the latent space to the respective augmented clusters should
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be similar for different fault modes. This regularisation en-
sures that the latent space is not disproportionately scaled for
a specific fault mode, and simultaneously encodes rudimen-
tary fault severity information into the latent features of the
AE since the latent representation of a faulty sample can be
compared to that of the augmented samples.
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Healthy data Reconstruction loss

Latent direction loss

Latent magnitude loss

Combined loss
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Figure 3. Training Methodology: During forward propaga-
tion of the autoencoder, both healthy data and augmented data
are separately fed through the encoder. A latent direction loss
and latent magnitude loss regularize the latent features whist
a reconstruction loss acts on the decoder output.

Figure 3 shows a diagram explaining the training procedure.
During the forward propagation step of training the AE, both
the healthy data, and the augmented data for each respec-
tive fault mode, are fed through the network separately. The
healthy data is fed through both the encoder and the decoder,
whilst the augmented data for each respective mode are fed
through the encoder only. This is since the latent representa-
tion of the augmented data is used only to constrain the latent
representation, whilst the reconstructed healthy data is addi-
tionally used for computing the conventional AE reconstruc-
tion error. After forward propagation, the loss is computed
for subsequent backpropagation and the update of the model
weights.

The loss function used during training is now described for a
randomly selected healthy training example x and a randomly
selected augmented sample x(i), associated with an expected
fault mode (i). The combined loss, L is written as the sum
of a reconstruction loss Lreconstruct, acting on the output of
the decoder, and the latent feature loss Llatent acting on the
latent representation of the healthy and augmented data.

L (x) = Lreconstruct (x) + Llatent

(
x,x(i)

)
(4)

The mean squared error loss is used as the reconstruction loss
as is common in conventional AEs. The purpose of the recon-
struction loss is to enforce that low dimensional, informative
features are learnt in the latent representation such that the
original input can be reconstructed from the latent represen-
tation. The reconstruction error is written as:

Lreconstruct (x) = (x− g(h(x)))2 , (5)

where h and g represent the encoder and decoder of the AE
respectively.

The combined loss in Equation 4 further includes a regular-
isation loss Llatent, that acts on the latent features. This la-
tent loss function consists of two parts, namely Ldirection and
Lmagnitude.

Llatent (x) = λ1Ldirection (x) + λ2Lmagnitude (x) (6)

The direction loss enforces that the direction in which a healthy
latent cluster is expected to move towards the augmented la-
tent clusters should be maximally different for different fault
modes. The magnitude loss ensures that the latent represen-
tation is not skewed with respect to a specific latent fault
mode. The regularisation hyperparameters, λ1 and λ2 scale
the importance of the respective loss terms and can be se-
lected based on the loss terms calculated from a validation
set.

The magnitude and direction losses are now defined. To sim-
plify the definition of these terms, we introduce δ(i) (x); the
difference between the latent encoding of a healthy sample
and the latent encoding of an augmented sample for a given
mode (i). Furthermore, let z = h (x) represent the latent
representation of data fed through the encoder of the AE.

δ(i) (x) = h
(
x(i)
)
− h (x)

= z(i) − z
(7)

The latent movement direction loss is driven by the dot prod-
uct between the unit vectors of δ(i) (x) for each fault mode
(i). By minimizing the dot project between two vectors, we
enforce that the unit vectors of δ(i) (x) and δ(j) (x) for fault
modes (i) and (j) are pointing in opposite directions. In this
work, the unit vectors of δ(i) (x) are referred to as expected
fault directions. The direction loss acting on the latent repre-
sentation is written as:

Ldirection (x) =

n−1∑

i=1

n∑

j=i+1

δ(i) (x)

∥δ(i) (x) ∥ ·
δ(j) (x)

∥δ(j) (x) ∥ , (8)

adding the unit vector dot products between fault modes for
all n expected fault modes.

Finally, the latent movement magnitude loss enforces that the
latent augmentation clusters for each mode are equally far
from the healthy latent distribution. This ensures that the la-
tent representation is not more sensitive to movement in one
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failure direction as compared to the others. Additionally, this
loss term ensures that the latent representation does not col-
lapse to a single point with healthy and augmented data in the
same location. The latent movement magnitude loss is given
as

Lmagnitude (x) =

n∑

i=1

(
∥δ(i) (x) ∥ − 1

)2
. (9)

For each batch in the training dataset, the combined loss can
be computed and the weights of the autoencoder can be up-
dated by an optimisation algorithm relying on gradients from
backpropagation.

2.3. Evaluation of new samples

After the network has been trained, health indicators can be
computed for new samples to assess if a fault is present in the
bearing and to determine the fault mode by which the bearing
is likely failing. A diagram of the evaluation method is shown
in Figure 4.

The goal of the evaluation procedure is to evaluate the likeli-
hood that a new sample is still healthy for a given fault mode.
To do this, the latent representation of a new sample is pro-
jected onto one of the expected failure directions in the la-
tent space. The likelihood of the projected sample can then
be estimated based on the distribution of the healthy latent
representation as projected onto the same failure direction.
Although the direction loss term (Equation 8) enforced that
fault directions should be maximally different during train-
ing, these fault directions are not explicitly known after opti-
misation and should be computed.

EncoderMode 1

Mode 2

Mode n

Au
gm

en
te

d 
va

lid
at
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n

da
ta

Test sample

Healthy validation
data

Mode 1

Mode 2

Mode n

Expected failure
directions

Test sample
projected onto

 each failure direction

Healthy validation data
projected onto
failure direction

P(healthy|mode)

Figure 4. Evaluation method: After computing the expected
failure directions in the latent feature space, a new sample is
projected onto each of the failure directions so that its likeli-
hood of having failed by a given failure mode can be evalu-
ated.

This is done by computing the expected fault directions from
the latent representation of a validation set. The fault direc-
tions v(i) are computed as the normalized unit vector that
passes through both the median of the healthy validation data
latent representation and the median of the augmented data
latent representation for a given failure mode. The latent rep-
resentation of a new sample from a bearing failing by a given
failure mode is expected to deviate from the healthy distribu-

tion in a similar direction than the expected failure direction
v(i). This is since the directions in the latent space were de-
signed to correspond to a given failure through the inclusion
of augmented data during the training procedure.

The fault directions v(i) is given as

v(i) = med

{
δ(i) (x)

∥δ(i) (x) ∥ for all x in validation set
}
. (10)

With the expected fault directions v(i) calculated, the scalar
projection of the latent representation in an expected fault di-
rection v(i) can be computed. This is done by taking the dot
product between the latent representation of a sample z and
an expected failure direction v(i).

z
(i)
proj = z · v(i) (11)

This projection is demonstrated on the left hand side of Figure
5.

Finally, the likelihood of a sample being healthy is calculated
for each failure direction (i). To do this, the distribution of the
projection of the healthy data onto a certain failure direction
(i), is assumed to be Gaussian with mean µ(i) and standard
deviation σ(i) for positive values of zproj. This ensures that
the likelihood of a new sample can be computed based on
the healthy distribution parameters µ(i) and σ(i) in the fault
direction (i). Furthermore, the likelihood of the sample is
assumed to follow a uniform distribution for negative values
of zproj, since a deviation of the latent features in the opposite
direction of a failure direction is not expected to correspond to
a fault. The expression for evaluating the likelihood of a new
sample in failure direction (i) is shown in equation Eq. 12.

p(z(i)proj |µ(i), σ(i)) =





1
σ(i)

√
2π

exp

(
− 1

2

(
zproj−µ(i)

σ(i)

)2)
zproj > 0

1
σ(i)

√
2π

zproj ≤ 0

(12)

The evaluation of the likelihood of new samples in the pro-
jected dimension is demonstrated on the right hand side of
Figure 5. A sample that is considered likely for a given fail-
ure direction, can be highly unlikely for a different failure
direction.

By evaluating the likelihood of a sample for a given fault
mode (projection onto a fault direction) a fault-mode-specific
health indicator can be obtained from the latent representation
movement with increasing fault severity. The condition that
fault directions should be maximally different, as enforced
during training, ensures that faulty data from different fail-
ure modes are not confused. The projection of new samples
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v(1)
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Latent representation Projection onto failure directions

Healthy data:
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Figure 5. Evaluation of a new test sample: The likelihood of
a new sample for a given failure direction v(i) is calculated
based on the projection of the healthy data onto the failure
directions in the latent representation.

onto the failure directions further ensures that the discrepancy
between the actual fault behaviour and the expected fault be-
haviour, as communicated to the model by the use of aug-
mented data, is less relevant.

The methodology is now demonstrated on two datasets.

3. PHENOMENOLOGICAL BEARING DATASET

In this section, a dataset generated from a phenomenological
model based on that of McFadden & Smith (1984) is used to
demonstrate the proposed fault detection method. The model
used is further extended to include random variations of the
amplitude of the transient excitations and random ball slip.
The benefit of using a phenomenological model to demon-
strate the proposed method is that all potential fault modes
can be simulated. This means that the same model, trained
on healthy data, can be evaluated on each of the expected
degradation paths. The specifications of the phenomenologi-
cal dataset are listed in Table 1.

The SES for the healthy data is computed from the time do-
main signal, whereafter the augmented data is computed from
the healthy SES as described in the methodology. Figure 6
shows an example of the squared envelope spectrum at the
highest fault severity of the data as compared to the aug-
mented data. The figure demonstrates that the augmentation
of the data can be imperfect and does not need to be com-
pletely representative of reality to improve the separability
and interpretability of the latent representation.

With the healthy and augmented data available, the AE model
can be trained. The specifications of the AE models and data
augmentation used for each dataset in this investigation are
shown in Table 2. In this example, the latent feature rep-
resentation dimensionality (AE bottleneck size) is chosen as
two, so that the latent features can be easily visualized in two-
dimensional space. It should be mentioned that the latent rep-
resentation dimensionality can be viewed as a hyperparame-
ter that needs to be chosen similar to any other AE hyperpa-

Table 1. Specifications for phenomenological dataset.

Model properties

Transient peak range for different severi-
ties

0-1 m/s2

Modulation amplitude for inner race fault 1
Variance of of slip 0.001 rad
Measurement noise standard deviation 0.2 m/s2
Transient amplitude standard deviation 0.05 m/s2
Ball diameter 8.4 mm
Pitch circle diameter 71.5 mm
Number of balls 16
Contact angle 15.7 deg
SDOF stiffness 2× 1013 N/m
SDOF damping ratio 0.05
SDOF natural frequency 4230 Hz
Constant rotation speed 500 RPM
Sampling frequency 38400 Hz
Signal duration 1 s

Dataset Properties
Healthy training samples 450
Augmented training samples per fault
mode

450

Failure modes considered 3
Healthy validation samples 50
Augmented validation samples per fault
mode

50

Damaged test samples 500

Table 2. Specifications AE model and data augmentation
used for each dataset.

Specifications Phenomenological Dataset IMS Dataset
Model specifications
Input size 1920 1024
Encoder layer 1 754 402
Bottleneck layer 2 2
Decoder layer 1 754 402
Output size 1920 1024

Activation central layers ReLU ReLU
Activation output layer Tanh Tanh

Direction regularisation, λ1 1× 10−2 1× 10−1

Magnitude regularisation, λ2 1× 10−2 1× 10−1

Augmentation specifications

Peak amplitude a 5× 10−3 5× 10−3

Decay parameter, α 2× 10−2 2× 10−2

Base width w 20Hz 20Hz
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(a) Inner Race Fault. (b) Ball Fault. (c) Outer Race Fault.

Figure 6. Phenomenological dataset: Comparison of augmented data squared envelope spectrum with failure data at maximum
severity. Although there are significant discrepancies between the expected and true fault behaviour, the augmented data is still
useful for constraining the latent representation of the autoencoder model

rameter. There is no requirement for a relationship between
the dimensionality of the latent space and the number of fault
modes that the model accounts for.

Figure 7 shows the latent representation of data after the model
has been trained. The latent representation of the faulty test
data is shown in Figure 7a together with augmented data from
the validation set. The expected failure directions that pass
through the median of the healthy and augmented data for
each mode are also shown as straight lines. The failure di-
rections are separated in the latent space and the augmented
clusters are equally far away from the healthy data cluster,
demonstrating that the direction and magnitude loss in Equa-
tion 6 was successful in constraining the latent representation.
For a given fault mode, the initially healthy latent distribution
moves in a direction in the latent representation with increas-
ing fault severity that is consistent with the expected fault di-
rection. For instance, if an outer race fault is present, the la-
tent distribution will move in the general direction indicated
by the expected fault direction of the outer race fault.

Therefore, including domain knowledge through augmented
data lead to a separated and interpretable latent representa-
tion for the AE. As a result, this ensures that informative
health indicators can be computed from the latent represen-
tation. Additionally, this makes the latent representation in-
terpretable, since anomalous samples not related to bearing
faults will likely be distributed in the latent representation in
a way that is not consistent with what is expected from the
encoded bearing fault behaviour.

In the next step of the methodology, the samples are projected
onto the failure directions as visualised in Figure 7 and the
likelihood of a test sample is evaluated from Equation 12.

Figure 8 shows the negative log-likelihood for each of the ex-
pected failure directions. Each sub-figure shows the result for
a certain ground truth fault mode. For a given fault mode,
the negative log-likelihood health indicator rises sharply for
faulty data projected onto the failure direction that corresponds

to the ground truth fault mode. For example, in Figure 8a the
ground truth fault mode is a ball fault. Consequently, the neg-
ative log-likelihood of the data projected onto the ball fault
direction increases with increasing fault severity. In contrast,
the negative log-likelihood of data projected onto fault direc-
tions that are not associated with a ball fault remains compar-
atively low. Thereby, an informative healthy indicator is ob-
tained that can indicate faulty behaviour and simultaneously
provide diagnostics information about the fault mode.

In the next section, a similar analysis is conducted on the IMS
dataset.

4. APPLICATION ON NASA IMS EXPERIMENTAL DATASET

The NASA IMS dataset (Qiu et al., 2006) is a popular dataset
used in bearing condition monitoring. It consists of three sep-
arate run-to-failure tests, each including data for four bear-
ings. Ground truth labels of the failure modes in which a
bearing had failed (Inner Race, Outer Race or Ball Fault) are
available for four of the 12 bearings. This investigation will
focus on the four datasets with labelled ground truth labels
in order to check if the proposed method is successful in de-
tecting a fault associated with a particular fault mode. Infor-
mation about the datasets that are used in this investigation is
shown in Table 3.

The healthy records for training are chosen in accordance
with that of Liu & Gryllias (2020) with some run-in records
not used for training. The remaining records are used as the
test set during the evaluation phase. Table 3 shows the record
numbers used for training as well as the ground truth label for
each of the datasets considered.

To illustrate the data augmentation process, Figure 9 shows
an example of test samples from the IMS dataset at a high
severity compared to the augmented data for the same fault
mode.

The SES seems to be an effective way of extracting fault in-
formation from the two outer race fault datasets, but is less
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(a) Test samples (shaded), augmented validation samples (blue), healthy validation
samples (black) and expected failure directions (colored lines).

(b) Legend.

Figure 7. Latent representation after training. Shaded data points represent test data at a certain fault severity. Shapes represent
different fault modes

Table 3. IMS dataset information.

Dataset Channel Recorded
Failure
Mode

Healhty
record
numbers

Training
Samples

Validation
Samples

1 Bearing 3,
Channel 5

Inner Race 200-600 360 40

1 Bearing 4,
Channel 7

Ball 200-600 360 40

2 Bearing 1,
Channel 1

Outer Race 50-300 225 25

3 Bearing 3,
Channel 3

Outer Race 50-300 225 25

effective for inner race and ball fault datasets, leading to large
discrepancies between the true and augmented data. As a re-
sult, the latent representation for the fault data shown in Fig-
ure 10 is not well structured in the latent representation for
all of the datasets. However, for the outer race fault of test 2,
bearing 1 the latent features clearly move along the outer race
failure direction with increasing fault severity.

The negative log-likelihood of a sample projected onto a given
failure direction is shown in Figure 11. The method appears
to be effective for the outer race and inner race fault datasets,
with the negative log-likelihood increasing for the ground
truth failure direction. However, the negative log likelihood

associated with the ball fault does not seem to be more sensi-
tive to the ball fault as compared to the negative log-likelihood
associated with the other fault modes. This is due to the la-
tent space being uninformative after the completion of train-
ing, since the envelope spectrum that is used as input is not
sensitive to the ball fault.

The effectiveness of the method is reliant on a correspon-
dence between the augmented data and the true failure be-
haviour so that the latent representation can be sensitive to
a given failure mode. Consequently, it is expected that the
effectiveness of the method is dependant on how informa-
tive the input features are. In this analysis, where a simple
input feature such as the envelope spectrum was used with-
out any additional pre-processing such as band pass filtering
around informative frequency bands, it is clear that the en-
velope spectrum is not sensitive to certain fault types, and as
a result the latent feature representations were not informa-
tive for these failure modes. In future work this limitation
could be addressed by training models on the time domain
data directly, or by using more advanced features from signal
processing.
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(a) Ball Fault. (b) Inner Race Fault. (c) Outer Race Fault.

Figure 8. Phenomenological dataset: Negative log-likelihood with increasing fault severity. Sub figures show data for different
ground truth fault modes. Each trace on a sub-figure shows the log-likelihood of the test data for an expected failure mode.

5. CONCLUSION AND FUTURE WORK

This paper presents a new way of encoding domain knowl-
edge into the latent representation of an AE by using aug-
mented data. Results on a phenomenological dataset demon-
strate that incorporation of domain knowledge leads to an in-
terpretable latent representation that is useful for constructing
informative health indicators for fault detection and diagnos-
tics. Furthermore, the method is applied to the experimental
NASA IMS dataset. The method proves to be effective for
three of the four IMS datasets considered, with the success of
the method being reliant on how sensitive the input features
are to damage.

In future work, the proposed method can be extended to act
on time-frequency maps or even directly on time series data,
where the data augmentation can be facilitated by a phenomeno-
logical model. This can ensure that hidden fault information
is not withheld from the model whilst still allowing for the
incorporation of domain knowledge. Furthermore, the sensi-
tivity of the method to inaccuracies in modelling the expected
fault behaviour, the chosen size of the latent representation,
training batch sizes and the model architecture needs to be
determined.
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(a) IMS test 1, Bearing 1: Inner Race. (b) IMS test 1, Bearing 4: Ball.

(c) IMS test 2, Bearing 1: Outer Race. (d) IMS test 3, Bearing 3: Outer Race.

(e) Legend.

Figure 10. IMS dataset latent representation at different severities.
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(a) IMS test 1, Bearing 1: Inner Race Fault. (b) IMS test 1, Bearing 4: Ball Fault.

(c) IMS test 2, Bearing 1: Outer Race Fault. (d) IMS test 3, Bearing 3: Outer Race Fault.

Figure 11. IMS dataset: Negative log likelihood of measurements onto projected onto respective fault modes
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