
 

 1 

 

Automating Critical Surface Identification and Damage 

Detection Using Deep Learning and Perspective Projection 

Methods 
Gautam Kumar Vadisala1, Anurag Singh Rawat2, Abhishek Dubey3, Gareth Yen Ket Chin4 and Fabio Abreu5 

1,2,3Schlumberger, Building 8, Office 301, Commerce zone IT Park, Pune, Maharashtra-411006, India 

GVadisala@slb.com 

ARawat4@slb.com 

      ADubey4@slb.com 

4,5 Schlumberger Technology Corporation, Rosharon Testing and Subsea Center, Rosharon, Texas-77583, US 

GSchin@slb.com 

FAreu3@slb.com 

 
ABSTRACT 

With an increased collection of data, assessing the health of 

an asset and designing recommendations or executing 

response actions via prognostics and health management 

(PHM) has made great advances. These actions can be 

corrective or preventive depending upon the risk of failure or 

the cost of repair. As downhole testing tools operate in 

extreme environments, they are subjected to conditions like 

elevated temperature, shocks, vibrations, and pressures. The 

dump mandrels used in the process are prone to wear and tear 

like scratches, pits, and corrosion, which may cause 

operational failure. If these damages and their degree goes 

undetected and no remedial actions are taken, possibilities of 

non-productive time (NPT) and financial losses increase 

drastically. This paper aims to develop a fitness inspector 

which uses Computer Vision and Deep Learning to identify 

critical surfaces of these tools and the damage within them. 

This will help the Subject Matter Experts (SMEs) by 

replacing the qualified workforce provided by them and 

reducing the time consumed to gauge the health status of all 

the tools as the diagnosis can be made in real-time. 

1. INTRODUCTION 

Health management is an important aspect of tool lifecycle 

management. With correct management of data, we can have 

full visibility into the health of an asset throughout its 

lifecycle, from design to production to obsolescence. We 

have access to the past data of the whole fleet to analyze any 

anomaly and diagnose why it happened. By connecting the 

learnings from past data to the real-time data coming from an 

asset, we can get a current health assessment and diagnose 

the root cause of an anomaly as it is happening.  

After operating in fields, Down Hole Testing tools such as 

dump mandrels have damage on the sealing surfaces and O-

ring grooves. This mandates a tool inspection by an SME 

after every use to decide whether it would be fit for the next 

job. This process invites two types of risks which are,  

scrapping good tools too early and using a questionable tool 

in a million-dollar worth of field operation. Also, this would 

require a lot of effort by subject matter experts (SMEs) in 

terms of the inspection time. We aim to reduce this inspection 

time and provide a data-based decision-making process.  

We aim to propose a real-time visual platform during an 

inspection, that would take a video of the tool being inspected 

as an input and provide the decision of whether the tool can 

be used for the next operation or to be sent for repair. This 

video can be taken from a Digital single-lens reflex (DSLR) 

camera or a mobile phone in a fixed setup. Although, we felt 

that the former would provide better results (this is explained 

in the further sections of the paper). 

As dump mandrels are cylindrical, we need to record the 

video of the mandrel by rotating it along its axis to capture all 

its surface area for inspection. The video is then further 

processed into individual frames for analysis. In each frame, 

we first detect a reference point through which we locate the 

critical surfaces of the tool and then identify the damage on 

those surfaces. We also need the engineering designs of the 

mandrel to locate the critical surfaces or the area of interest 

in the frames. We perform these steps on all frames and 

produce the final result. 
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We consider the center of the mandrel edge as a reference 

point as the critical surface areas are mentioned from this 

edge in the engineering designs. To detect this point, we 

compute the mandrel boundaries in each frame by a Deep 

Learning based Object Detection method. After locating the 

edge of the mandrel in the video frame, we project the critical 

surfaces on it by estimating the distance of the critical surface 

in terms of pixels. We consider the diameter of the tool as a 

reference measure throughout the video and use it to convert 

the actual distance in inches (or mm) to pixels. As every 

prediction result from the model is probabilistic, this causes 

dislocation of critical surfaces from their actual location, 

sometimes by a large degree in the resultant video if the input 

video was shaky and the rotational speed of the video was not 

constant. Another major issue we encountered was the 

conical projections of the tool in the video. As the mandrel is 

cylindrical, it is difficult to precisely follow the surface at 

different points by this method. So, this deep-learning-based 

method is not able to address this issue as we can only project 

vertical lines for critical surfaces given their distance from 

the reference point. 

To solve these issues and to make the projection of critical 

surfaces similar throughout the video, we went for a fixed 

apparatus where the camera would be placed at a fixed 

distance and the tool would be rotated at a constant rotational 

speed. We can then leverage Camera Projection methods to 

convert the real-life distances in inches (or mm) to the 

distance in pixels. This would also take care of the curvilinear 

surfaces as our projections follow the 3D nature of the tool in 

the video. 

For damage detection on the tool surface, we train a Deep 

Learning based Semantic Segmentation model based on U-

net architecture. As the surface damages would be small and 

different, image-processing-based semantic segmentation 

methods are not helpful. Also, this model only requires a few 

images for a good-enough solution and can be improved with 

more data. After detection of damage, we project the damage 

identified on the critical surfaces or our area of interest. 

After the projection of damage on the critical surfaces, we 

can leave it to the SME to decide on further actions or we can 

create a metric to compute the percentage of damaged pixels 

from the whole critical surface areas in pixels. By using this 

methodology, we can provide an automated solution for end-

to-end tool inspection. Our method can be easily replicated 

for other tools with known geometry to have a surface-level 

inspection. 

2. RELATED WORK 

Cylindrical objects like Mandrels tend to have perspective 

effects when captured in an image. This means the points on 

the cylindrical surface which are at some distance from the 

straight line of vision of the camera will appear in curves on 

the image. For example, points on the left side of the camera 

will appear curved and their focus will be on the camera 

center. A solution for this problem of cylindrical objects 

producing perspective effects like conical sections in images 

was previously presented in the article (Berveglieri & 

Tommaselli, 2018). Their method aims at performing a 

continuous reconstruction of 3D cylindrical patches with 

high accuracy. They collect the images at different 

viewpoints and then fit the corresponding image patches 

using a modified geometric transformation for Least Square 

Matching (LSM) (Gruen, 1996). The image acquisition is 

performed by displacing the camera in a line path parallel to 

the cylindrical axis, as shown in the below figure (Figure 1). 

In Figure 1, three views of a strip over the cylinder that 

correspond to the strip over the cylinder are displayed. The 

strip appears as a horizontal shape (the main axis appears as 

a straight line) when the image is collected from a normal 

view (the projecting ray to the strip over the cylinder). If the 

projecting ray of the strip path is oblique, then the strip has a 

curved shape. This occurs due to the cylindrical shape of the 

object and the change in camera viewpoint. Given two image 

patches or regions that refer to the same area over the 

cylindrical diameter but with different perspective views, 

parallaxes will occur due to depth and orientation variations. 

 

Figure 1. Image acquisition using camera displacement 

(Berveglieri & Tommaselli, 2018) 

The method proposed by Berveglieri and Tommaselli (2018) 

aims to reconstruct the 3D cylindrical surface by using a 

geometric transformation T (as mentioned in Figure 2) with 

further refinement by an adaptive least square matching 

(ALSM) (Gruen, 1985), to accurately map a point from an 

image I1(x, y) to its respective correspondence in an image 

I2(x, y) with sub-pixel precision. Although the above method 

provides a solution to the conical sections in images, we are 

looking for a solution without the surface reconstruction. 

Also, this method brings up the data requirement of collecting 

the videos of a mandrel across different viewpoints. So, we 
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propose a method where we use Camera Projection 

techniques and project a real-world 3D object onto a 2D 

image. Also, our solution only requires one video of the 

mandrel. 

 

Figure 2. Matching using Least Squares (Berveglieri & 

Tommaselli, 2018) 

3. METHODOLOGY 

The proposed solution has three stepped approaches. First, 

the reference point is identified in the video frame. Second, 

the area of interest i.e., the critical surface areas which are of 

concern are identified in the same frame. Then the damage is 

detected within the critical surface on the mandrel in that 

frame. For final decision making, we combine the above 

solution for all the video frames and consider the damage 

within the critical surfaces. 

3.1. Reference Point Identification 

To identify critical surfaces on a mandrel, we first need a 

reference point from which we can project them on the 

mandrel in the image. Since the dump mandrel is cylindrical, 

we felt the center of the edge would be suitable for this 

purpose. But to find this point, we need to detect the mandrel 

boundary in the image. There are many methods from which 

we can estimate the mandrel boundaries, but from our 

observations, edge detection methods give approximate 

results for computing the object boundary. 

3.1.1.     Edge Detection 

The above time constraint prompted us to look for a solution 

that would be easy to compute and in a lesser amount of time. 

We felt that if the mandrel is in the foreground and the video 

is recorded with a clear background and without much 

distortion, we can employ edge detection methods such as 

Canny Edge Detection (Canny, 1986) to estimate the object 

boundary in the image. This edge detection algorithm applies 

Gaussian smoothing and computes the intensity gradients to 

detect a wide range of edges in images. We can choose a 

threshold to filter out the edges that would be useful for the 

object of our interest. An example of Canny Edge detection 

is shown in Figure 3 where we could detect the edges of the 

objects present in the image. 

 

Figure 3: Canny Edge Detection Example (Canny, 1986) 

By using this method, we can compute the reference point 

coordinates within a fraction of a second. Although it requires 

a specific setup while recording the video, the results from 

this method are accurate and close to the actual object 

boundaries. So, we preferred this method to compute the 

coordinates of the reference point.  

3.2. Critical Surface Identification 

Critical surface areas on the mandrels refer to the sealing 

surfaces (point of contact) for the O-rings. Any damage and 

defects in these areas result in oil spilling and hence the 

mandrels should be reused, repaired, or discarded based upon 

the degree of the damage. To identify and project the critical 

surfaces (O-ring grooves) in the frames of the video, the 

previously mentioned fixed setup is used where the camera 

remains stationary. The concepts of camera projection 

(Collins, 2007) are then used to convert the real-life 

coordinates of the grooves to pixel coordinates in the image. 

The projection equation shown in Eq. (1) is used to achieve 

this. 

[ 
u
v
1
 ] ~ [

−f
sx⁄ 0 +ox0

0 −f
sy⁄ +oy0

0 0 1 0

]

⏟            
Mint

[

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

]

⏟        
Mext

[

U
V
W
1

] 
(1) 

Here, U, V, and W are the real-world coordinates that need to 

be converted into the pixel coordinates (u, v) of the image. 

Variables sx and sy are the pixel size of the camera sensor 

along the x and y axes respectively, further explained in Eq. 

(13) and Eq. (14). The focal length of the camera is denoted 

by f and the camera’s film plane center offsets from its 

sensor’s pixel array origin along the x and y axes as explained 

in Eq. (9) and Figure 8 are denoted by ox and oy. 

3.2.1. Extrinsic Parameters 

The real-world coordinates are first converted into camera 

coordinates using extrinsic parameters R in Eq. (2) and T in 

Eq. (3) which together form Mext in Eq. (1) and enable this 

transformation. 

 𝑅 =  [ 

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

 ] (2) 

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 482



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022 

4 

 𝑇 = [ 

𝑡𝑥
𝑡𝑦
𝑡𝑧

 ] (3) 

R is the measure of rotation required to align the real-world 

and camera coordinate axes. This means that (r11, r12, r13) is 

rotational units needed in the camera x-axis, (r21, r22, r23) in 

the camera y-axis, and (r31, r32, r33) in the camera z-axis. This 

can be better understood by looking at Figure 4. As you can 

see in this figure, the train camera’s x-axis resonates with the 

real-world z-axis, therefore (r11, r12, r13) becomes (0, 0, 1). 

The y camera axis resonates with the real-world x-axis but is 

in opposite directions, hence (r21, r22, r23) becomes (0, -1, 0). 

The Z camera axis resonates with the real-world x-axis, 

therefore (r31, r32, r33) becomes (1, 0, 0). This way we get Rtrain 

mentioned in Figure 4. 

 

Figure 4. Extrinsic Parameter – Rotation (Collins, 2007) 

 

T, on the other hand, is the location of the camera relative to 

the real-world coordinate system. tx, ty, tz are, therefore, the 

camera’s position on world coordinates’ x, y, and z-axis 

respectively. They are a measure of translation/movement 

that the camera axis needs to undergo to be aligned to the 

real-world axis as shown in Figure 5. 

 

Figure 5. Extrinsic Parameter - Translation (Collins, 2007) 

3.2.2. Perspective Matrix Equation 

The concept of perspective projection helps us to understand 

how 3D coordinates can be projected to a 2D plane. This is 

then employed to convert the 3D camera coordinates which 

we calculate using extrinsic parameters, to 2D film 

coordinates. The film plane of the camera is located at f (focal 

length) units along with the optic (Z) axis of the camera 

coordinate system (see Figure 6). 

The perspective projection equations i.e., Eq. (4) and Eq. (5) 

can be derived from the rule of the similar triangles (see 

Figure 6 and Figure 7) 

 𝑥 =
𝑓𝑋

𝑍
 (4) 

 𝑦 =
𝑓𝑌

𝑍
 (5) 

 

Figure 6. Projection on Film Plane (Collins, 2007) 

 

 

Figure 7. Object and projection on film plane forming 

similar triangles (Collins, 2007) 

 

The perspective projection equations can also be represented 

as a matrix by introducing homogenous coordinates. 

Homogenous coordinates represent a 2D point (x, y) by a 3D 

point (x’, y’, z’), by adding a fictitious third coordinate. 

Given (x’, y’, z’), the 2D point can be recovered as shown in 

Eq. (6) and Eq (7). 

 𝑥 =
𝑥′

𝑧′
 (6) 

 𝑦 =
𝑦′

𝑧′
 (7) 
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This way, we transform the perspective projection equation 

(Eq. 4 and Eq. 5) into a matrix (Eq. 8). 

 [ 
𝑥′
y′

z′

 ] = [
𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

] [

𝑋
𝑌
𝑍
1

] (8) 

3.2.3. Intrinsic Parameters 

The images projected on the film plane are further digitized, 

which poses the need for us to transform the film coordinates 

of interest derived from the perspective projection matrix into 

pixel arrays. 

This is achieved by the usage of intrinsic parameters O and S 

and shown in Eq. (9) and Eq. (10) respectively. 

 𝑂 = [𝑂𝑥, 𝑂𝑦] (9) 

 𝑆 =  [𝑆𝑥, 𝑆𝑦] (10) 

O is the offset or the image center in the film plane that needs 

to be added to the derived film coordinates, as the film and 

pixel coordinate systems along with their origins are different 

(seen Figure 8). 

 

Figure 8. Offsets Ox and Oy (Collins, 2007) 

With this, we can calculate the pixel coordinates (u, v) as per 

Eq. (11) and Eq. (12). 

 𝑢 =  𝑥 + 𝑜𝑥  (11) 

 𝑣 =  𝑦 + 𝑜𝑦 (12) 

Conversely, we can calculate ox and oy if we find the pixel 

and film coordinates for any one point. 

 

The second intrinsic parameter i.e., S represents the pixel size 

sx and sy. sx and sy give us a measure of how many units of 

distance (mm, inch, etc.) a pixel covers on the image plane 

(camera sensor). It can easily be derived as in Eq. (13) and 

Eq. (14). 

 𝑠𝑥 = 
sensor width

image width in pixels 
 (13) 

 𝑠𝑦 = 
sensor height

image height in pixels 
 (14) 

The pixel size is incorporated into Eq. (11) and Eq. (12) 

effectively changing them to Eq. (15) and Eq. (16) 

 𝑢 =  
𝑥

𝑠𝑥
+ 𝑜𝑥  (15) 

 𝑣 =  
𝑦

𝑠𝑦
+ 𝑜𝑦 (16) 

3.2.4. Projecting Critical Surface Grooves 

Since the mandrel being cylindrical, is a circle in the real-

world Y-Z plane, we can get the real-world Y and Z 

coordinates of the grooves (red bands in Figure 9) along the 

circular surface with the help of the mandrel’s radius (as 

shown in Figure 9).  

 

 

Figure 9. Figure showing a Mandrel and the critical surface 

grooves 

The X coordinates of the grooves are taken from the 

engineering design of the tool. These real-world (U, V, W) 

coordinates are used along with the extrinsic and intrinsic 

parameters as shown in Figure 10 to get the pixel coordinates 

(u, v) of these grooves in the images. 

 

Figure 10. Offsets Ox and Oy 
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3.3. Damage Detection 

To detect the damage on the mandrel in the image, we use a 

computer vision technique called Semantic Segmentation in 

conjunction with Deep Learning. We train a model based on 

U-Net architecture to predict which pixels in each image were 

damaged. 

3.3.1. Semantic segmentation 

Semantic segmentation is a process where every pixel in an 

image is associated with a certain label or class. It helps us to 

distinguish between predefined multiple categories in an 

image with pixel-level granularity (as in Figure 11). 

 

Figure 11. Semantic Segmentation predicting 2 classes (Dog 

and Background) 

3.3.2. U-Net 

We use U-Net architecture (Ronneberger, Fischer and Brox, 

2015) to employ Deep Learning and achieve Semantic 

Segmentation. U-Net has 2 logical components, an encoder, 

and a decoder. The encoder, which can be any Convolutional 

Neural Network (CNN) architecture-based feature extractor, 

extracts feature maps from images at a resolution and 

downsamples the images before repeating the same process. 

This way we get feature maps of an image at different 

resolutions. The decoder takes the feature maps of the lowest 

resolution and upsamples them. It then takes the upsampled 

feature maps and merges them with the feature maps that 

were extracted at that resolution earlier by the encoder. This 

process is repeated by the decoder till we get the final output 

with the original resolution of the input images. This output 

is the representation of the various categories present in the 

images and the pixels belonging to them. 

4. DATA AND EXPERIMENTS 

4.1. Reference Point Identification and Critical Surface 

Detection 

We have created a fixed setup to rotate the mandrel and 

capture its surface area. The specifications of the camera are 

mentioned in Table 1. To capture all the surface area, the 

mandrel would be rotated along its axis at a fixed speed, so it 

would not distort the mandrel recording in the video.  

Table 1. Camera Specifications 

Specification Value 

Camera Used Nikon D550 

Sensor Size 23.5 mm x 15.60 mm 

Pixel Size 0.0039 mm (For 24 MP 

Image) 

Focal Length 18 mm 

 

As shown in Figure 12, we fixed the camera on a stationary 

point within a certain distance to capture the surface area but 

not too far which would make the damage on the surface 

invisible to the naked eye. As mentioned before, the reference 

point can be easily detected from the mandrel boundaries in 

the image given the clear background. Based on our 

observations, The Camera Projection method can locate the 

critical surface area with a maximum error of 2.54 mm (0.1 

inches) as per our experiments with our setup. If we expand 

the critical surface areas by 2.54 mm on either side, we can 

include all the actual critical surface areas in the image that 

would otherwise be missed due to this possible error. The 

final projections can be seen in the below figure (Figure 13) 

where the area enclosed between the white curves on the 

mandrel surface is our critical surface. The small black 

markings on the surface represent the markings of the actual 

critical surface. As we can see, our projections are closer to 

the actual areas and follow the conical nature of these curves 

along the surface. 

 

Figure 12. Camera Setup for Critical Surface Identification 

 

Figure 13. Critical Surface Projection 

As we used a uniform background in our experiments (visible 

in Figure 13), the foreground (dump mandrel) stands out, and 
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the edge detection method could be used to compute the 

boundary of the mandrel in the image, which helps us to 

detect a reference point and project critical surfaces. If the 

background is noisy, the edge detection method alone won’t 

be useful as the edges from any texture or object in the 

background can cause interference, and usage of deep 

learning based methods would be required to extract the 

boundary of the mandrel. 

4.2. Damage Identification 

In our first model training, we recorded 20 videos of the 

damaged mandrels for the damage detection model training. 

We converted these videos into frames and annotated them 

where the damage is visible with our naked eye. For semantic 

segmentation, we need to annotate on pixel level and assign 

them a class. For implementation purposes, we have 

combined all the damages that can occur on the mandrel into 

one class. So, we will be predicting two classes i.e., damage 

and background (no damage), which is a binary classification 

at pixel level and outputs the probability of each image pixel 

belonging to the two mentioned classes. A segmentation 

mask would be prepared to mark damage in the image, which 

is a 2D array of 1s and 0s where 1 indicates damage on the 

(x, y) coordinate in the image and 0 indicates background. 

The frames and their corresponding segmentation masks are 

used as input and output for training the semantic 

segmentation model.  

The model takes a 4D array as input i.e., n images with RGB 

(Red, Green, and Blue) values, and returns a 4D array as 

output. The array returned as output would have, for every 

input image, the probability of the pixel being damaged as 

well as the probability of it being the background. Comparing 

these probabilities for every pixel of all the images, we get a 

mask (2D array) for every input image that tells us the image 

coordinates of damages and background (no damage). We 

used the previously discussed U-net architecture by 

Ronneberger et al. (2015) with ResNet (He, Zhang, Ren and 

Sun, 2016) and EfficientNet (Tan & Le, 2020) backbones. 

The EfficientNet-based U-net model fared better than the 

ResNet-based one for damage detection. 

The model was trained by using EfficientNet architecture 

(Tan & Le, 2020) as the encoder for the U-net model 

(Ronneberger et al., 2015). We also employed transfer 

learning as the weights from a model pre-trained on 

ImageNet (Deng, Dong, Socher, Li, Li and Fei-Fei, 2009) 

were used. The dataset, which consisted of 300 images 

extracted from 20 videos of the tools rotating on their axis 

was split into train, test, and validation sets in a ratio of 

70:15:15. The model was then trained by defining the 

decoder which could upsample features as per the U-net 

architecture, using Adam (Kingma & Ba, 2015) as the 

optimizer algorithm and Binary Crossentropy as our loss 

function. 

Also, one whole image of the tool provided to the model as 

input would be compressed way too much horizontally (see 

Figure 14). This would, in turn, distort the dimensions of the 

damages as well and affect the model’s capability to detect 

them. To overcome this, we decided to split any given input 

image into multiple slices (Figure 15) and send all of them as 

a batch for damage identification which can later be stitched 

back together after the model processes them into one whole 

output image. 

 

Figure 14. Original image and its damage representation 

(left) being compressed as the model input (right) 

 

Figure 15. A slice of the input image (enclosed in red) and 

its damage representation before and after compression. 

In general, average pixel accuracy across all classes is used 

as an evaluation metric for Semantic Segmentation models. 

As the occurrence of damage in the images is very low, the 

pixel accuracy metric did not help differentiate between good 

and bad models. So, we chose Dice Coefficient as our 

evaluation metric for the model. As mentioned in Eq. (17), 

the dice coefficient for input sample A and output sample B 

is defined as twice the intersection of the pixel area divided 

by the sum of the individual areas of the samples. 

 Dice coefficient =
2(A ∩ B)

|A| + |B|
                   (17) 

The dice coefficient describes the percentage of overlap we 

can expect from the predicted pixels compared to ground 

truth pixels. With the above training, we observed a mean 

dice coefficient of 0.7 which is good for locating the damage 

in the images. This means that SMEs can expect at least 70% 

of the damage to be detected in the critical surface areas. As 

the damage areas are very scarce and small in the tools and 
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training data, we expect we can increase the damage 

detection percentage with more data to train the model. As 

the model outputs a probability of damage on each pixel, we 

can apply a probability threshold to select the damages on the 

image. Although it is not clear in our use case, we noticed 

that the mean dice coefficient seems to be slowly decreasing 

and drops to a lower value when plotted against the 

probability thresholds. The huge drop in the mean dice 

coefficient values occurred for threshold values greater than 

0.5. So, we chose a threshold where the mean dice coefficient 

is steady before dropping to a lower value, which provides 

good results when compared to the lower threshold values. 

During experimentation, it was also noticed how lighting 

conditions could prove to impact damage detection 

adversely. As you can see in Figure 16, given the lighting 

conditions and the reflective surface of the tool, the features 

of the surface are hard to make out and any damage in that 

area would be unidentifiable. 

 

Figure 16. Reflections on tool due to unfavorable lighting 

conditions 

4.3. Final Results 

As our area of interest is the critical surfaces on the mandrel, 

we need the damage that was in these areas. To obtain that, 

we would require two image masks. First is a 2D image mask 

which contains a mask of critical surface areas on the 

mandrel. The second one is the output mask obtained from 

the above damage detection model. Then, we combine the 

above two masks by applying bitwise AND on the two image 

masks. This application filters out the pixels which have a 

value of 1 on both masks. The result can be seen in the below 

figure (Figure 17) where the red pixels show the damage on 

the surface and the white curves enclose the critical surface 

area on the mandrel.  

 

Figure 17. Damage within Critical Surface Area 

The software for the experiments mentioned in this paper is 

developed in Python using OpenCV (Bradski, 2000) library 

for image processing. We have used an NVIDIA Tesla K80 

GPU with 12 GB RAM and a CPU of 16 GB RAM for 

training and inference of the U-net model. Using this 

hardware, we were able to compute the inference of an image 

in 0.2s and computed the final solution where damage is 

shown in each frame, with 5 FPS. If we increase the 

computing power with an efficient GPU with more RAM, we 

can increase the inference speed to 20-30 FPS which would 

make the solution a real-time one.  

To decide whether the tool can be used for the next job, we 

compute the percentage of red pixels on the critical surface 

area. We average these percentage values over all frames and 

compute the overall damage percentage of the mandrel. We 

can then keep a threshold to identify which tools would 

require maintenance, which ones would be fit for the next job, 

and which would require a manual inspection when the 

damage percentage is neither too high nor too low. 

For keeping a suitable threshold, we can analyze the defective 

mandrel videos and come up with a threshold that would be 

ideal for automatically deciding the reusage of the tool. So, 

by using the framework mentioned in the paper, we can make 

the inspection process, from identifying critical surface areas 

to damage detection to the final decision of tool reusability, 

completely automatic. 

5. CONCLUSION 

The framework provided in this paper can be used to digitally 

detect surface damage for any kind of tool whose geometry 

can be mathematically modeled. With the fixed setup, we 

only need the engineering designs of a tool to select the 

critical area and detect the damage on that area. Further, if we 

have gathered more data, we can also train the damage 

detection model for all kinds of available damages for a better 

decision-making process, as one kind of damage that occurs 

with less frequency can hamper the usability of the tool more 

than another kind of damage occurring in higher frequency. 

Also, with more data, we can increase the accuracy of the 

damage detection model and the solution gets better with 

each input. We are hopeful that this framework can be used 

to reduce the time in manual SME inspection and help them 

perform the task in real-time. 

NOMENCLATURE 

SME Subject Matter Expert 

PASCAL Pattern Analysis, Statistical Modelling, and 

Computational Learning 

3D 3 Dimensional 

2D 2 Dimensional 

IoU Intersection over Union 

4D 4 Dimensional 

RGB Red Green Blue 

CNN Convolutional Neural Network 

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 487



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022 

9 

GB Gigabyte 

RAM Random-access memory 

GPU Graphics Processing Unit 

FPS  Frames Per Second 
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APPENDIX  

Although we haven’t used it in our final solution, we have 

worked on a method that processes the video and creates an 

image that displays the total surface area of the mandrel. This 

method unwraps the whole mandrel surface and displays it on 

an image that would be ideally impossible to visualize at one 

time. 

To achieve that, we process the video into frames and locate 

the mandrel in each frame using the previously mentioned 

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 488



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022 

10 

Camera Projection method. Then we extract a small 

horizontal strip of about 10 pixels (depending upon the length 

of the video) around the mandrel central surface in each 

frame and append them to create an image that displays the 

overall surface area. We use some reference points such as 

holes, grooves, etc. to mark a complete rotation of the 

mandrel in the video and not to over-represent the mandrel 

area on the unwrapped image. For example, if we assume the 

holes on the mandrel surface as reference points for rotation 

comparison, we note down the location of these holes in the 

first frame and stop the solution when we encounter the same 

holes again within some pixel distance of the original 

location.  

For better damage detection, we can horizontally segment the 

unwrapped image into segments of 5 or 10 and combine the 

individual segment outputs for final damage detection of the 

unwrapped image. The final output can be seen in Figure A-

18 where white vertical lines enclose the critical surface area. 

The red pixelated area within these lines shows the damage 

on the surface. One thing to note is that since we took a small 

strip around the mandrel center, our critical surface 

boundaries would not have a conical shape. Also, we can 

observe that some holes on the mandrel surface appear 

expanded, and others appear shrunk. This occurs because of 

the change in rotation speed within different points of the 

mandrel rotation. When the rotation speed decreases 

relatively, we will get more surface area in the unwrapped 

image and vice versa. 

Figure A-18. Damage on the Unwrapped Mandrel 

Here too, we can take a percentage of red pixels within the 

critical surface and create a threshold to come up with a 

decision on using the mandrel for the next job or not. If the 

mandrel doesn’t maintain a fixed speed, we will not obtain an 

even spaced image of all its contents. Because of this reason, 

we did not select this method to come up with the final 

decision of reusing the mandrel as we would give more 

preference to the damage where the mandrel was recorded 

relatively slower than the other parts. But if the rotation is 

fixed, we can see the even spaced points across the 

unwrapped image. Nevertheless, this method can be useful to 

extract the surface area of the cylindrical objects in videos 

and further detect the damage on the surface.  
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