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ABSTRACT 

Intelligent fault identification of rail vehicles from onboard 
measurements is of utmost importance to reduce the 
operating and maintenance cost of high-speed vehicles. Early 
identification of vehicle faults responsible for an unsafe 
situation, such as the instable running of highspeed vehicles, 
is very important to ensure the safety of operating rail 
vehicles. However, this task is challenging because of the 
nonlinear dynamics associated with multiple subsystems of 
the rail vehicle. The task becomes more challenging with 
only accelerations recorded in the carbody where, 
nevertheless, sensor maintenance is significantly lower 
compared to axlebox accelerometers. This paper proposes a 
Temporal Convolution Network (TCN)-based intelligent 
fault detection algorithm to detect rail vehicle faults. In this 
investigation, the classifiers are trained and tested with the 
results of numerical simulations of a high-speed vehicle (200 
km/h). The TCN based fault classification algorithm 
identifies the rail vehicle faults with 98.7% accuracy. The 
proposed method contributes towards digitalization of rail 
vehicle maintenance through condition-based and predictive 
maintenance. 

1. INTRODUCTION 

Vehicle hunting motion (running instability) is an important 
phenomenon in vehicle-track dynamic interaction and 
typically appears at a fairly high vehicle speed and on a 
straight track or in large-radius curves. The running 
instability is an intrinsic behaviour of a vehicle system that is 
dependent on the health of the vehicle and track subsystems. 
The foremost reasons of running instability are poor vehicle 
yaw dampers, too soft primary suspension in the horizontal 
plane or poor wheel-rail interface geometry. Vehicle hunting 
is a safety concern and can also cause passenger discomfort. 
The European Standard EN 14363:2016+A1  (2019) standard 

specifies the methods to measure vehicle running instability 
in the vehicle certification phase. However, these methods 
are not suitable for continuous health monitoring of the 
vehicle and track subsystems which influences the running 
instability of the vehicle. Gasparetto et al., (2013) employ 
Random Decrement Technique to extract the vehicle’s 
hunting frequency and residual damping from bogie frame 
accelerations. These signal-based features are fed into k 
Nearest Neighbor (kNN) and Artificial Neural Network 
(ANN) fault classifiers to diagnose the reason behind the 
observed vehicle running instability, mainly vehicle-based 
faults.  Ning et al., (2018), propose data-driven fault 
classifiers combined with data fusion of multiple bogie frame 
accelerations for diagnostics of vehicle hunting. The authors 
employ Empirical Mode Decomposition (EMD) and Sample 
Entropy (SE) methods to extract features associated with 
small amplitude hunting and incorporate them into Support 
Vector Machine (SVM) classifier as fault identifiers. Zeng et 
al., (2020) use a phase-space reconstruction algorithm to 
extract signal-based features to estimate the state variables 
periodicity in the nonlinear dynamic system and detect 
hunting based on axlebox accelerations. Kulkarni et al., 
(2019), deployed two classifiers (i.e., linear SVM and 
Gaussian SVM) for the Fault Detection and Isolation (FDI) 
of yaw dampers of high-speed trains. The simulation results 
showed that both classifiers could identify the faulty yaw 
dampers well. Moreover, the Gaussian SVM classifier 
performed slightly better in the training and testing phases, 
while it had a higher risk of overfitting the current dataset. 
Overall, the results showed the ability of the data-driven 
approach to be used for the FDI of railway vehicle suspension 
faults. The articles above, mainly extract features from 
axlebox acceleration or bogie frame acceleration and mainly 
use traditional machine learning algorithms. Moreover, these 
studies do not focus on intelligent fault identification of 
vehicle running instability. 

The main objective of the present study is to detect vehicle 
running instability and identify the root causes from carbody 
floor acceleration using two different methods. Namely, 
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Dynamic Mode Decomposition (DMD) (Brunton & Kutz, 
2019) and Temporal Convolutional Neural Network (TCN) 
(Lea et al., 2016). The DMD method accurately estimates the 
eigenfrequencies and eigenmodes of the system. In recent 
times, a TCN is proposed which shows excellent abilities in 
solving sequential problems such as analysing time series 
data and outperforms Recurrent Neural Network (RNN) 
models. Thus, TCN is deployed to identify the root causes of 
observed vehicle running instability in this investigation. The 
iVRIDA algorithm is described in the next subsection which 
is followed by results and conclusions. 

2. IVRIDA ALGORITHM 

2.1. Algorithm Schematic 

 
Figure 1 Schematic of iVRIDA algorithm 
 
The proposed iVRIDA algorithm for vehicle running 
instability detection and root cause identification from 
carbody floor acceleration is illustrated in Figure 1. The 
algorithm utilizes two data-driven methods namely DMD and 
TCN aiming at detecting the vehicle instability and 
identifying root cause of the same. The hunting or vehicle 
running instability detection algorithm is implemented based 
on a binary classification method using outputs from DMD 
of carbody floor accelerations. Besides, the root causes 
identification is a classical multi-class classification problem 
and TCN is deployed on transfer functions between track and 
carbody floor. 

2.2. Vehicle Running Instability Detection with DMD 

The vehicle-track is a system where the nonlinearities mainly 
lie in the contact between the wheel and the rail. While 
hunting, a limit cycle is reached, and the system starts to 
oscillate at a certain frequency and with a precise mode 
shape. In this condition, an almost stable cycle can be 
detected. Thus, during hunting, the vehicle (bogies plus 
carbody) can be considered linear. This first assumption 
makes it possible to apply the DMD algorithm. Non-
linearities are not expected in the time and spatial domains. 

The DMD algorithm is chosen because it is a fast and 
accurate algorithm with which the eigenfrequencies and 
eigenmodes of the system can be detected. It is convenient in 
hunting detection due to the order in which the results are 
sorted, namely by energy content. In fact, in hunting motion, 
essentially only one mode will be excited. This mode will be 
the one with the highest energy content. It will be sufficient 
to consider the this mode. 

The DMD algorithm assumes linear relation in time and 
space for the selected signals. The relation between the time 

mt  and the previous one 1mt −  can thus be defined, 

 ( ) ( )2 1 1 2 1, , , , ,m mX t t AX t t X AX−… = … → =  (1) 

where, 1X is the ( 1)n m× −  matrix representing the state of 
the system at instances from 1t to ( 1)mt − , 2X is the ( 1)n m× −
matrix representing the state of the system at instances from 

2t  to mt  and A  is the state matrix. Here, n  is the number of 
sensors used and m  is the number of time steps. Applying 
the reduced Singular Value Decomposition (SVD) of the 
matrix 1X  with reduced order r , 
 1 ,r r rX U V ∗= Σ  (2) 

it is possible to estimate the state matrix A  to the reduced 
order r , 
 1

2
ˆ .r r rA U X V∗ −= Σ  (3) 

If the eigenvalue problem is solved for the matrix Â , 
 ˆ ,AW W= Λ  (4) 

It is now possible to determine the mode shapes Φ  and the 
eigenfrequencies f of the system, 
 ( )1

2 , log ,r r sX V W f f−Φ = Σ = Λ  (5) 

where, sf  is the sampling frequency. 
During the analysis, the DMD algorithm with second-order 
reduction applied to carbody acceleration was able to identify 
correctly the eigenfrequencies of the system. In contrast, with 
the mode shape isn’t possible to distinguish between hunting 
and non-hunting scenarios due to the scaling of the mode 
shapes themselves. To solve the problem, the following 
equality is assumed, 
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 ,R b= Φ  (6) 

where b is the scaling factor and R is the signals 1n×  RMS 
matrix. In this way, it is possible to incorporate the energy 
information carried by the whole considered signal in the 
mode shapes themselves. In Figure 2 the effect is shown for 
the first 25 test cases. After the scaling, the mode shapes can 
be used in conjunction with eigenfrequencies to distinguish 
hunting cases from non-hunting ones using a statistical fault 
classifier. 

 
Figure 2 Effect of DMD mode shape scaling with signal RMS 

2.3. Intelligent Fault Detection of Vehicle Running 
Instability with TCN 

2.3.1. Estimation of Transfer Function 

A rail vehicle running on track in presence of track 
irregularities can be considered a MIMO system, where 
Alignment Level (AL), Longitudinal Level (LL), Track 
Gauge (TG), and Cross Level (CL) are four input signals and 
vehicle accelerations in X, Y, and Z directions (i.e. 
longitudinal, lateral and vertical direction) are output signals. 
Thus, the transfer functions and coherence between carbody 
floor accelerations and track irregularities are estimated 
according to principals of MIMO system identification. The 
schematic of the MIMO system is shown in Figure 3 The 
simplified relationship between the input and output signal is 
modelled by linear, time-invariant Transfer Functions. 

 
Figure 3 Modelling a Rail Vehicle as a MIMO system (A 
simplified schematic) 

2.3.2. Transfer Function Estimation Case Study 

In this case study, the EUROFIMA coach (Iwnicki, 1999) is 
running on a 2 km tangent track section in presence of AL, 
LL, TG, and CL irregularities. These track geometry 
irregularities are distributed among classes A, B and C 
defined in the European Standard EN 13848-5:2017  (2017) 
standard  and the irregularity signals are free from defects. 
The track irregularities are shown in Figure 4 (a-d). For 
simulations three different wheel-rail conditions are 

considered, see Table 1. In the three cases, a worn wheel 
profile (T19) is applied to all wheels of the coach. Two rail 
profiles, namely MS3_MS4 (ground rail) and BDL354U28 
(worn rail) are applied to the rails. Case1: No fault at the 
wheel-rail interface; Case2: Tight gauge fault; Case3: worn 
rail profile fault (see Table 1). Running equivalent conicity 
for the three simulation cases is shown in Figure 3(e). Case1: 
low conicity conditions; Case2: high conicity conditions 
caused by tight track gauge; Case3: high conicity conditions 
caused by worn rail profile.  

 
Figure 4 Track irregularities (a-d) and running equivalent 
conicity (e) 
 
Table 1 Summary of Simulation Cases 

Case 
Number 

Wheel 
Profile Rail Profile Avg TG Range 

[mm] 
Case 1 T19 MS3_MS4 1436-1438 

Case 2 T19 MS3_MS4 1432-1434 

Case 3 T19 BDL354U28 1436-1438 
 

The simulated vehicle response at the carbody floor (above 
the left axlebox of the leading wheelset) is stored in 
GENSYS. The differences between the three cases is shown 
by the X and Y accelerations of the carbody floor and EN 
14363  stability evaluation (i.e., 100 m moving RMS of 
bandpass filtered lateral bogie frame acceleration) for the 
three simulated cases are shown in Figure 5. In each subfigure 
abscissa and ordinate axes are travel distance and 
acceleration, respectively. In case1, X&Y acceleration 
amplitudes are low (see subfigure a, b) and the lateral bogie 
frame acceleration is much lower than the limit value 
(subfigure c). In case2, the vibration level is very large, 
especially the lateral acceleration (see subfigures d, e). The 
lateral bogie frame acceleration exceeds the threshold value 
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on many occasions on this 2 km section as seen in subfigure 
(f). In case3, also the vibration level is strong and to the order 
of 0.8 m/s2 (see subfigures g, h). The lateral bogie frame 
acceleration is high but always lower than the threshold value 
throughout this 2 km section as seen in subfigure (i). 

 
Figure 5 X, Y raw carbody floor accelerations and stability 
evaluation of bogie frame according to European Standard 
EN14363 scheme in case1, case2, and case3. 
 
The lateral carbody floor acceleration is processed through 
the first feature extraction algorithm to obtain transfer 
functions. The transfer functions for Y & AL and Y & CL are 
shown in Figure 6. The functions are presented as distance–
frequency plots to obtain spatial and frequency localization 
of the vehicle behaviour. In each plot, abscissa and ordinate 
are travel distance and frequency, respectively, whereas the 
colour shows the transfer function’s magnitude in dB scale. 
In case1, the magnitude of both transfer functions is always 
below 0 dB throughout the travel distance (see subfigures a, 
b). In case2, the Y vs AL transfer function (subfigure c) peaks 
in the 5-6 Hz range with amplitude above 30 dB and 
amplitude below 0 dB elsewhere. The magnitude of the Y vs 
AL transfer function does not change much throughout travel 
distance except for 200 m around the 1000 m marker. 
Similarly, the Y vs CL transfer function (subfigure d) of 
case2 exhibits peaks at 5-6 Hz with amplitude in the 0-10 dB 
range. In case3, the Y vs AL transfer function (subfigure e) 
peaks in the 5-6 Hz range with an amplitude of 10-20 dB 
throughout the travel distance. Similarly, the Y vs CL transfer 
function (subfigure f) of case3 does not exhibit strong peaks 
at 4-6 Hz. 

 
Figure 6 Transfer Functions between Y acceleration and AL 
& CL track irregularities for case1, case2 and case3 
 
The magnitude of the transfer function between carbody floor 
and track at a particular frequency varies with time as the 

vehicle travels on track mainly because of variations in 
equivalent conicity. This varying magnitude of the transfer 
function at a specific frequency is time-series data and the 
transfer function contour plots shown above are a collection 
of time series which are highly nonlinear. This time-series 
data is used for the identification of root causes of observed 
vehicle running instability. 

2.3.3. Temporal Convolutional Network (TCN) 

A Convolution Neural Network (CNN) is a classical neural 
network that performs well at image processing tasks because 
of its excellent feature extraction capabilities. Currently, 
CNN hasbeen widely used in many fields such as face 
recognition, automatic driving, and security. However, CNN 
models are poor in extracting temporal features from the data. 
In recent times, a Temporal Convolutional Network (TCN) is 
proposed which shows excellent abilities in solving 
sequential problems such as analyzing time series data and 
outperforms Recurrent Neural Network (RNN) models. 
Thus, TCN is deployed to identify the root causes of observed 
vehicle running instability in this investigation. 

Generally speaking, TCN has two main characteristics. 
Firstly, it maintains a causal relationship between each layer 
of the network, which means that the convolution output of a 
layer is determined solely on the convolution result of layers 
before. Thus, the data coherence and time coherence are 
better protected than the limited historical information 
storage and possible data absence of LSTM’s memory cell. 
Secondly, the architecture of this model can be flexibly 
adjusted to any length. It can also be mapped according to 
several interfaces required by the output, which is similar to 
the RNN framework. Compared with the traditional CNN 
network structure, TCN adds four core parts to the design: 
sequence modelling, causal convolutions, dilated 
convolutions, and residual connections. This subsection will 
introduce the architecture and working principle through 
these four parts in brief. 

1. Sequence Modelling: A simple sequence modelling task 
is used to illustrate the sequence modelling 
characteristics of TCN. If the input sequence is given, it 
requires predicting the specific outputs 0 ,....., TO O at 
every step. Following the requirements, the model 
should predict the corresponding output at a particular 
time point. The key constraint of sequence modelling is 
that the output at a time should be generated by exactly 
the recorded inputs before time t instead of the post-
positional information, which follows the sequence of 
data flow. The one-to-one mapping from it to ty of 
sequence modelling network could be simply expressed 
as: 

 0 0
ˆ ˆ,..., ( ,..., )T TO O f i i=  (7) 
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2. Causal Convolutions: After the introduction of the 
sequence modelling above, two principles of TCN are 
summarized. First, the length of output after model 
prediction will always remain the same as the input 
length. Second, the TCN remains invisible to ‘future’ 
information and always depends on the previous inputs 
to complete the prediction. To maintain the first 
principle, the TCN utilizes the 1D fully-convolutional 
network (FCN). The core idea of FCN is adopting the 
zero-padding method to guarantee that each output layer 
keeps the same length and width as the input layer in the 
propagation of the network. As for the second principle, 
TCN utilizes causal convolutions to prevent future 
information leakage. Causal convolutions are abstracted 
to predict current output Ty depending on previous 
inputs 0 ,..., Tx x and previous layers’ output 0 1,..., Ty y − to 
approach the actual value. The example of causal 
convolution is shown in Figure 7 

 
Figure 7 An example of causal convolutions 

 

3. Dilated Convolutions: Although the above causal 
convolutional structure is feasible to prevent future 
information leakage, it increases the number of layers in 
the network and keeps extremely long historical 
information sequences simultaneously. As Figure 7 
shows, the signed output in the upper right corresponds 
to five perceptive fields (5 grey balls in the input 
sequence), and it is obtained through five layers. It shows 
that the size of the receptive field has a positive linear 
correlation with the depth of the network, which may 
burden the learning process. To simplify the network and 
relieve memory storage pressure, TCN applies dilated 
convolutions on the network and forms an exponential 
correlation between the size of the receptive field and the 
number of layers. The following equation can 
demonstrate the principle: 

 
1

0
( ) ( * )( ) ( )

k

d
i s d i

F s x f s p i x
−

= − ⋅

= = ⋅∑  (8) 

Where d is the dilation factor and k is the filter size which 
s d i− ⋅ means convoluting only the former state. x is the 
sequence input and { }: 0,..., 1f k − is the filter. The 

operation F takes the input s to complete convolutions 
using a fixed step between every two adjacent filter taps. 
Figure 8 shows the different dilated convolutions when 
d is 1,2, and 4 respectively, the whole architecture of the 
network becomes dilated and includes less historical data. 
Therefore, this method can keep a large perceptive field 
with fewer layers and simplify learning tasks. 

 
Figure 8 An example of dilated convolutions. 

 
4. Residual Connections: The fast track in ResNet enables 

the model to learn the difference information, which 
effectively allows the network to modify the identity 
mapping to avoid gradient vanishing and gradient 
exploding problems in the deep layer model. For TCN, 
if the model needs to record a large amount of historical 
information, the final receptive field could be vast, and 
the network could become extremely deep. Hence, TCN 
adopted residual connections to reduce network depth. 
Each residual block module consists of two layers of 
residual convolutions, ReLU and batch normalization 
operation. In addition, spatial dropout is added after the 
activation function. An illustration of detailed residual 
block construction is in Figure 9. 

 
Figure 9 The profile of one residual block in TCN. 
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The advantages of TCN are - 

1. TCN can conduct convolution operations in parallel. 
Therefore, TCN can preserve long-term memory in both 
training and validation.  

2. Gradient stable TCN has a different backpropagation 
path from the sequence time direction, which avoids the 
gradient exploding and gradient vanishing problems in 
deep-layer networks compared to the RNN.  

3. The TCN can possess a sizeable perceptive field under 
the condition of shallow layers. Therefore, TCN can be 
more flexible in the model’s memory size, and it is easy 
to migrate to other fields. 

4. The TCN can accept any length of the input sequence by 
sliding one-dimensional convolutional kernels. 
Therefore, it is flexible to be utilized on distinct tasks.  

 

The disadvantages associated with TCN are - 

1. To maintain the long-term memory and generate the 
predicted result, the TCN needs to occupy more 
memories during the testing phase.  

2. When TCN migrates to different fields, the requirement 
of historical length and perceptive field will be distinct. 
Hence, migration operations could result in a weak 
expression of the TCN model. 

3. FORMULATION OF VEHICLE RESPONSE DATABASE 

3.1. Vehicle Model 

In this investigation, the hunting behaviour of a vehicle is 
investigated using the commercial multibody dynamics 
software GENSYS (AB DEsolver) by performing time 
domain simulations. The Swedish train operator SJ operates 
the fast trains X2000 on the Swedish rail network. Most SJ 
X2000 trains consist of a power car, five intermediate 
coaches and a driving trailer and are operating at a top speed 
of 200 km/h. An intermediate coach is modelled here in 
GENSYS. The vehicle model consists of a carbody, two 
bogie frames and four wheelsets which are modelled as 6 
DOF rigid bodies and connected by primary and secondary 
suspension elements. The primary and secondary 
suspensions consist of spring and viscous damper elements in 
the x, y, and z-directions. Since the X2000 coach is 
specifically designed to run in curves at high cant 
deficiencies, the primary suspension is relatively soft to give 
the wheelsets improved radial self-steering capabilities. The 
X2000 coach model is also equipped with four yaw dampers 
as shown in Figure 10 i.e., two per bogie, which works in the 
longitudinal direction.  

 
Figure 10 Schematic of MBS model of rail vehicle  

(Side view) 

3.2. Vehicle Dynamic Simulations 

Vehicle running instability can be caused by various 
parameters such as poor conditions of track gauge, 
suspension components and wheel-rail interfaces. In this 
investigation, the simulations are carried out with variation of 
wheel-rail friction, equivalent conicity and yaw damper as 
these factors mainly affect the running stability. Therefore, 
384 simulation cases were performed with the combination 
of 3 friction values, 8 conicity cases and 2 damping 
coefficients for each yaw damper as summarized in Table 2. 
In total 384 cases are obtained with a full factorial design of 
the 6 parameters. 

Table 2: Simulation Parameters 

Parameter Values 
Friction 0.1, 0.35, 0.6 
Conicity 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 
Damping coefficient of 
yaw damper 

10% and 100% of the designed value  

 

The vehicle dynamic responses are measured with two 
accelerometers at two distinct diagonal locations on the 
carbody floor as illustrated in Figure 11. The data obtained 
from these simulations are used for implementing the 
proposed iVRIDA algorithm. 
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Figure 11 Sensor locations for acceleration measurements 

3.3. Machine Learning problem formulation 

Vehicle Running Instability Detection with DMD 
The 3 features obtained from the DMD analysis of 384 cases, 
namely frequency and normalized mode shapes (at two 
sensor locations) are used for training and testing the fault 
classifier. The true labels are generated using the running 
instability evaluation scheme defined in EN14363. The EN 
14363 scheme is typically used in the railway industry to 
classify the running state of the vehicle as stable or instable, 
thus this is a typical binary classification problem, and any 
typical statistical classifier can perform the above-mentioned 
classification task. Thus, in this investigation, Linear SVM is 
deployed. The database of 384 cases is divided with random 
stratification into training and testing datasets with 87.5% 
and 12.5% cases respectively. The Linear SVM (L-SVM) 
classifier is trained on a training dataset with 7-fold 
crossvalidation and the hyperparameters of the L-SVM are 
optimized. The results are presented in the result section. 

Intelligent Fault Detection of Vehicle Running 
Instability with TCN 
The time-series form of transfer functions as explained in 
2.3.2 of each case are used for the identification of root causes 
of observed vehicle running instability using TCN. The time 
series of all 384 cases are horizontally stacked together to 
obtain a very large matrix. This large collection of time series 
of 384 cases is used for training and testing the TCN. The true 
labels corresponding to each case are obtained from the 
simulation parameters. The simulations with a 10% damping 
coefficient of the yaw dampers are labelled as yaw damper 
faults. There are 16 classes of yaw damper fault conditions as 
there are four yaw dampers in the vehicle and one or more 
may fail simultaneously. Thus, this is a typical multiclass 
classification problem. The database of 384 cases is randomly 
divided with stratification into training and testing datasets 
with 87.5% and 12.5% cases respectively. The training 
dataset is stratificaly divided into 7 folds and the first 6 folds 
formed 6 batches for the training of TCN. The last 7th fold is 

used as the validation set and the best performing TCN on the 
validation dataset is tested on the test dataset. 

4. RESULTS 

4.1. Vehicle Running Instability Detection with DMD 

The DMD algorithm is applied to the simulation cases 
described in subsection 3.2 The results are shown in Figure 
12, subfigure a & b corresponds to instable cases and 
subfigures c & d to stable cases. Subfigures a & c shows the 
carbody vibration frequency of instable and stable cases 
whereas subfig b & d shows corresponding normalized mode 
shapes. It can be seen, two distinct families corresponding to 
instable and stable cases are now distinguishable. In the mode 
shape of the hunting cases, it is now possible to distinguish 
which part of the carbody is most excited, front (_111_), rear 
(_122_) or both.  

 
Figure 12 Frequencies and mode shapes for instable and 
stable cases detected with the DMD algorithm 
 

The performance of the L-SVM classifier on the DMD 
dataset is shown as a confusion matrix in Figure 13, 
subfigure a & b show the performance of LSVM in the 
training and testing phase respectively. The LSVM classifies 
all cases with 100% accuracy in both the training and testing 
phase. 
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Figure 13 Detection of vehicle running instability with 
DMD+LSVM 
 

4.2. Intelligent Fault Detection of Vehicle Running 
Instability with TCN 

The performance of TCN in this investigation is evaluated 
with help of a confusion matrix where true labels are on the 
y-axis and predicted labels on the x-axis. The row-wise 
performance is summarised on the right-hand side of the 
respective confusion matrix. The results obtained during the 
testing phase are presented in Figure 14, and the trained fault 
classifier identifies root causes with 98.7% accuracy. 
 

 
Figure 14 Intelligent Fault Detection of Vehicle Running 
Instability with TCN 
 
The comparison of predicted fault labels and true fault labels 
is shown in Figure 15. In the figure, the x-axis is the test 
observation ID, the y-axis is the fault labels. The true fault 
labels are shown with a blue line and predicted labels with a 
black solid circle. In the well-trained fault classifier, ideally, 
the black solid circles should follow the blue line. It can be 

observed in the figure that the TCN fault classifier’s 
performance is very accurate across the whole test sequence 
except  a few misclassifications.  

 
Figure 15 Comparison of predicted labels with true labels in 
the test sequence 

5. CONCLUSIONS  

In this paper, a data-driven intelligent vehicle running 
instability detection method is proposed for detecting and 
identifying the root cause of vehicle running instability of fast 
railway vehicles. The proposed novel methodology utilises 
carbody floor accelerations for intelligently detecting the 
vehicle faults exciting vehicle running instability. The 
iVRIDA algorithm detects vehicle running instability with 
the DMD+SVM method and corresponding root causes with 
Temporal Convolutional Network (TCN).  In this 
investigation, both fault detection models are trained and 
tested with an extensive database generated with numerical 
experiments. The DMD+SVM algorithm detects the stability 
of high-speed rail vehicles from carbody floor accelerations 
with 100% accuracy. The TCN based fault classifier 
identifies the root cause of running instability with 98.7% 
accuracy. Thus, it is significant that iVRIDA detects and 
isolates the occurrence of vehicle running instability and 
corresponding root cause from carbody floor accelerations. 
The most important benefit of the proposed novel deep 
learning algorithmis the enhancement in obtaining a reliable 
Intelligent fault detection method with minimal sensor 
maintenance.  
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