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ABSTRACT

Quantifying the predictive uncertainty of a model is an im-
portant ingredient in data-driven decision making. Uncer-
tainty quantification has been gaining interest especially for
deep learning models, which are often hard to justify or ex-
plain. Various techniques for deep learning based uncertainty
estimates have been developed primarily for image classifi-
cation and segmentation, but also for regression and forecast-
ing tasks. Uncertainty quantification for anomaly detection
tasks is still rather limited for image data and has not yet
been demonstrated for machine fault detection in PHM ap-
plications.

In this paper we suggest an approach to derive an uncertainty-
informed anomaly score for regression models trained with
normal data only. The score is derived using a deep ensem-
ble of probabilistic neural networks for uncertainty quantifi-
cation. Using an example of wind-turbine fault detection,
we demonstrate the superiority of the uncertainty-informed
anomaly score over the conventional score. The advantage
is particularly clear in an ~out-of-distribution” scenario, in
which the model is trained with limited data which does not
represent all normal regimes that are observed during model
deployment.

1. INTRODUCTION

Assessing the predictive uncertainty of machine learning (ML)
and deep learning (DL) algorithms is essential for any deci-
sion taken on the basis of such algorithms. Some popular ex-
amples for taking decisions under uncertainty include image
classification for autonomous-driving (Kraus & Dietmayer,
2019; He, Zhu, Wang, Savvides, & Zhang, 2019; Miller, Day-
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oub, Milford, & Siinderhauf, 2019) or for medical purposes
(Leibig, Allken, Ayhan, Berens, & Wahl, 2017; Herzog, Mu-
rina, Diirr, Wegener, & Sick, 2020) as well as time series fore-
casting models (Laptev, Yosinski, Li, & Smyl, 2017).

The applications of uncertainty quantification (UQ) to ma-
chine learning anomaly detection are still rare, and these fo-
cus mostly on anomaly detection in images (Seebdck et al.,
2019; Cai, Lu, & Sato, 2020; Sato, Hama, Matsubara, & Ue-
hara, 2019). In time series data, and in particular for machine
sensor data, DL based UQ has been primarily used for prog-
nostics models aimed at the estimation of remaining useful
life (Biggio, Wieland, Chao, Kastanis, & Fink, 2021). Com-
bining uncertainty estimates in the most fundamental (and ap-
plication relevant) step of machine fault detection is still miss-
ing. As condition-based maintenance often relies on the out-
put of anomaly detection algorithms, uncertainty of such al-
gorithms is necessarily propagated onto uncertainty in main-
tenance decisions.

In this paper we introduce a method to incorporate the uncer-
tainty quantification of a DL model into an anomaly score. In
particular, we suggest to use a regression-based anomaly de-
tection model, in which a model is trained with normal data
exclusively and anomalies are detected in the test data based
on the deviations (residuals) of the true measurements from
the model predictions. Using such a deep regression-based
anomaly detection model, the UQ is carried out similarly to a
standard regression task, independent of the anomaly detec-
tion step. In a subsequent step we derive an anomaly score
that combines information about the prediction error together
with the prediction uncertainty. We show that the uncertainty-
informed anomaly score outperforms the conventional uncer-
tainty agnostic score especially under difficult training con-
ditions, when the training data is not representative for all
testing conditions. This scenario is very common for PHM
applications, in which machine data is often collected over a
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limited period of time prior to commercial deployment (Fink
et al., 2020). Despite this, new operating conditions should in
general not be detected as anomalies, but as a healthy ~out-of-
distribution” behaviour. In this sense, exploiting uncertainty
information in anomaly detection is more challenging than in
classification or forecasting tasks. We show that uncertainty-
informed anomaly scores can distinguish between true anoma-
lies and unknown but healthy conditions. An important ad-
vantage of the uncertainty-informed score, is that there is no
need to use an uncertainty-based filter of the predicted out-
puts, in order to disqualify or discard the most uncertain pre-
dictions, as commonly done in classification or segmenta-
tion tasks (Abdar et al., 2021; Schwaiger, Sinhamahapatra,
Gansloser, & Roscher, 2020). Instead, each and every pre-
diction obtains an anomaly score and its health condition is
assessed given a detection threshold.

There are various approaches for UQ with DL models

(Gawlikowski et al., 2021; Abdar et al., 2021). Some meth-
ods are based on training an ensemble of networks and us-
ing the variance of predictions as a measure for uncertainty
(Lakshminarayanan, Pritzel, & Blundell, 2017), other focus
on variational inference using MC-Dropout as an estimate for
model uncertainty (Gal & Ghahramani, 2016). In this paper
we choose to focus on deep ensemble methods. However,
since our neural network includes dropout layers for regular-
ization, we in fact combine MC-dropout with ensembling.

In the first part of the paper we focus on the selection of a use-
ful UQ method for our problem. A useful uncertainty mea-
sure is on one hand sharp enough to be informative and on the
other hand does not suffer from over-confidence, i.e is well
calibrated (Kuleshov, Fenner, & Ermon, 2018). The calibra-
tion of an uncertainty estimate can be quantified (Kuleshov
et al., 2018; Levi, Gispan, Giladi, & Fetaya, 2019; Tran et
al., 2020), and the model can be recalibrated in various ways
if needed (Kuleshov et al., 2018; Levi et al., 2019). In or-
der to select a properly calibrated model, we contrast the
performance of two models: an ensemble of CNN models
trained with a Mean Squared Error (MSE) loss is compared
with an ensemble of probabilistic CNN models trained with
a Negative Log Likelihood (NLL) loss. In the latter case
the output of the network includes a mean and a variance
of the conditional distribution function (Diirr, Sick, & Mu-
rina, 2020). Using an example aimed at wind-turbine fault
detection, we demonstrate that the NLL-based ensemble pro-
vides a well calibrated uncertainty estimate, as opposed to the
MSE-based ensemble. This conclusion is similar to the one
in (Lakshminarayanan et al., 2017), however we quantify it
here in several different ways.

The second part of the paper is dedicated to using the un-
certainty informed regression model for an anomaly detec-
tion task. After selecting a reliable uncertainty measure we
use it for the derivation of an uncertainty-informed anomaly

score. We show that such a score can improve the fault detec-
tion performance compared to standard uncertainty-agnostic
scores, particularly when the healthy training data is limited
and does not cover all possible (healthy) operational condi-
tions observed during testing. This approach to anomaly de-
tection is the main contribution of the paper and has a po-
tential impact beyond the specific application to wind turbine
condition-based maintenance that we provide here as an ex-
ample.

2. INTRODUCTION TO THE USE-CASE: WIND TURBINE
FAULT DETECTION

We demonstrate the usefulness of the uncertainty-informed
anomaly score on 4 years of real operational data from the Su-
pervisory Control and Data Acquisition (SCADA) system of
a wind turbine. The data contains time series with 10-minute
averaged values of environmental and operational variables.
The fault detection task is aimed at detecting anomalous pat-
terns in the temperature measurements of various turbine com-
ponents (Tautz-Weinert & Watson, 2016), focusing primarily
on heating rather than cooling effects (one-sided deviations
of the temperature). This is achieved by using the compo-
nent temperature at time ¢ as a target variable y, in a regres-
sion setup with the wind speed, ambient temperature, out-
put power and rotational speed as model inputs. Training the
model with data from healthy conditions exclusively, we ex-
pect large regression residuals (prediction errors) to be corre-
lated with anomalous behavior. In a previous publication we
showed the advantage of using a Convolutional Neural Net-
work (CNN) for this task, and specified our selected archi-
tecture (Ulmer, Jarlskog, Pizza, Manninen, & Goren Huber,
2020). Here we repeat only details that are necessary for the
performance evaluation of the uncertainty-informed anomaly
score.

In the example shown throughout the paper we select the
gearbox bearing temperature of the wind turbine as the target
variable y, in which anomalies are to be detected. The pre-
dicting variables are the four mentioned above. The regres-
sion CNNs are aimed at providing an uncertainty quantifica-
tion along with every prediction g, of the bearing temperature
at time step t.

A standard approach to anomaly detection based on normal
state modeling is to assign anomaly scores to each prediction
and set a threshold, above which a prediction is considered
anomalous. The conventional anomaly scores are based on
the magnitude of the prediction residuals. For example, the
anomaly score of a test point at time ¢ can be related to the
Cumulative Distribution Function (CDF) of the training resid-
uals, evaluated at the residual r; = y, — ¢, of point ¢ (Clifton
et al., 2008):

S = Fry; n*, o) (M

where the mean ;(*") and standard deviation o(*") are esti-
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mated from the distribution of the residuals of the entire train-
ing data set. The Gaussian CDF is defined as

Y 1(z=n)?
L / 6_5( c ) dx. 2

F(@”“"’)Zam

In this way, a test point whose residual strongly exceeds the
typical training residuals will be detected as an anomaly based
on its dissimilarity with the training data. Naturally, this ap-
proach is bound to perform less well in case the test data is not
well represented in the training set. This applies also when
the test data is healthy, i.e with no anomalies. The result in
this case may be frequent false positives, leading to unnec-
essary alarms. In this context it is important to distinguish
between such out of distribution (OoD)”” normal data in con-
trast to true anomalies (e.g machine faults). The main purpose
of the uncertainty-informed anomaly score we introduce here
is to be able to distinguish between the two, thereby detect-
ing the true anomalies and minimizing the false alarms due to
“normal” OoD data.

3. USEFUL UNCERTAINTY QUANTIFICATION

The anomaly detection task essentially decomposes into two
sequential steps: (i) a supervised prediction model trained
with normal data only (ii) a clustering task of the mixed (nor-
mal and abnormal) data, based on anomaly scores assigned to
each prediction.

In decision making problems it is beneficial to quantify the
uncertainty inherent to the prediction step (i). There are two
main sources for uncertainty; aleatoric and epistemic uncer-
tainty (Diirr et al., 2020). Aleatoric uncertainty is also known
as data uncertainty and refers to the inherent ambiguity present
in the data. Epistemic uncertainty, on the other hand, is known
as model uncertainty and is caused by a lack of knowledge of
our model.

By including an uncertainty quantification, the prediction

model provides not only a single predicted value ¢, but an
effective predictive distribution, f(fi, &¢), where [i; provides
an estimate for the predicted value and &) and estimate for
the prediction uncertainty at step ¢. Since the prediction model
is trained with normal data, we expect the predictive distribu-
tion of a regression model not to depend on the true value y;
at test time, that is to be independent of whether the ground
truth is normal or abnormal. This observation allows us to
use for step (i) standard frameworks for UQ commonly used
for regression models, ignoring at this point the fact that our
ultimate goal is to use this UQ for the anomaly detection task.

In the following we compare different UQ methods in order
to select the most useful one. A useful UQ is capable of pro-
viding reliable uncertainty estimates for the model predicted
output, which is on one hand sharp enough and on the other
hand does not suffer from over-confidence (Kuleshov et al.,
2018). Selecting a reliable (calibrated) uncertainty quantifi-

cation is relevant for any prediction model, independent of
the anomaly detection task following the prediction step.

Similarly to other regression tasks, the purpose here is to
identify the most reliable uncertainty measure amongst pos-
sible candidates. In this paper we focus on ensemble-based
methods for uncertainty estimates. As ensemble members
we select CNNs that have been proven to perform well on
the anomaly detection task for wind turbines in our previ-
ous work (Ulmer et al., 2020). These CNNs already include
dropout layers for regularization, which we retain also here.
This implies that our UQ is based on deep ensembles with
dropout, which is turned on also at prediction time. We thus
generate an ensemble of different dropout configurations, where
each member of the ensemble is initialized and trained indi-
vidually. We compare the uncertainty quantifications of two
types of CNN ensembles:

MSE ensemble. We train an ensemble of M/ = 30 CNNs
by minimizing the prediction MSE. We denote the weights of
the m!" trained model with 6,,, and the predicted value at step
t with ¢, ¢, . For every time step we use the ensemble mean
as the prediction and the variance over the ensemble as the
uncertainty measure:

| M

fie =37 mz::l Ut.00m 3)
1 M

~2 . Ry

0y = M—1 mzz:l(ytﬁm fit)

NLL ensemble. We train an ensemble of M = 30 CNNs
by minimizing the prediction NLL. Each member m of the
ensemble outputs a predictive distribution N (fiz,,,0¢0,,)-
In order to combine the predictive distributions of the NLL-
ensemble members we sample a value 5; 4, from the pre-
dicted distribution for each step ¢ and each ensemble member
m. The estimated mean and uncertainty of the prediction are
then defined as:

1 M
it =7 m; 310, 4)
1 M
~2 2 o~ N2
Ut - M _ 1 rnz::l(staam :ut)

Note that the variance 67 of the sampled values is necessarily
larger than the variance of the mean predictions of the same
ensemble.

The MSE-ensemble uses the empirical variance of non prob-
abilistic predictions of the CNNs as a measure of uncertainty.
This is done differently in the NLL-ensemble. Here each
member of the NLL-ensemble models the inherent ambiguity
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Figure 1. Uncertainty calibration curves. Two uncertainty quantification methods, MSE-ensemble and NLL-ensemble, are
compared on two test sets for the prediction of the gearbox bearing temperature: (a) in distribution: a full year healthy test set
with both models trained with a full year of healthy data (b) out of distribution: a winter healthy test set with both models trained
using healthy summer data. The numbers in brackets are the calculated calibration errors €.,1. In both cases the NLL-ensemble
model is better calibrated than the MSE-ensemble, and achieves a very low calibration error in distribution.

present in the data (aleatoric uncertainty) and the ensembling
over these probabilistic predictions approximates the model
uncertainty (epistemic uncertainty). We choose to contrast
these two approaches for UQ, despite the inherent difference
between them, as the former has been widely used and even
claimed in the past to outperform other UQ methods for vari-
ous applications (Lakshminarayanan et al., 2017).

3.1. Uncertainty Calibration Curves

To assess the calibration level of an uncertainty quantifica-
tion method we use calibration curves (Kuleshov et al., 2018;
Tran et al., 2020). A calibration curve compares the true frac-
tion of points in a given confidence interval with the predicted
fraction of points in that interval. Following (Kuleshov et al.,
2018), for a given test data set ¢ = 1...T" we choose n confi-
dence levels 0 < p; < p2 < ... < p, < 1 and calculate for
each threshold p; the empirical fraction of true values below

1t,
T _
e Hw <F0)}
pj = 7 . 5)
The calibration curve is composed of the pairs {(p;,p;)}7—;.
To further quantify the comparison we calculate the calibra-
tion error (Kuleshov et al., 2018)

ceal = Y (5 — Py)*- 6)
j=1

Figure 1 shows the calibration curves (including Wilson con-
fidence intervals) for the gearbox bearing temperature pre-
dictions of a wind turbine during periods of healthy condi-

tion (no faults). The calibration levels of the two UQ meth-
ods, MSE- and NLL-ensemble, are compared, with the cali-
bration errors €.,; given in brackets in the legend. In panel
(a) the models were trained with data from a full year and
the curves were calculated for a time period of one full year.
The results demonstrate the clear advantage of UQ using the
NLL-ensemble approach which seems to be very well cal-
ibrated, with a calibration error of 0.01 (compared to 0.31
for the MSE-ensemble). Note that the shape of the MSE-
ensemble curve indicates that this quantification tends to be
over-confident, for which the true y; often falls outside the
expected confidence band. The NLL-ensemble method, on
the other hand, tends towards a slight under-confidence.

Figure 1(b) repeats the comparison in an Out-of-Distribution
(OoD) scenario. It is important to clarify the meaning of OoD
in the context of our fault detection task. A common scenario
in fault detection applications is that not all healthy (normal)
operating conditions are observed during training. As a re-
sult, some of these conditions may be detected as anomalies
during deployment, only because they are out of the training
distribution. Here we use the term OoD to describe these nor-
mal operating conditions that have not been observed during
training but should not be detected as anomalies. In order
to emulate such a scenario, we intentionally remove part of
the operational conditions from our training set, and intro-
duce these conditions only at testing. Thus, in Figure 1(b) the
models are trained with only 3 months of summer data and
the calibration curves are calculated on 3 months in winter,
where both periods are known to be normal with no anoma-
lies. Since the test data here is clearly OoD (this will be
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Figure 2. Comparison of the calculated Negative Log Likelihood NLLyq of the uncertainty quantification for the gearbox
bearing temperature prediction. (a) Distributions of the NLLyq score during one year testing for 4 different models: base MSE
is the CNN ensemble with the MSE loss trained with a full year data; base NLL uses the NLL loss with 1 year training data;
limited MSE uses the MSE loss trained with 3 months of summer data; limited NLL uses the NLL loss with 3 months summer
data for training. The number in brackets is the mean NLLyq over the entire test period. (b) The same as (a) just for 3 months
of test data. The test data is healthy winter data, that is out of the training distribution (OoD) for "limited” training case. (c) An
example of the NLLy;q vs. time during summer (in distribution). (d) An example of the NLLyq vs. time during winter (OoD).
The NLL-ensemble generally obtains lower values than the MSE-ensemble when both are trained with limited summer data.

demonstrated again below through increased OoD residuals
in Figure 4), the UQ of both models is less well calibrated
and both suffer from over-confidence. However, the NLL-
ensemble is clearly better calibrated than the MSE-ensemble
even in the OoD case.

In the examples throughout the paper we chose to train mod-
els on summer data and test them on winter data. The op-
posite case was observed by us to be less interesting since
the domain shift seemed to affect the prediction results in a
milder manner, such that the OoD effect was less pronounced.

3.2. Likelihood-based UQ Assessment

Another way to assess the usefulness of the different UQ
methods is using an NLL-like score (Tran et al., 2020) on
a test set. Every UQ method is used to estimate a probabil-
ity distribution at each point ¢, which we approximate to be
Gaussian and denote with N (i, 5¢). We emphasize the dis-
tinction of the estimated mean [i; and uncertainty ¢, from
the mean ji; and variance 67 predicted directly by a proba-
bilistic model as the two network outputs (in case of an NLL
loss function). Whereas the latter are used to define the con-
ventional NLL loss, we use the former in order to define an
NLL-like score that quantifies the usefulness of the uncer-
tainty measure of the method and denote it by NLLyq:

NLLuq(t) = —log P(y¢| N (fit, 57)) @)

For each UQ method we plug in the definitions of i; and 57,
either from Eqn. 3 or from Eqn. 4.

The NLLyq measure is influenced by the predictive accuracy
as well as the quality of its UQ (Tran et al., 2020). For a given
test set, a lower NLLyq value indicates a better combination
of prediction accuracy and reliable uncertainty quantification.

Figure 2 compares the uncertainty measures in terms of their
NLLyq score on test data. Panels (a) and (b) display the
empirical distribution of the scores over the test period. In
panel (a) the test period is a full year of 10-minute resolu-
tion SCADA data from the wind turbine, whereas in panel
(b) the test data are 3 months of winter data. In all regimes
we selected for this evaluation training and test data without
anomalies (healthy data). In each of these panels 4 distri-
butions are displayed: for each of the UQ methods, MSE-
ensemble and NLL-ensemble, we train the CNN with a full
year data (base) or with summer data (limited) and plot the
resulting 4 distributions of the NLLyq scores for the test set.
The numbers in brackets are the mean NLLyq over the test
set.

The most pronounced observation from the empirical distri-
butions is the high score peaks of the MSE-ensemble model
in all 4 cases (base and limited training with both test sets).
The high negative log likelihood scores are indicative of test
points with true values which lie at the extreme tail of the
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Figure 3. Confidence bands based on different uncertainty quantification (UQ) methods. Three days of the CNN ensemble
predictions of the wind turbine gearbox bearing temperature (dashed) together with 95% confidence bands are compared for
two different UQ methods: deep MSE ensemble (left), and deep NLL ensemble (right). The true values y; are shown in solid
lines, and the predicted mean fi; as dashed lines. Whereas for the MSE ensemble, true values often lie outside the predicted
confidence band, the NLL ensemble clearly provides more reliable UQ, for which around 95% of the measured values lie within
the predicted 95% confidence band. This improved calibration of the NLL ensemble is seen also for the case of limited training
data (2nd and 4th row) and not only with a baseline of full year training data (1st and 3rd row). The two upper rows (a)-(d)
show an example from summer (similar to the training conditions) whereas the two lower rows (e)-(h) show an example from
winter (OoD). In both cases we chose time slots of normal (healthy) turbine conditions.
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predicted uncertainty distribution N (fi;, 5¢). In these cases
the uncertainty estimated by &, is too small to explain the
measured value y; given the estimated predicted value fi;. In
other words, the peaks result from test points with strongly
over-confident predictions. The over-confident predictions
are characteristic of the MSE-ensemble based UQ in an ”in
distribution” scenario, depicted in blue (base MSE) in panel
(a) (that is, when both the training and the test data cover a
full year). However, this is also the case “out of distribution”,
when the model is trained with summer data and tested in
winter (green distribution in panel (b)).

As opposed to the MSE ensemble, the UQ based on the NLL-
ensemble does not suffer from strongly over-confident predic-
tions that lead to the high NLLyq peaks. The advantage of
the NLL ensemble for UQ is also evident through the lower
mean NLLyq values (in brackets), both in distribution (panel
(a) base models) and out of distribution (panel (b) limited
models). We stress again that the term “out of distribution” is
used here to describe normal (not anomalous) regimes which
are not observed during training.

A direct comparison between the two UQ models is demon-
strated in Figure 2(c) and (d). The NLLyq score is plotted
against time for a period of 3 days using the MSE and NLL
models trained with 3 months of summer data. We note that
the capped values in the plots results from a regularization
constant to avoid exploding logarithms. The NLL ensemble
model reaches considerably lower scores as it does not suffer
from over confident predictions.

This fact is visualized clearly in Figure 3. Here the 95%
confidence bands around the predicted values (dashed lines)
are contrasted with the true values (solid lines) of the gear-
box bearing temperature of the turbine. The left and right
columns of plots display the results using the MSE-ensemble
and NLL-ensemble based UQ respectively, with panels (a)-
(d) showing summer test data and panels (e)-(h) showing win-
ter test data for both baseline (1 year) and limited data (3 sum-
mer months) training. Here it is clearly seen that the MSE-
ensemble is strongly over confident in all regimes except OoD
(panel (g)), where it is only lightly over-confident. Over-
confident behaviour is easy to identify whenever the true val-
ues lie considerably outside the 95% confidence band. In a
calibrated model this is expected to happen approximately
95% of the time. However, the MSE-ensemble model suf-
fers from this considerably more often. In contrast to this,
the NLL-ensemble method (right column) demonstrates al-
most no cases of true values well outside the confidence band,
which is consistent with our observation that this model is
well calibrated. The sharpness of the UQ of this model can
also be observed here: the predicted uncertainty is repeatedly
higher in periods of high prediction errors and lower in peri-
ods of low prediction errors.

After having demonstrated the high calibration level of the

NLL-ensemble UQ, in the next section we use this UQ method
to derive an uncertainty-informed anomaly score for the fault
detection task.

4. UNCERTAINTY INFORMED ANOMALY SCORE

In order to benefit from UQ for more accurate and robust
anomaly detection, we suggest to incorporate the uncertainty
information inside the anomaly score assigned to every pre-
diction. In this way, the anomaly score is not based on the
prediction residual alone, but takes into account the confi-
dence (or uncertainty) of the prediction when assigning an
anomaly score to a point. As a natural extension of the con-
ventional anomaly score we described in Section 2, we define
the uncertainty-informed (UI) score at step ¢ to be the pre-
dicted CDF, evaluated at the true value y;,

SN = F(y; i, 60). (8)

where [i; and 6; depend on the selected UQ method. In this
case, as shown in Section 3, the NLL ensemble model pro-
vides a calibrated UQ. We thus use Eqns. 4 to calculate ji;
and o for the anomaly score St(UI). Here, as well, the score
is bounded between 0 and 1, and the higher it is, the more
likely it is to indicate an anomaly. The threshold can be set
similarly to the conventional score, in terms of the parameter
«, where St(UI) > 1 — «ais detected as an anomaly (a fault).

In the following we compare the performance of two anomaly
scores; the conventional score of Eqn. 1 and the uncertainty
informed anomaly score of Eqn. 8.

Figure 4 compares the different scores as function of time for
fault detection in the gearbox bearing temperature of a wind
turbine. To elucidate the effect of UQ, we compare the perfor-
mance using three anomaly scores: (i) the standard score St(o)
of Eqn. 1 using an ensemble mean predictions of MSE-based
CNN:s (ii) a score based on the aleatoric uncertainty:

Sﬁ“lm) = F(?h? ﬂt>6t)' )

(iii) the uncertainty-informed score St(UI) of Eqn. 8.

Every panel in Figure 4 displays the prediction residuals of
the gearbox bearing temperature as function of time. Each
point is colored according to its anomaly score, where blue
indicates normal and red faulty given a detection threshold.
In this example the significance threshold for fault detection
was set on a = 0.0001 for all methods. Panels (a)-(c) show
the results achieved with a training set of a full year (marked
in green shade). Panels (d)-(f) were trained with summer data
only. As a result we observe a strong seasonality of the resid-
uals, which tend to be considerably higher in winter, that is
OoD, even in the absence of true faults. Panels (a) and (d)
display the results of the MSE ensemble using the standard

anomaly score St(o) derived using the training distribution of
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Figure 4. Comparing anomaly scores with and without uncertainty information. The prediction residuals of the gearbox bearing
temperature are plotted during 4 years. In panels (a)-(c) the first year was used to train the CNN, whereas in panels (d)-(f) only
three summer months were used for training, leading to strongly periodic residuals. The training period is shaded green. Three
types of anomaly scores are compared: the standard score (a and d), the aleatoric score (b and e) and the NLL ensemble score
(c and f). The same significance threshold av = 0.0001 was used for all plots.
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Figure 5. Fault detection performance of anomaly scores with and without uncertainty information. Three different anomaly
scores are compared for two training sets: (a) one year training data (b) training data limited to 3 months from summer only.
In the latter case, the test data includes winter data, which is outside the training distribution, both in healthy and in faulty

conditions.

the ensemble mean residuals (see Eqn. 1). In panels (b) and
(e) the residuals are the NLL model residuals based on a sin-
gle realization from the ensemble. The anomaly score is the
aleatoric score St(alw). In panels (c) and (f) the residuals are
the ensemble mean prediction errors of the NLL model and

the anomaly score is the uncertainty informed score St(UI) of
Eqn.8.

It is evident that in the baseline scenrio of panels (a)-(c),
where the models were trained with a full year data, repre-
senting all operational conditions, the differences in perfor-
mance of the three anomaly scores are small. However, when
we test the scores under the OoD scenario, where only partial
data was used for training we realize the need to compensate
for the biased model residuals during normal periods out of
distribution (i.e not during summer). The models are prone
to high residuals during winter which often lead to false posi-
tives (red points) under normal conditions. Such false alarms
should be avoided, as they can lead to high costs related to
unnecessary downtimes and maintenance. The majority of
false positives OoD is indeed avoided when the uncertainty-
informed anomaly score St(UI) is used (panel (f)). OoD pre-
dictions are typically characterized by a high prediction un-
certainty, and thus a wide predictive distribution. They are

detected as anomalies only if their residual is large enough

to reach the tail of the distribution. In this way, most of the

false positives of the standard anomaly score (panel (d)) are

avoided if we use the uncertainty informed score of panel
(f). As expected, the score St(alm), based on the aleatoric

part of the uncertainty only, does not assess the epistemic un-
certainty, and thus provides over-confident predictions OoD

whose distribution is not wide enough to avoid the false pos-
itives in winter.

In order to quantify the performance of the different anomaly
scores irrespective of a specific threshold, we plot their preci-
sion recall curves in Figure 5. In the absence of true normal/
abnormal labels we use the baseline MSE-ensemble model as
a reference, and assign the label “faulty” to predictions with
an ensemble mean residual above the 95%. We observe that
even with this bias in favour of the MSE-ensemble model,

the NLL-ensemble score outperforms it in its fault detection
fidelity.

Figure 5(a) displays the precision-recall curves of the three
anomaly scores for the “in distribution” scenario, in which
training data from a full year was used. In this case the per-
formance of all scores is similar, with a slight advantage for
the uncertainty-informed methods. As expected, in distribu-

tion the aleatoric score S */**)

and the fully informed score
St(UI)

are very similar, with similar average precision (AP)
shown in brackets for each score type. On the other hand,
panel (b) represents the performance OoD, since the training
data is limited to normal summer data only whereas the test
data includes data from the entire year. In this case, there is a
clear advantage to the NLL-ensemble score (solid red), with
AP = 0.71 vs. AP = 0.68 of the standard score (dashed
green). The aleatoric uncertainty informed score (blue dot-
ted) is clearly under-performing OoD, as the epistemic part
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of the uncertainty is crucial in this regime.

In summary, uncertainty quantification of the DL prediction
model enables us to derive an uncertainty-informed anomaly
score and assign it to each new prediction. The new score
outperforms the conventional anomaly score based on the en-
tire training distribution. The advantage is more pronounced
for unknown test data, which lies outside the training distri-
bution. In case the test data is normal, the uncertainty in-
formed anomaly score accounts for the high uncertainty in
this regime and thus avoids assigning false positives, as op-
posed to the conventional anomaly score.

5. CONCLUSION

In this paper we introduced an uncertainty informed anomaly
score, which combines the information about the prediction
residual together with the prediction uncertainty into a sin-
gle scalar score assigned to each prediction. The uncertainty
quantification is derived using a deep ensemble of probabilis-
tic CNNs. We demonstrated the usefulness of the uncertainty-
informed score for time series anomaly detection for wind-
turbine condition-based maintenance, and showed its high
performance compared to conventional uncertainty-agnostic
anomaly scores. The advantage is particularly clear under a
distribution shift of the healthy test data with respect to the
healthy training set. This situation is quite common in PHM
applications, where the training data often covers only part
of the normal operating conditions expected during deploy-
ment. Thus, an approach that can reduce the false alarm rate
in these cases is of high relevance. However, since our ap-
proach is generic, it can be applied to anomaly detection mod-
els trained with healthy (normal) data in any application field
and is not limited to time series nor to PHM applications. A
central advantage of the uncertainty-informed score is that a
health index can be assigned at each and every time step. This
is in contrast to the common uncertainty-aware classification
methods that suggest to discard high-uncertainty predictions
altogether. We believe that this approach provides a system-
atic and transparent way to include uncertainty in deep learn-
ing algorithms for anomaly detection, increasing their relia-
bility in practical applications.
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